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STATIONARITY AND MEMORY
OF ARCH(e) MODELS

PAaoLO ZAFFARONI
Banca d’ltalia

We establish the necessary and sufficient conditions for covariance stationarity of
ARCH(e0), for both the levels and the squardhe result applies to any form of

the conditional variance coefficientEhis includes GARCHp, q) and also speci-
fications with hyperbolically decaying coefficiensuch as the autoregressive co-
efficients of the autoregressive fractionally integrated moving average k|
covariance stationarity condition for the levels rules out long memory in the
squares

1. INTRODUCTION

Introduced by the seminal work of Engl@982, the autoregressive condi-
tional heteroskedasti@RCH) models are certainly the most popular class of
nonlinear time series models particular thanks to the development of the
generalized autoregressive conditional heteroskedastic model of pyger
(GARCH(p,q)) by Bollerslev(1986 defined by

€ = 2,0y, tez, (1)
of = wtajel g+ Fagel gt Brody + e+ Brod,, as., (2)

wherew > 0,8 =0,05=0(i =1,...,p,j =1,...,0) for integersp = 0 and
g > 0 anda.s. means almost surelyfhe minimum conditionswhich we as-
sume hereafteiimposed on the rescaled innovatignare ii.d.-ness |z;| <

oo a.s.,, andz? not degeneratéVhenp = 0, one gets the ARCHy).

Giraitis, Kokoska and Leipug(2000 find sufficient conditions for strict sta-
tionarity of the ARCHwo). This is the most general formulation of GARCH
processegyeneralizing(2) to
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ol =1+ > el as, > < oo, 3)
k=1 k=1

wherer = 0 andyy = 0. The ARCH(o0) was introduced by Robinsaii991),
who considered finite parameterizations of iheto build classes of alterna-
tives in deriving score tests for no-ARCKSee also the work of Hond 997,
who proposes a one-sided test for no-ARCH that employs the ARGHs a
class of alternativep

The ARCH(x) representation of GARCHp,q) model (2) is obtained
choosing exponentially decaying; e.g., the GARCH(1,1) follows settingr =
w/(1— B1) andy; = o, B the ARCH(g) model is obtained when = » and
i = 0 forj > q. Although hyperbolic behavior of the ARCH coefficienisis
allowed for the strict stationarity condition of Giraitis et.4R000),

E(z?) kzl <1 (4)

implies a bounded second moment of thelndeed for GARCH(1,1) (4) works
out toE(B, + a; z2) < 1, the well-known covariance stationarity condition for
the ¢, (see Bollersley1986), which is more restrictive than the necessary and
sufficient strict stationarity conditiofsee Nelson1990.

Exploiting the well-known linear ARMAmM, p) (with m = max{ p,q]) repre-
sentation of GARCHIp,q), introduced by Bollersle1986, the autocovari-
ance function ACF) of the squares? can be readily shown to be proportional
to the ACF of an ARMAm, p) once the bounded fourth moment condition of
the ¢, is imposed The critical step is precisely calculating this constant of
proportionality given by E[z? — E(z?)]?E(0¢*). For general GARCKp,q)
the solution has been found independently by He and Terasii&89 and
Karanasog1999, extending the GARCKL,2) and GARCH2,1) cases ana-
lyzed by Bollersle(1986. Noting that the previous results are either based on
un-primitive assumptions or establish only necessity but not sufficidring
(1999 and Ling and McAleer2002 fill these gaps providing the necessary
and sufficient higher order moment conditions for GARGH).

This paper shows how to evalug®o,*) for ARCH(c0) o2 It uses the lin-
ear representation ef in a martingale difference sequendée cases of both
exponentially(such as GARCHKp,q)) and hyperbolically decaying coeffi-
cientsy; are comprisedin particular necessary and sufficient conditions for
weak stationarity of the levels, and the squares? are establishedThis is
done in Section 2Finally, we discuss in Section 3 the implications of the
covariance stationarity conditions on the memory of the squdtdsllows
that covariance stationarity of thg precludes long memory in the?. This
strengthens the result of Giraitis et £000, who found that a sufficient con-
dition for covariance stationarity of the? rules out long memoryThe proofs
for the results are given in the Appendix
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2. STATIONARITY OF ARCH(~)

The minimal condition for covariance stationarity of theis k = E(z?) < oo,
by (1). Following Robinson(1991), who considers the case = 1, setting
p(L):==1- k37 LI, we can rewrite(3) as

W(L)ft = KT + vy, %)

settingy; := €2 — ka? By (1) and the ii.d.-ness of thez,, E(v{|#_1) = 0,
whereZ; is theo-field of events induced by the, (s < t) (for the definition of
conditional expectations when the corresponding unconditional expectations may
not exist see Loevel978 Sect 27.2).

Assume thatfor complex-valuedz, the following “invertibility” condition
holds

06(2) = X, 6,2 := ¢y~ X(2), 8=1 st X 8?<on (6)
i=o i=o0

A sufficient condition for(6) is
lw(2)|#0, |z|=1

implying (1) > 0, but we want to allow for the possibility that(1) = 0 such
as when thej; are the ARoo) coefficients of the autoregressive fractionally
integrated moving averag@&RFIMA) filter:

alL)

p(L) = (21— b(L)’

(7)

L being the lag operatailLz, = z,_,) with d > 0 (by summability of they)
and where the finite-order polynomiadgL ), b(L) have zeros outside the unit
circle in the complex plandndeed note that(6) does not imply absolute sum-
mability of the ;.

Given (6), (5) can be rewritten as

€2 = kt6(1) + X §vy . (8)
j=0

These simple manipulations suggest thak < co, andx Xi-, ¢ < 1 imply
covariance stationarity of thg. Indeed it turns out that these are the neces-
sary and sufficient conditions fd#(e?) < co. This is developed in Theorem 1
where the necessary and sufficient conditions for covariance stationarity of the
squares:2 are also established
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THEOREM 1 Assume that condition (6) holds.

(i) The necessary and sufficient conditions faif2) < co are

T < 00, 9)

K < o0, (10)

kS <1 (11)
i-1

Under these conditions
¢ = E(e?) = K’T/(l— KZ ¢i> < co.
i=1

(i) The necessary and sufficient conditions foiof?) < co are

T < 00, (12)
0:= E(z2— k)2 < o0, (13)
(0 P XB(U)Xl/)(U)> <1, (14)

settingio = 0, i = ¢ (k= 1), and yc(U) 1= X CCery, U= 0,%1,..., for
any square summable sequenge ¢
Under these conditions the? are covariance stationary witACF

cov(ef,edy) = E(wd)xs(u), u=0,%1,...,

where

0 -1
E(Vf)_0(¢/K)2<1_9 > Xa(U)XJ,(U)> < 0.

u=—oo

Remark 11. The ACF of the squares? for GARCH(p,q) can be obtained
as follows We first establish the ARCHbo) representation of GARCHp, g).
Exploiting the ARMA(max(p,q), p) representation of GARCHp,q), by stan-
dard argumentgsee Nelson and Cadé992 one obtains

ﬂ: (L)(L—I—---—{— Ap )
1-8(L) 1-p,L 1-p,L ’

wherea(L) := a;L + -+ + aqL9, B(L) := B1L+ --- + B,LP, pi (i=1,...,p)
define the inverse of the roots ¢f — B(z)| = 0, assumed all outside the unit
circle in the complex plane and distineind

1
A = )
" A= pi/p)e- (L= pisa/p) A= piia/pi) . (1= py/pi)

i=1...,p,
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whereA, = A; = 1 for p = 1. The ARCH(c0) coefficientsy; of GARCH(p,q)
are then

(15)

[a1Mj1+"‘+ajMo, i=1....q,
i

aypjyt o Fagpiog ] >0,
T=0/(1=B1— = Bp),

with w; := Ai(p1)! + -+ + Ay(pp)l, j = 0. Based on the previous definitians
Theorem 1 yields the ACF of GARCHp, q) € with

¢ = ko/(1 - ka(l) — B(1)),

deriving they,;(u) and theys(u), and thusE(»¢), based on(15) and deriving
the &; from (6).

Remark 12. Necessary and sufficient conditions for covariance stationarity
of GARCH(p,q) € have been independently established by He and Terasvirta
(1999 and Karanaso$1999. When considering GARCHp, q), these results
and(12)—(14) are equivalentbut formal derivation of their equivalence is very
cumbersomeHe and Terasvirtd1999 is closer to our resultbecause their
work considers the slightly more general case of nonstandardizetiough
from a computational point of view our conditiori$2)—(14) seem more ap-
pealing because they permit immediate use of known results for the theoretical
ACF of ARMA(p,Qq).

As an examplgfor GARCH(1,1), settingx = 1 andwq := a; + B4, i.e, the
“persistence” parametewe get

2
aq _ T
x5(0) = 1+ 5 X =aym)” 1(l+—————;),

1_7Tl 1_77'1
2 2 plul
@y a;i B

x;0) =——=, x;u= , u==+1,....
Uaest T 1Bt

When thez, have zero fourth-order cumulaféuch as for Gaussian) then
6 = 2. Under this conditionby simple manipulations(14) yields the well-
known covariance stationarity conditions fet (cf. Bollersley 1986 Sect 3)

3a?+ BZ+ 20,8, <1, (16)

which, in turn, implies (11): E(z%)a(1) + B(1) < 1.

For the ARCH2), namely ¢, = 0, k = 3, setting(1 — £&;1L)(1 — &, 1L) =
(1 — 1L — ,L2) and assuming that the roofs, &, are greater than one in
modulus(cf. (6)) and satisfyfor simplicity’s sake &; # &,, one gets
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£2é3
(6162 = D(&2— &)

u=0,x1,..., x;(0) = Y2+ 42, xi(D) = g1,
x;(W =0, u==2+3..,

xs(U) = e i S el O e V> )

whenk = 1 (see Brockwell and Davjsl987 Example 33.5). Using
Yr=E1HEY, =610

and by simple manipulationgrom (14) one gets the covariance stationarity
condition for ARCH?2) €2 (cf. Milhgj, 1985 Theorem 3 He and Terasvirta
1999 equation(12)), settingd = 2,

3yf + 3¢5 + 3y, — 3¢S + Y, < L.
Remark 13. When

E@)2S g <1, 17)
=1

Giraitis et al (200Q Theorem 21) show thatE(o{*) < . However (17) is
more restrictive thar{14). For instancefor GARCH(1,1) with § = 2k = 2,
their condition becomes

32, + B, <1,
strictly implying (16), unlessB; = 0, the ARCH(1).

Remark 14. Hyperbolically decaying specifications of tlg and hence of
the 8; are allowed for Note, however that from (11), « < 1/(27, ¢;) and
thusk = 1 is ruled out wher> ; ; = 1. Thus unlessk < 1, (7) is not com-
patible with covariance stationaey.

Imposingx = 1, a choice compatible with covariance stationary levels is
obtained using the autoregressive coefficients of the ARFIMA filter as follows
Set(cf. (7))

alL)
b(L)’

(18)

s

l/_/j Li:=(1-1L)

whered > 0 anda(L) andb(L) are finite-order polynomialsll of whose roots
are outside the unit circle in the complex plaAssuming that the nonnegativ-
ity constraints on the coefficients holide., ; = 0, sety;, = ¢; (i = 2) andys; =

Jr € for some given 0< e < 1. Condition(14) is more involved but again by
suitable modification of the firsh (say) coeﬁicients&j (j=1,...,n), afeasible
sequence of coefficients can be obtained frid@).
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Remark 15. An alternative frequency domain characterization (@) is

efﬁ f5(A)f,(A) dA < 27, (19)
setting
fs(V) =185 f,(0):=Q/k*)1-ypE"ZE —7=r<m,

wherex?f,(A) =1 + f; (1) — 2Re(6 *(e")) (—7 = A < «) and R€-) de-
notes the real part of its argumeithis frequency domain specification seems
easier to compute thafl4). For instancewhen considering parameterization
(7) of the y; (as for GARCH p,q)) this allows us to exploit the much greater
computational simplicity of rational power spectra compared with their Fourier
transforms This might be relevant when imposing covariance stationarity of
the € in practical estimatione.g., when estimating ARCkto) using the
Whittle estimator(see Giraitis and Robinsp2001).

The equivalen{19) representation of14) could be used to show th&t4)
strictly implies(11). In fact, settingd = 2x = 2 for simplicity’s sake (19) can
be rewritten as

1 (™ . L
o J_W f,(A) (1 — 2Re(8 " 1(e))) dA < -

However f5(A) = 0 (—7 = A < 7), and it is arbitrarynecessarily requiring
1-2Re8 (")) = =1+ 22 ycos(jA) <0, —T=A<m.
j=1

Given the nonnegativity of thg; and co$jA) = 1, with the equality achieved
for A = 0 (mod 27), this is equivalent to

—1+22> 4 <0,
j=1

strictly implying ¢(1) > O.
Finally, exploiting the relation between thi (i = 1) and thed; (j = 0) (cf.
(6)), (19) allows us to express the time domain characterizatl@h more sim-

ply as
o ) K2

2 24 x6(1) < -+ x5(0) — 1
j=1
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Remark 16. The original formulation of ARCHto), analogous to Robinson
(1991 but allowingx # 1, is

of =7+ > i (eZ— k7), as, (20)
k=1

for some 0< 7 < co. The reparameterizatiof20) is clearly permitted only for
covariance stationary,, i.e., wheny (1) > 0, given that? = 7/¢(1). In fact,
assume that one starts directly frd@0) rather than from(3). By the nonneg-
ativity constraintk >;2; ¢ = 1 because/(1) < 0 is not allowed Imposing
(1) = 0 and assuming6), the linear moving average representati@ for
the eZ would then be

o
€t2 = g‘i‘ zgjl/t,j,
j=0

for any constant, given thaty(L)e? = ¢ (L)eZ — ()¢ = ¢ (L)(e2 — 0),
which is meaningless

Remark 17. (9)—(11) and(12)—(14) are the necessary and sufficient condi-
tions forE(e?) < oo and forE(e;!) < oo, respectively

3. MEMORY OF ARCH(x)

Giraitis et al (200Q Proposition 31) show that(17) implies absolute summa-
bility of the ACF for thee?, ruling out long memoryHowever considering
that(17) is more restrictive than effectively required to obtain covariance sta-
tionary €2, it is important to assess the impact of the weaker conditi@i on
the memory of the:2.

Insights can be obtained by looking at the linear representéiofor 2. In
fact, it follows that the memory of the? is expressed by the asymptotic behav-
ior of §; asj — co. Surprisingly it turns out that even the much weaker covari-
ance stationarity conditiofiL1) for the levelse, rules out long memory in the
2. In fact, from (6) and(11),

5(1) = §5j=1/<1—1<§1//j> < co.
-1

i=0

Expression(14) ensures that the uncorrelated have finite variance but the
rate of decay of thé;, imposed by(11), is already quick enough to imply their
absolute summabilityWWe summarize our results on the memory of #feas
follows.
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THEOREM 2 Assume that conditions (6) and (11) hold. Then

> 8 < oo, (22)
-1
where
| |-s+1 I=ig=—igp—1
0=§ =xh + 2 k> 2 ... > ip e i e =1
&2 i1 o 1=1
(22)

When they; decay toward zero more slowly than exponentially, namgly,
' > masi—ooforany0 < ¢ <1, (21) implies that, as u> oo,

Xs(U) ~ Ci, (23)
for some0 < C < oo, with ¢(x) ~ d(x) as x— Xo, meaning that ¢x)/d(x) — 1.

Remark 21. Wheny; ~ ci™® asi — oo for 0 < ¢, — 1 < oo, as for the
parameterization described in Remark, E(e?) < co implies

Xs(u) ~Cu™®  u— oo, (24)
for some 0< C < oo, ruling out long memory in the?. Under the same as-
sumptions on the asymptotic behavior of fjethe exact rate i24) was also
obtained in Giraitis et a200Q Proposition ), although they imposél?), a
sufficient condition forE(e;!) < oco.

Remark 22. Theorem 2 makes it clear that whereas the bounded second
moment conditions(9)—(11) impart the degree of memory of the?, the
stronger bounded fourth moment conditiqd®)—(14) ensure that the martin-
gale difference sequenag (the innovations in the linear representati@ of
the squaresare square integrahlavithout changing the memory implications
of the model This double role of the coefficients is simply a by-product of
ARCH(c0) nonlinearity

Remark 23. In the case of exponentially decayitlg, i.e., when there does
exist 0< / < 1 such thaiy, /(' — c asi — oo for some 0< ¢ < oo, it clearly
follows that

xs(u) ~ C8Y, u— oo,

for some 0< § < 1, 0 < C < oo, as in the GARCHp,q) case
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APPENDIX

Proof of Theorem 1. Part(i). Assume thaE(o?) < c. The necessary condition of
(9)—(11) follows, taking expectation on both sides (). Sufficiency of (9)—(11) for
E(o?) < oo is proved in Giraitis et al(200Q Theorem 21). Part (ii). Assume that
E(o) < co. Then(12)—(14) follow, squaring both terms i8) and taking expectations

E(of) = (¢/k)? + 0E(o) D, 1¢j11ﬁj2<_206i 5i+(hiz>>’

jni2=

using
E[(Et2_¢)(6t2+u_¢)] = E(V[Z)Zsjaj+u7 U:O,il,...,
j=0

as ther, are square integrable martingale differences it 82 < oo by (6). Given
(12—(14), E(e?) = ¢ < o by part(i). Thereforee, is strictly stationaryNext, set-
ting 1 := 1(01-“20{03,j < M}) for some constaril < oo where 1A) equals one when
the eventA holds and zero otherwiséor any arbitrary sequence of constasts= 0,
i=12,...,
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2 2
ol =71+ > e ilis-
j=1

Writing etz_j = 65_]- — ¢ + ¢, using (8), squaring and rearranging terms yields
M — oo,

o'l = A7+ 2A 2 W (Etzfj —¢) 1t—j—q
=1

o) [}

2
+ Z _ Z !/jill'/jjz8k18k1+i1*i211*11*%1Vl*k1*h
ki=0jg,jo=1
o0 [ee]
2 8 2 Ut beos b s, Mo Voo (A.1)
k1, kp=0 j1j2=1

jatkiFjotks

settingA := 71 + ¢ 277, ¥ 1. For the expectation of the first two terms on the
right-hand side ofA.1), asM — oo,

EA? — (¢/K)%,

and

Z i EA{(Etz—j - ¢)1t—j—sj - 0.

j=1

By the law of iterated expectationsettingP(A) = E1(A) for any eventA,

ot L =EP(ar<M,...,0% 1 <Mlol,...) Lot = E(ctd—y) = E(a*1),

the latter equality holding by strict stationarifsinally, settings;, = ki, 5, = k», taking
expectations and collecting terms(iA.1) yields

E(o*L) = E(AD) (1—0 > Xa(u))(./}(u)) +o(1). u

u=—oo

Proof of Theorem 2. From
<1+ Eﬁij><l—K21ﬂiLi> =1
j=1 i=1

by the fundamental theorem for polynomials and simple yet tedious calculat@)s
follows. We now establish that

o Zj
aj—K¢j+o<<K2¢i>J>, asj — oo, (A.2)
i=1

for some constant & { < oo. By (11), for anyM < oo

j=M+1

M oo
K2¢j<l, K > I < L.
j=1
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Consider a large enoudbsuch thatM < k for one of suchMl. Then split the right-hand
side of(22) as

[kM]k—I+1 k—ji=-—j—2—1
&=kt X D .. > Biyis..iia (1K)
=2 j;=1 hi-1=1
k—l+1  K=jg—=-—jj_o—1
+ 2 E 2 BJ'1~J'2,-~,J'|—1(|’k)’ (A3)
I=[k/M]+1 j;=1 h-1=1

where[ -] is the integer part of its argument and

Bil,Jz ----- I 1(|’k) = K|71¢11%2“'¢J| 1¢Ik*11*"'*1| 2° (A4)

Let us dispose of the first sum on the right-hand sidé/B). As | = [k/M], one ob-
tains three terms

[kM]k—I1+1  k=ji=-—j—2—1
E E E Bl'lsjzn--,ilﬂ(l’k)
=2 j;=1 ji-a=1
[k/M] M k—1+1 M k=ja=...=ji-2—1
- 2{ S (ST e, la,k)}
=1 ji=1  ji1=M+1 =1 jlo1=M+1
=A+tA,+A; (A.5)
with
[kM]( M M
= 2 { > 2 Bh,,»z,m,j,gl,k)}, (A.6)
=2 | =1 j1=1
[kM]( k—l+1 k=jp—=-—jj_2—1
A, = 2{ > .. > le,jz,___,jl(l,k)}, (A.7)
1=2 | j;=M+1 i =M+1

and the “mixed” term

[keM]1—1___( k=I+i—ja——jip-1 kltiis—ja— - —Ji 1 M M
E EE 2 > > E Biini (LK) £,
=2 s=1l,s Ji1:M+l ],IiS:MJrl J,l—l J,S
(A.8)
whereZI s E{r {?}U'{irs}’cfl"}'—"{}l e i.e, it selects all the groups of indexes of di-
..... SUTL g2,
mensions (with s=1,...,1 — 1) drawn from a numbel of them and thus for ang and

any permutauomil oo 4+ Ji|—s+ Jr1 R st_ Jl + e+ j|. Note thatE,,s = (ls)
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For A, for some 0< ¢ < 1, writing S{¥}" = S{E§MI71 + SIMYL L, yields as
K — oo,

M [¢kM]
A= O<¢[(1§)k]xl+ (KE%) )
=

0 [¢k/M]
o f:50)")
j=1

since
S( S ) = e xe
=0\ j1=1 ji=1 1_Kzlr//j
j=1
ConcerningA,, along the same lineask — oo,
o ) [k/M] ) |
mmo(veawS( 3 o S e ) e S (xS )
=M+1 i =M+1 I=[Ck/M]\ j=M+1

© [Zk/M]
_o<¢k+ <K_21¢/j) )
i<

For the “mixed” term by means of the same truncatjoone obtainsA; = A5 + Aj
whereA; = O(X2) = O(¢) ask — oo, setting

oo 1—-1___ oo oo M M
=222.,S{ S .S S.Suw ¢}
—0s— j,=M+1 j =M+Lj,=1 =1

Likewise

[kM] -1 E3
s=o( 3 3%.3 3

I=[{k/M]s=1 ji;=M+1

0 [{k/M]
—O((anpj) > ask — oo.
j=1

For the second term on the right-hand sidgAf3), | > [k/M ] implies that for at least
one summationsay J.—|1+I e thenk — |+ 0 — jg — -+ — i1 < M. Thus
decomposition(A.5) is not feasible However the previous bounds developed for the

case[(k/M] = | = [k/M] can still be appliedin fact

M M
S Bh,jz,“.,j,la,m)
— =1

F1jn=1
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k k—l+1  K=ji=-—jia
E le:l'zy--»yjl—l(l’k)
I=[k/M]+1 j;=1 =1
k (M+Dk—1+1  (M+DKk—ji—-—ji1
_ I
=0 > > > K'Y, (A.9)
I=[k/M]+1 i1=1 =1

given max=1 ¥, < oo andyy = 0 for anyk. Then apply (A.5) to the expression on the
right-hand side ofA.9) and proceed as indicated previously
Condition(11) ensures summability of thg. On the other hand wheaXZ; ; =1,
(A.2) is loose suggesting a rate of decay &fslower thany;. For instancefor case(7)
with k = 1 andd > 0 it follows thatg; ~ ¢j~%"* and§; ~ ¢'j9"* asj — oo for some
0 < c,¢’ < o. Finally, note that whenj; = 0 (j = 1) then(22) implies&; = 0 (j = 0).
Hence for anyu > 0 and some < ¢ < oo,

u oo}
Xs(U) = X 88yt > 88.,~Cc,(1+0(1), asu— oo,
j=0 j=u+1
given thaf for large enoughy,
Z 6] 5j+u = 6u+n 2 5j = O(SU)$
j=u+l j=u+1

for some constant £ n < oo. Finally, comparing(A.2) with (22) and giverk > 0,¢; =0
(i = 1), yields 8, ~ ¢ i ask — co. n



