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We establish the necessary and sufficient conditions for covariance stationarity of
ARCH~`!, for both the levels and the squares+ The result applies to any form of
the conditional variance coefficients+ This includes GARCH~p,q! and also speci-
fications with hyperbolically decaying coefficients, such as the autoregressive co-
efficients of the autoregressive fractionally integrated moving average model+ The
covariance stationarity condition for the levels rules out long memory in the
squares+

1. INTRODUCTION

Introduced by the seminal work of Engle~1982!, the autoregressive condi-
tional heteroskedastic~ARCH! models are certainly the most popular class of
nonlinear time series models, in particular thanks to the development of the
generalized autoregressive conditional heteroskedastic model of orderp,q
~GARCH~ p,q!! by Bollerslev~1986! defined by

et 5 zt st , t [ Z, (1)

st
2 5 v 1 a1et21

2 1 {{{ 1 aqet2q
2 1 b1st21

2 1 {{{ 1 bpst2p
2 , a+s+ , (2)

wherev . 0, bi $ 0, aj $ 0 ~i 5 1, + + + , p, j 5 1, + + + ,q! for integersp $ 0 and
q . 0 anda+s+ means almost surely+ The minimum conditions, which we as-
sume hereafter, imposed on the rescaled innovationzt are i+i+d+-ness, 6zt 6 ,
` a+s+, andzt

2 not degenerate+ Whenp 5 0, one gets the ARCH~q!+
Giraitis, Kokoska, and Leipus~2000! find sufficient conditions for strict sta-

tionarity of the ARCH~`!+ This is the most general formulation of GARCH
processes, generalizing~2! to
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st
2 5 t 1 (

k51

`

cket2k
2 a+s+ , (

k51

`

ck , `, (3)

wheret $ 0 andck $ 0+ The ARCH~`! was introduced by Robinson~1991!,
who considered finite parameterizations of theck to build classes of alterna-
tives in deriving score tests for no-ARCH+ ~See also the work of Hong, 1997,
who proposes a one-sided test for no-ARCH that employs the ARCH~`! as a
class of alternatives+!

The ARCH~`! representation of GARCH~ p,q! model ~2! is obtained
choosing exponentially decayingck; e+g+, the GARCH~1,1! follows settingt 5
v0~12 b1! andcj 5 a1b1

j21; the ARCH~q! model is obtained whent 5 v and
cj 5 0 for j . q+ Although hyperbolic behavior of the ARCH coefficientscj is
allowed for, the strict stationarity condition of Giraitis et al+ ~2000!,

E~zt
2! (

k51

`

ck , 1, (4)

implies a bounded second moment of theet + Indeed, for GARCH~1,1! ~4! works
out toE~b1 1 a1 zt

2! , 1, the well-known covariance stationarity condition for
the et ~see Bollerslev, 1986!, which is more restrictive than the necessary and
sufficient strict stationarity condition~see Nelson, 1990!+

Exploiting the well-known linear ARMA~m, p! ~with m5 max@ p,q# ! repre-
sentation of GARCH~ p,q!, introduced by Bollerslev~1986!, the autocovari-
ance function~ACF! of the squareset

2 can be readily shown to be proportional
to the ACF of an ARMA~m, p! once the bounded fourth moment condition of
the et is imposed+ The critical step is precisely calculating this constant of
proportionality, given by E @zt

2 2 E~zt
2!# 2E~st

4!+ For general GARCH~ p,q!
the solution has been found independently by He and Teräsvirta~1999! and
Karanasos~1999!, extending the GARCH~1,2! and GARCH~2,1! cases ana-
lyzed by Bollerslev~1986!+ Noting that the previous results are either based on
un-primitive assumptions or establish only necessity but not sufficiency, Ling
~1999! and Ling and McAleer~2002! fill these gaps, providing the necessary
and sufficient higher order moment conditions for GARCH~ p,q!+

This paper shows how to evaluateE~st
4! for ARCH~`! st

2+ It uses the lin-
ear representation ofet

2 in a martingale difference sequence+ The cases of both
exponentially~such as GARCH~ p,q!! and hyperbolically decaying coeffi-
cientscj are comprised+ In particular, necessary and sufficient conditions for
weak stationarity of the levelset and the squareset

2 are established+ This is
done in Section 2+ Finally, we discuss in Section 3 the implications of the
covariance stationarity conditions on the memory of the squares+ It follows
that covariance stationarity of theet precludes long memory in theet

2+ This
strengthens the result of Giraitis et al+ ~2000!, who found that a sufficient con-
dition for covariance stationarity of theet

2 rules out long memory+ The proofs
for the results are given in the Appendix+
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2. STATIONARITY OF ARCH(`)

The minimal condition for covariance stationarity of theet , is k 5 E~zt
2! , `,

by ~1!+ Following Robinson~1991!, who considers the casek 5 1, setting
c~L! :5 1 2 k (j51

` cj L
j , we can rewrite~3! as

c~L!et
2 5 kt 1 nt , (5)

settingnt :5 et
2 2 kst

2+ By ~1! and the i+i+d+-ness of thezt , E~nt 6Ft21! 5 0,
whereFt is thes-field of events induced by thees ~s # t ! ~for the definition of
conditional expectations when the corresponding unconditional expectations may
not exist, see Loève, 1978, Sect+ 27+2!+

Assume that, for complex-valuedz, the following “invertibility” condition
holds:

∃ d~z! 5 (
j50

`

dj z j :5 c21~z!, d0 5 1, s+t+ (
j50

`

dj
2 , `+ (6)

A sufficient condition for~6! is

6c~z!6Þ 0, 6z6 # 1,

implying c~1! . 0, but we want to allow for the possibility thatc~1! 5 0 such
as when thecj are the AR~`! coefficients of the autoregressive fractionally
integrated moving average~ARFIMA ! filter:

c~L! 5 ~12 L!d
a~L!

b~L!
, (7)

L being the lag operator~Lzt 5 zt21! with d . 0 ~by summability of thecj !
and where the finite-order polynomialsa~L!, b~L! have zeros outside the unit
circle in the complex plane+ Indeed, note that~6! does not imply absolute sum-
mability of thedj +

Given ~6!, ~5! can be rewritten as

et
2 5 ktd~1! 1 (

j50

`

dj nt2j + (8)

These simple manipulations suggest thatt, k , `, andk (i51
` ci , 1 imply

covariance stationarity of theet + Indeed, it turns out that these are the neces-
sary and sufficient conditions forE~et

2! , `+ This is developed in Theorem 1,
where the necessary and sufficient conditions for covariance stationarity of the
squareset

2 are also established+
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THEOREM 1+ Assume that condition (6) holds.

(i) The necessary and sufficient conditions for E~st
2! , ` are

t , `, (9)

k , `, (10)

k (
i51

`

ci , 1+ (11)

Under these conditions

f :5 E~et
2! 5 ktYS12 k (

i51

`

ciD , `+

(ii) The necessary and sufficient conditions for E~st
4! , ` are

t , `, (12)

u :5 E~zt
2 2 k!2 , `, (13)

Su (
u52`

`

xd~u!x Dc~u!D , 1, (14)

setting Dc0 5 0, Dck 5 ck ~k $ 1!, and xc~u! :5 (k50
` ckck1u, u 5 0,61, + + + , for

any square summable sequence ci.
Under these conditions theet

2 are covariance stationary withACF

cov~et
2, et1u

2 ! 5 E~nt
2!xd~u!, u 5 0,61, + + + ,

where

E~nt
2! 5 u~f0k!2S12 u (

u52`

`

xd~u!x Dc~u!D21

, `+

Remark 1+1+ The ACF of the squareset
2 for GARCH~ p,q! can be obtained

as follows+ We first establish the ARCH~`! representation of GARCH~ p,q!+
Exploiting the ARMA~max~ p,q!, p! representation of GARCH~ p,q!, by stan-
dard arguments~see Nelson and Cao, 1992! one obtains

a~L!

12 b~L!
5 a~L!S A1

12 r1L
1 {{{ 1

Ap

12 rpLD,
wherea~L! :5 a1L 1 {{{ 1 aqLq, b~L! :5 b1L 1 {{{ 1 bpLp, ri ~i 5 1, + + + , p!
define the inverse of the roots of61 2 b~z!6 5 0, assumed all outside the unit
circle in the complex plane and distinct, and

Ai :5
1

~12 r10ri ! + + + ~12 ri210ri !~12 ri110ri ! + + + ~12 rp0ri !
, i 5 1, + + + , p,
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whereAp 5 A1 5 1 for p 5 1+ The ARCH~`! coefficientscj of GARCH~ p,q!
are then

cj 5 Ha1m j21 1 {{{ 1 aj m0, j 5 1, + + + ,q,

a1m j21 1 {{{ 1 aq m j2q, j . q,
(15)

t 5 v0~12 b1 2 {{{ 2 bp!,

with m j :5 A1~ r1! j 1 {{{ 1 Ap~ rp! j, j $ 0+ Based on the previous definitions,
Theorem 1 yields the ACF of GARCH~ p,q! et

2 with

f 5 kv0~12 ka~1! 2 b~1!!,

deriving thex Dc~u! and thexd~u!, and thusE~nt
2!, based on~15! and deriving

the di from ~6!+

Remark 1+2+ Necessary and sufficient conditions for covariance stationarity
of GARCH~ p,q! et

2 have been independently established by He and Teräsvirta
~1999! and Karanasos~1999!+ When considering GARCH~ p,q!, these results
and~12!–~14! are equivalent, but formal derivation of their equivalence is very
cumbersome+ He and Teräsvirta~1999! is closer to our result, because their
work considers the slightly more general case of nonstandardizedzt , though
from a computational point of view our conditions~12!–~14! seem more ap-
pealing because they permit immediate use of known results for the theoretical
ACF of ARMA ~ p,q!+

As an example, for GARCH~1,1!, settingk 5 1 andp1 :5 a1 1 b1, i+e+, the
“persistence” parameter, we get

xd~0! 5 11
a1

2

12 p1
2 , xd~u! 5 a1p1

6u621S11
a1p1

12 p1
2D,

x Dc~0! 5
a1

2

12 b1
2 , x Dc~u! 5

a1
2 b1
6u6

12 b1
2 , u 5 61, + + + +

When thezt have zero fourth-order cumulant~such as for Gaussianzt ! then
u 5 2+ Under this condition, by simple manipulations, ~14! yields the well-
known covariance stationarity conditions foret

2 ~cf+ Bollerslev, 1986, Sect+ 3!

3a1
2 1 b1

2 1 2a1b1 , 1, (16)

which, in turn, implies ~11!: E~zt
2!a~1! 1 b~1! , 1+

For the ARCH~2!, namely, ck 5 0, k $ 3, setting~1 2 j1
21L!~1 2 j2

21L! :5
~1 2 c1L 2 c2L2! and assuming that the rootsj1, j2 are greater than one in
modulus~cf+ ~6!! and satisfy, for simplicity’s sake, j1 Þ j2, one gets
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xd~u! 5
j1

2j2
2

~j1j2 2 1!~j2 2 j1!
~~j1

2 2 1!21j1
126u62 ~j2

2 2 1!21j2
126u6!,

u 5 0,61, + + + , x Dc~0! 5 c1
2 1 c2

2, x Dc~1! 5 c1c2,

x Dc~u! 5 0, u 5 62,63, + + + ,

whenk 5 1 ~see Brockwell and Davis, 1987, Example 3+3+5!+ Using

c1 5 j1
21 1 j2

21, c2 5 2j1
21j2

21,

and by simple manipulations, from ~14! one gets the covariance stationarity
condition for ARCH~2! et

2 ~cf+ Milhøj, 1985, Theorem 3; He and Teräsvirta,
1999, equation~12!!, settingu 5 2,

3c1
2 1 3c2

2 1 3c1
2c2 2 3c2

3 1 c2 , 1+

Remark 1+3+ When

~E~zt
4!!102 (

j51

`

cj , 1, (17)

Giraitis et al+ ~2000, Theorem 2+1! show thatE~st
4! , `+ However, ~17! is

more restrictive than~14!+ For instance, for GARCH~1,1! with u 5 2k 5 2,
their condition becomes

3102a1 1 b1 , 1,

strictly implying ~16!, unlessb1 5 0, the ARCH~1!+

Remark 1+4+ Hyperbolically decaying specifications of theci and hence of
the di are allowed for+ Note, however, that from ~11!, k , 10~(i51

` ci ! and
thusk 5 1 is ruled out when(i51

` ci 5 1+ Thus, unlessk , 1, ~7! is not com-
patible with covariance stationaryet +

Imposing k 5 1, a choice compatible with covariance stationary levels is
obtained using the autoregressive coefficients of the ARFIMA filter as follows+
Set~cf+ ~7!!

12 (
j51

`

Ocj L
j :5 ~12 L!d

a~L!

b~L!
, (18)

whered . 0 anda~L! andb~L! are finite-order polynomials, all of whose roots
are outside the unit circle in the complex plane+ Assuming that the nonnegativ-
ity constraints on the coefficients hold, i+e+, Oci $ 0, setci 5 Oci ~i $ 2! andc1 5
Oc1e for some given 0, e , 1+ Condition~14! is more involved, but again by

suitable modification of the firstn ~say! coefficients Ocj ~ j 5 1, + + + , n!, a feasible
sequence of coefficients can be obtained from~18!+
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Remark 1+5+ An alternative, frequency domain characterization of~14! is

uE
2p

p

fd~l! fc~l! dl , 2p, (19)

setting

fd~l! :5 6d~eil !62, fc~l! :5 ~10k2!612 c~eil !62, 2p # l , p,

wherek2fc~l! 5 1 1 fd
21~l! 2 2Re~d21~eil!! ~2p # l , p! and Re~{! de-

notes the real part of its argument+ This frequency domain specification seems
easier to compute than~14!+ For instance, when considering parameterization
~7! of the cj ~as for GARCH~ p,q!! this allows us to exploit the much greater
computational simplicity of rational power spectra compared with their Fourier
transforms+ This might be relevant when imposing covariance stationarity of
the et

2 in practical estimation, e+g+, when estimating ARCH~`! using the
Whittle estimator~see Giraitis and Robinson, 2001!+

The equivalent~19! representation of~14! could be used to show that~14!
strictly implies~11!+ In fact, settingu 5 2k 5 2 for simplicity’s sake, ~19! can
be rewritten as

1

2p
E

2p

p

fd~l!~12 2Re~d21~eil !!! dl , 2
1

2
+

However, fd~l! $ 0 ~2p # l , p!, and it is arbitrary, necessarily requiring

12 2Re~d21~eil !! 5 211 2 (
j51

`

cj cos~ jl! , 0, 2 p # l , p+

Given the nonnegativity of theci and cos~ jl! # 1, with the equality achieved
for l 5 0 ~mod+ 2p!, this is equivalent to

2 11 2 (
j51

`

cj , 0,

strictly implying c~1! . 0+
Finally, exploiting the relation between theci ~i $ 1! and thedj ~ j $ 0! ~cf+

~6!!, ~19! allows us to express the time domain characterization~14! more sim-
ply as

2k (
j51

`

cj xd~ j ! ,
k2

u
1 xd~0! 2 1+
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Remark 1+6+ The original formulation of ARCH~`!, analogous to Robinson
~1991! but allowingk Þ 1, is

st
2 5 It 1 (

k51

`

ck~et2k
2 2 k It!, a+s+ , (20)

for some 0, It , `+ The reparameterization~20! is clearly permitted only for
covariance stationaryet , i+e+, whenc~1! . 0, given that It 5 t0c~1!+ In fact,
assume that one starts directly from~20! rather than from~3!+ By the nonneg-
ativity constraintk (i51

` ci # 1 becausec~1! , 0 is not allowed+ Imposing
c~1! 5 0 and assuming~6!, the linear moving average representation~8! for
the et

2 would then be

et
2 5 z 1 (

j50

`

dj nt2j ,

for any constantz, given thatc~L!et
2 5 c~L!et

2 2 c~1!z 5 c~L!~et
2 2 z!,

which is meaningless+

Remark 1+7+ ~9!–~11! and~12!–~14! are the necessary and sufficient condi-
tions for E~et

2! , ` and forE~et
4! , `, respectively+

3. MEMORY OF ARCH(`)

Giraitis et al+ ~2000, Proposition 3+1! show that~17! implies absolute summa-
bility of the ACF for theet

2, ruling out long memory+ However, considering
that ~17! is more restrictive than effectively required to obtain covariance sta-
tionary et

2, it is important to assess the impact of the weaker condition~14! on
the memory of theet

2+
Insights can be obtained by looking at the linear representation~8! for et

2+ In
fact, it follows that the memory of theet

2 is expressed by the asymptotic behav-
ior of dj as j r `+ Surprisingly, it turns out that even the much weaker covari-
ance stationarity condition~11! for the levelset rules out long memory in the
et

2+ In fact, from ~6! and~11!,

d~1! 5 (
j50

`

dj 5 1YS12 k (
j51

`

cjD , `+

Expression~14! ensures that the uncorrelatednt have finite variance but the
rate of decay of thedj , imposed by~11!, is already quick enough to imply their
absolute summability+ We summarize our results on the memory of theet

2 as
follows+
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THEOREM 2+ Assume that conditions (6) and (11) hold. Then

(
j51

`

dj , `, (21)

where

0 # dl 5 kcl 1 (
s52

l

ks (
i151

l2s11

+ + + (
is2151

l2i12{{{2is22 2 1

ci1 + + +cis21
cl2i12{{{2is21

, l $ 1+

(22)

When theci decay toward zero more slowly than exponentially, namely,ci 0
z i r ` as i r ` for any 0 , z , 1, (21) implies that, as ur `,

xd~u! ; Ccu, (23)

for some0 , C , `, with c~x! ; d~x! as xr x0, meaning that c~x!0d~x! r 1.

Remark 2+1+ When ci ; ci2d as i r ` for 0 , c,d 2 1 , `, as for the
parameterization described in Remark 1+4, E~et

2! , ` implies

xd~u! ; Cu2d, u r `, (24)

for some 0, C , `, ruling out long memory in theet
2+ Under the same as-

sumptions on the asymptotic behavior of theci , the exact rate in~24! was also
obtained in Giraitis et al+ ~2000, Proposition 3+2!, although they impose~17!, a
sufficient condition forE~et

4! , `+

Remark 2+2+ Theorem 2 makes it clear that whereas the bounded second
moment conditions~9!–~11! impart the degree of memory of theet

2, the
stronger bounded fourth moment conditions~12!–~14! ensure that the martin-
gale difference sequencent ~the innovations in the linear representation~8! of
the squares! are square integrable, without changing the memory implications
of the model+ This double role of the coefficients is simply a by-product of
ARCH~`! nonlinearity+

Remark 2+3+ In the case of exponentially decayingci , i+e+, when there does
exist 0, z , 1 such thatci 0z i r c as i r ` for some 0, c , `, it clearly
follows that

xd~u! ; Cdu, u r `,

for some 0, d , 1, 0 , C , `, as in the GARCH~ p,q! case+
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APPENDIX

Proof of Theorem 1. Part~i!+ Assume thatE~st
2! , `+ The necessary condition of

~9!–~11! follows, taking expectation on both sides of~3!+ Sufficiency of ~9!–~11! for
E~st

2! , ` is proved in Giraitis et al+ ~2000, Theorem 2+1!+ Part ~ii !+ Assume that
E~st

4! , `+ Then~12!–~14! follow, squaring both terms in~3! and taking expectations,

E~st
4! 5 ~f0k!2 1 uE~st

4! (
j1, j251

`

cj1cj2S(
i50

`

di di1~ j12j2!D,
using

E @~et
2 2 f!~et1u

2 2 f!# 5 E~nt
2! (

j50

`

dj dj1u, u 5 0,61, + + + ,

as thent are square integrable martingale differences and(i50
` di

2 , ` by ~6!+ Given
~12!–~14!, E~et

2! 5 f , ` by part ~i!+ Thereforeet is strictly stationary+ Next, set-
ting 1t :5 1~ùj50

` $st2j
2 , M %! for some constantM , ` where 1~A! equals one when

the eventA holds and zero otherwise, for any arbitrary sequence of constantssj $ 0,
j 5 1,2, + + + ,
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st
21t # t1t 1 (

j51

`

cj et2j
2 1t2j2sj

+

Writing et2j
2 5 et2j

2 2 f 1 f, using ~8!, squaring and rearranging terms yields, as
M r `,

st
41t # At

2 1 2At (
j51

`

cj ~et2j
2 2 f!1t2j2sj

1 (
k150

`

(
j1, j251

`

cj1cj2dk1
dk11j12j21t2j12sj1

nt2k12j1
2

1 (
k1, k250

`

dk1
dk2 (

j1, j251
j11k1Þj21k2

`

cj1cj21t2j12sj1
1t2j22sj2

nt2k12j1nt2k22j2, (A.1)

settingAt :5 t1t 1 f (j51
` cj 1t2j2sj

+ For the expectation of the first two terms on the
right-hand side of~A+1!, asM r `,

EAt
2 r ~f0k!2,

and

(
j51

`

cj EAt ~et2j
2 2 f!1t2j2sj

r 0+

By the law of iterated expectations, settingP~A! 5 E1~A! for any eventA,

st2k
4 1t 5 E~P~st

4 , M, + + + ,st2k11
4 , M 6st2k

4 , + + + !1t2kst2k
4 ! # E~st2k

4 1t2k! 5 E~st
41t !,

the latter equality holding by strict stationarity+ Finally, settingsj1 5 k1, sj2 5 k2, taking
expectations and collecting terms in~A+1! yields

E~st
41t ! # E~At

2!S12 u (
u52`

`

xd~u!x Dc~u!D21

1 o~1!+ n

Proof of Theorem 2. From

S11 (
j51

`

dj L
jDS12 k (

i51

`

ci LiD 5 1,

by the fundamental theorem for polynomials and simple yet tedious calculations, ~22!
follows+ We now establish that

dj 5 kcj 1 OSSk (
i51

`

ciDz jD, asj r `, (A.2)

for some constant 0, z , `+ By ~11!, for any M , `

k (
j51

M

cj , 1, k (
j5M11

`

cj , 1+
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Consider a large enoughk such thatM , k for one of suchM+ Then, split the right-hand
side of~22! as

dk 5 kck 1 (
l52

@k0M #

(
j151

k2l11

+ + + (
j l2151

k2j12{{{2j l22 2 1

Bj1, j2, + + + , j l21
~l, k!

1 (
l5@k0M #11

k

(
j151

k2l11

+ + + (
j l2151

k2j12{{{2j l2221

Bj1, j2, + + + , j l21
~l, k!, (A.3)

where@{# is the integer part of its argument and

Bj1, j2, + + + , j l21
~l, k! :5 k l21cj1cj2 + + +cj l21

ck2j12{{{2j l22
+ (A.4)

Let us dispose of the first sum on the right-hand side of~A+3!+ As l # @k0M # , one ob-
tains three terms:

(
l52

@k0M #

(
j151

k2l11

+ + + (
j l2151

k2j12{{{2j l2221

Bj1, j2, + + + , j l21
~l, k!

5 (
l51

@k0M #HS (
j151

M

1 (
j15M11

k2l11 D + + +S(
j l51

M

1 (
j l215M11

k2j12 + + +2j l2221DBj1, j2, + + + , j l21
~l, k!J

5 A1 1 A2 1 A3 (A.5)

with

A1 :5 (
l52

@k0M #H (
j151

M

+ + + (
j l2151

M

Bj1, j2, + + + , j l21
~l, k!J , (A.6)

A2 :5 (
l52

@k0M #H (
j15M11

k2l11

+ + + (
j l215M11

k2j12{{{2j l22 2 1

Bj1, j2, + + + , j l21
~l, k!J , (A.7)

and the “mixed” term

A3 :5 (
l52

@k0M #

(
s51

l21
H(

l,s
H (

j i15M11

k2l1i12j12{{{2j i121

+ + + (
j il2s

5M11

k2l1i l2s2 j1 2 {{{ 2 j il2s21

(
jr1

51

M

+ + + (
jrs

51

M

Bj1, j2, + + + , j l21
~l, k!J ,

(A.8)

where H(l,s :5 ( $r1, + + + , rs%,,$1, + + + , l %
$r1, + + + , rs%ø$i1, + + + , i l2s%5$1, + + + , l %

, i+e+, it selects all the groups of indexes of di-
mensions ~with s5 1, + + + , l 2 1! drawn from a numberl of them and thus for anys and

any permutationj i1 1 {{{ 1 j il2s
1 jr1

1 {{{ 1 jrs
5 j1 1 {{{ 1 j l + Note that H(l,s 1 5 S l

s
D+
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For A1, for some 0, z , 1, writing (l52
@k0M # 5 (l52

@zk0M #21 1 (l5@zk0M #
@k0M # yields, as

k r `,

A1 5 OSc@~12z!k# X1 1Sk (
j51

M

cjD@zk0M #D
5 OSck 1Sk (

j51

`

cjD@zk0M #D
since

(
l50

` S (
j151

M

+ + +(
j l51

M

cj1cj2 + + +cj l k
lD #

1

12 k (
j51

`

cj

:5 X1 , `+

ConcerningA2, along the same lines, ask r `,

A2 5 OSc@~12z!k# (
l50

` S (
j15M11

`

+ + + (
j l215M11

`

k lcj1cj2 + + +cj l21D1 (
l5@zk0M #

@k0M # Sk (
j5M11

`

cjDlD
5 OSck 1Sk (

j51

`

cjD@zk0M #D+
For the “mixed” term, by means of the same truncation, one obtainsA3 5 A3

' 1 A3
''

whereA3
' 5 O~ckX2! 5 O~ck! ask r `, setting

X2 :5 (
l50

`

(
s51

l21
H(l,sH (

j i15M11

`

+ + + (
j il2s

5M11

`

(
jr151

M

+ + + (
jrs

51

M

cj1cj2 + + +cj l k
l J

5 (
l50

` Sk (
j51

`

cjDl

, `+

Likewise

A3
'' 5 OS (

l5@zk0M #

@k0M #

(
s51

l21
H(l,s (

j i15M11

`

+ + + (
j il2s

5M11

`

(
jr151

M

+ + + (
jrs

51

M

Bj1, j2, + + + , j l21
~l, k!D

5 OSSk (
j51

`

cjD@zk0M #D ask r `+

For the second term on the right-hand side of~A+3!, l . @k0M # implies that for at least
one summation, say, (j i51

k2l1i2j12{{{2j i21 , then k 2 l 1 i 2 j1 2 {{{ 2 j i21 , M+ Thus,
decomposition~A+5! is not feasible+ However, the previous bounds developed for the
case@zk0M # # l # @k0M # can still be applied+ In fact
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(
l5@k0M #11

k

(
j151

k2l11

+ + + (
j l51

k2j12{{{2j l21

Bj1, j2, + + + , j l21
~l, k!

5 OS (
l5@k0M #11

k

(
j151

~M11!k2l11

+ + + (
j l51

~M11!k2j12{{{2j l21

k lcj1 + + +cj lD, (A.9)

given maxk$1 ck , ` andck $ 0 for anyk+ Then, apply ~A+5! to the expression on the
right-hand side of~A+9! and proceed as indicated previously+

Condition~11! ensures summability of thedj + On the other hand whenk (i51
` ci 5 1,

~A+2! is loose, suggesting a rate of decay ofdj slower thancj + For instance, for case~7!
with k 5 1 andd . 0 it follows thatcj ; cj2d21 anddj ; c'j d21 as j r ` for some
0 , c,c' , `+ Finally, note that whencj $ 0 ~ j $ 1! then~22! impliesdj $ 0 ~ j $ 0!+

Hence, for any u . 0 and some 0, c , `,

xd~u! 5 (
j50

u

dj dj1u 1 (
j5u11

`

dj dj1u ; cdu~11 o~1!!, asu r `,

given that, for large enoughu,

(
j5u11

`

dj dj1u # du1n (
j5u11

`

dj 5 o~du!,

for some constant 1# n , `+ Finally, comparing~A+2! with ~22! and givenk . 0,ci $ 0
~i $ 1!, yields dk ; c ck ask r `+ n
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