—%

WHEAS TRANSACTIONS ON BUEINESS AND ECONOMICS Issue 2. Val, 1, April 2004 1850 Liog-aszs 169

The Statistical Properties of Long-memory ACD Models

MENELAQS KARANASOS*
Department of Economics
University of York
York Y QL0 5DD, UK
mklG@vork.acuk

Abstract: - This paper examines some of the stalistical proportios of the long-inemory Antoregressive
Conditional Duration (ACTY) specification, To allow for nen-manctonic hazard functions we nse the

generalized I distribution. Conditions

for the cxistence of the Hrst twa moments are estahlizhod, Wa

alsn provide analytical expressions of the sutocorrelation function of the durations,
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1 Introduction

Engle and Russell (1998) praposed & new economel-
ric framework fur the modelling of interteinporally
correlated event arrival times, termed the Autore
gressive Conditional Duration [ACD) model. A fea
ture of Engle and Russell’s lincar ACD madel with
exponential or Weibull errors is that the implied
comditional hazard functions are restricted (o he
ing either constant, increasing or decreasing, Zhang
et al. (2001) {among others) questioned whether
this assumption is an adequate one, As an alternae
tive to the Weilmll distribution used in the original
ACD maodel Hautsch (2001) utilized the Eeneralizd
F distribution. Recently, several extensions to En-
gle and Russell’s {1998) basic wodel have boen pri-
posed. Bauwens et al. (2000) review several dura-
tion models that have been proposed in the litera-
ture. Moreover, many authors modelled conditional
heteroscodasticity in equidistant financial (ime Be-
rics wsing long-memory models (e.g. Giraitis et al.,
2002). Lo capture the long range time dependence
in Intertrade durations Jasiak {1998) proposcd e
fractionally integrated ACD (FIACL) wodel.

The abjective of this paper is to investipate
sme of the statistical properties of an alternative
ACD model that shed light on the dynarmics of Lthe
Lransaction arrival process; the long-mewory ACDH
(LMACD) model, which captures the long-term de-
pendencies in the duration series and, in contrast to
the FIACD model, is covariance starionary, In ad-
dition, since Fingle and Russell {1948} find that the
Weibull distribution suffers from rernaining excess
dispersion we use an alternative distribution wlhich
includes the Weibull as a special case: (he mener-
alized F (GF). For the aforementioned model we
provide existence conditions of the sceond Tents
ol Lhe durations, We also derive analvitical cxpres-
sions for the antecorrelation function (ACF) of the
durations.! “To facilitate model identification, the
results for the ACE of Lhe durations can be applicd
so that properties of the observed data can be som-
pared with the theoretical properties of the models,
The significance of our resulls extends to the devel.
opiuent of misspocification tests and estimation,

The rest of the paper is orpanized as follows.
Section 2 briefly reviews the ACD niodel of Engle
and Russell (1998) and eonsiders the properties of
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the generalized T distribution. Section J provides a
detailed deseription of the long-memory ACD model
and derives the ACF of the durations for this madel,
Section 4 concludes the paper.

2 The ACD Model

Consider a stochastic point process that is simply
A sequence of  arrival times {hinty,. ceabw ) owith
U=ty <t <0 < tx. Duration (2} 15 the time
elapsed hetween twn consccutive arrival times, i.e.
Ly =1; - tf_p

The ACD model of Engle and Russell { 1993)
specifies the observed duration as a mixing process

Tp=aka (e AR (1)
where (¢} is a sequence of independent and iden-
tically distributed random variables with density
L(er ) = £les) ( where ¢ is vector of paramneters)
aiid mean cqual to one, and 1 denoles the condi-
tional expectation of the ith duration. That iz
W = o, w1 8) = Blay|Lg),

where f;_; denotes the conditioning information set
generated by the durations preceding w; and & is a
vector of paramcters. The Hexibility of the model
(1) lies in the rich host of candidates for the speeifi-
cation of the dynamic structure of ) as well as the
conditional density £,

Following Engle and Russell (1998), we express
the conditional density of o

i e e E_)

o0 ii) = o) = ¢ (% S
The specification in (2) can be generalized in wany
ways. In what [ollows we examine a tour-parametor
gencral distribution that includes as special or lim-
iting cases many distributions considered in econo-
metrics and finance. Expressions are reported that
fucilitate analysis of hazard functions, other distri-
butionsl characteristics and parameter calimation,

2.1 The generalized ¥ distribution

In this section, we examine the GF distribution. Tt
is a particularly useful feunily of distributions which

includes among others the Burr type 12, the Lomas,
the Fisk, and the folded t. [is density js given hy

as{P a0 : ;
AR Efz?,ullf{qe.-ﬂ“ el & (e 2ty 4= L ),
(3)
where 12} is the bota function, & > 0, and the pa-
fameter © is werely a scale parameter. Turther, if
the i coefficient is

By, q)
Tin
7B (p+1,q-1)
then £; has mean equal to one. The F distribn
tion has integer moments of order up Lo ‘@’ where
-p < £ < g (see McDonald and Richards, 1987a).
The conditional density of o; can be written ay

1

: axi™ L)
.G(J-'a:' = T Alprbg?
Bip.allg(w,) +oad T
Using the above eXPTCSSIUN We can write the log-

likelihood fonetion of the observations @, i =
l,....N as

N N
L = Z_:In!ﬂ{-'niﬂ =¢+ Z{{ap — D)In{z;) + agln{e
i=1 i=1

=P+ g)lu gl )® + 223,
where

¢ = N{ln{a) | glufg) + aglify) — In[B(p, q)] ).

3  The long-memory ACD model

The ACD model is closely related to the GARCH
wodel and shares some of its featiyres, Just as the
simple GARCH model is often a goad starling point,
Lhe simplest version of the ACD sodel seems like a
natural starting point, However, as there are maly
alternative volatility madels, there is a rich host
of eandidates for the dynamic gpecification of the
conditional duration. Such specification includes
models analogous to long-memaory, and many other
GARCH models as possibilities.

The standard ACD model aecounts for short se-
rial dependence in conditional durations and thus
compels the pattern of the autocorrelation function
to decay exponentially. In empirical applications of
ACD models to high frequency intertrade durations




WEEAS TRANSACTIONS ON BUSINESS AN ECOMNOMICS lssue 2. Yol 1, April 2004 158N 1109-0534 171

the estimated coefficients on lagged variables swm
up nearly to one. Such evidence indicates a poten-
tiul misspecification thal ariscs when an exponen-
tially declining shape is fitted to a process showing
an hyperbolic rate of decay. 'Lhis wonkd suggest
that a more flexible structure allowing lor longer
terin dependencies mipht iwprove the fit. In this
respect, the motivation for using the long-memory
ACD models is to capture the long-term dependen-
cics in the duration series.

Tn the long-memory GARCH (LMGARCH)
model of Rohinson and Henry (1899) the condi-
tinnal variance of the process huplics a slow hyper-
bolic rate of decay for the influence of the squared
errors.  Analogously to the LMGARCI process
for the volatility, the long-memory ACD(n.d,m)
ILMACD(r, d, m)] madel for the duration is defined
Ly

C(L)

Wd i (4]}

o=+

for some w, d £ [0, 00) with

B(L) = 1-ZﬁjL3 H (1— A L),
a=l
m
Gy = 1-3Y alk,
=1
where 1; = z; — 4 18 a martingale difference sc-

guence by construction, A; is the reciprocal of the
jth root of B{L), and d is HﬂP fractional differencing
parameter. Further, we assume that all the roots of
C{(L) and B(L) lic outside the unil eircle.
Lemma 1 The duration {x;} con be writien os
an infinite sum of logged values of

o]
o= w4 ij]'?i—j: {5a)
i=0

" The requirement 0 « T w? 2 o0 includes the case (L) =
and L} whose eeros are gutsh

finite order polynomisks B{L

¥ ratisfyr E:r-ul"?’;| < oay, iy = 1. Under !:Im.'lcEI,_J' I

whera
j_‘ —
=34 2. ( )w: 1y (sh)
r=]
wwrith
sming )
el = Z I_j G_-j?,l {L’n = = III,
R, X

_ th 1,.!;&;“{)‘r — M)

Proof. Sec Appendix.
Moreover, 1; can be cxpressed as au infinite dis
tribmted lap of x; terms:

Q CiBL}

Z BTy (6]

with ¢ = 0, ¢y =0 (7 2 2) %

Jasink [1998) presented empirical evidence for
the presence of long memory, and proposed a frac
tionally integrated model for high frequency dura-
tion data. She applied the following specification to
intertrade durations for the TBM and Aleatel stocks

B(L)(1 — L)%z = w + C{L)ny {7)

By analogy to the fractionally integrated GARCH
(FIGARCIL) model {the FIGARCH miodel was in
troduced by Baillic et al., 1996) Lhis process is called
fractionally integrated ACD (FIACD} wodel. For
d = 0, 7, has an unbounded first moment. Hemwever,
when d = ) the FTACD process governed by (7) is
strictly stationary and ergodic, a.ud the “autocor-
relations" Zj—ﬂ"’*"’: 4 ;,:.-’L,j ,:,-.a, are wall defined

under 352, w? < oo,

TR aw = L) f[BIL)(L 1] , for o £ (0,0.3], and

e the it circle in the complex plane. In this case the weights
- oo it follows chat EfnS) < oo {see theorem 1 below], so that the

innovations in (4] are square integrable martmgale- ditherences and g is well defined as  covariance stationary process and its

autocorrelations Corr (., 2.-0) = pplei) = E.J b bl H'IE.;— wy

(k& B con exhibit the usual long memory steucture

implied by C{L} I.IEH[L]I:]_ _L':ld Ewven if n:.axE(zzfl o moeoes not hold, the “auntocorrelations” Ej“u Ll il gk ,u'll Z:’ ng

wre: well defined under 0 < E;‘:D“"’f S
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3.1 Autocorrelation function of the

EAACD maodel

Several previous articles dealing with linancial mar-
ket data-e.g. Dacorogna et al. (1993) have com-
mented ou the behavior of the autocorrelation fune-
tion of power transformed absolute returns, and the
desirability of having a model which comes close Lo
replicating certain stylized facts in the data (ab-
stractad from Baillie and Chung, 2001}, In this
respect, one can apply the results in this scction
to check whether the long-memory ACD model can
ellectively replicate the observed pattern of autocor-
relations of the durations.

Another potential motivation for the derivation
of the results in this section is that the autocorrela-
tions of the durations in {1} and {1) can be used to
estimnate the ACD parameters in (4). The approach
is to use the minimum distance estimator (MDE),
which estimates the parameters by mininizing Lhe
IMahalanobis peneralized distance of a vecror of sam-
ple antocorrelations from the corresponding popula-
tion autocorrelations (see Baillie and Chung, 2001).

In this scction we consider the LMACD(n, d, m)
pracess defined by (1} and (4} with € (0,0.5) and
the additional restriction that the roots of B{z) = 0
are simple.

Lemma 2 The condition for the eristerce of the
seeehd mement of the duration is

wihere w; & defined by (5h).

Proaf. See Appendix,

In the following theorem we eslablish a repre-
sentation for the autocorrelation function of the du-
rations of the LMACDHn, &, m) process, with o €
{0,3). Let F be the Gaussian hypergeometric fune-

tion defined by Fla, bie, z) = 30, 2 ffu f; where
(b); = 1'[{._;,;(!3 |- £} is Pochhammer’s shafted factor-
ial.

Theorem 1 The aelocorelotion funcfion of
[2:] can be capressed os

ZJHUWJW'JM 2k

T = —— = —, |k c H], 5
ple) = ST =T (keN. @

ufrere

w=3 > WNCE kL) (k>0),

jl-=]. |[=';|
with
=4
U= Y e (0= -1,
e AT
TR, |
[lomifl = AA0)

- _ Did+k+1)
Cid, kL Ag) = T{l=d+k+1) %

Fid+k+L 1,1 —d+k+5M)+

1 Tid+&=1)

Ll d+k-1)

Fld=k=11;1—d—k+L )+
Cigd+&+1 £

Ml T(2-d+k—1)

Xd(d+ k+1—0L 12 —d+k—1A;) +

r{d-.-—k—]-i-i]l

ik a1 4

Fld—k4+1 -4 12 —d—F M),
and
e (0, if =0,
=101, it LE0

if and enly if [
Proof. See Appendix.

E{ ]zut.l

To illustrate the peacral result we consider the
LMACD(1,4,1) process. In this case | — C{L) —
mb=cland | - B{L)=HL=JL

Corollary 1 For ﬂh? LMACD{1.4d,1) madel,
widh | 3] < 1 and o £ (1, %}, the aulecorrelation
Juretion of {:ri] is qiven by

pili) — z—g (k € K), (9)
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where
Y= (1 - 2d) y
T Hrara - @
rd+k
{Pfl{f:g.lgﬁv}[(l i c? Hel o=
Fld+k 11— d4 & 0)
BF(d =k 131 —d—k8)] +
Id | k- 1)
W[ﬁ“*‘ﬁ_d *
o g iy Dk b4 1)
Fld—k+1,1;2—d -k 3) e a1k

eF{d+k+1,:2—-d+E 3} (k=0),
r
if and ondy 4f {1 ET-:“’_;}} = 1

Pronf. The proof follows from lemmea 2 and the-
orem 1, by setting €{L) = 1—el and B{L) = 1-3L.
|

Fig. 1 plots the theoretical ACFE of the duration
of the above process (for various values of the three
parameters ¢, & and d).

Remark 1. Ae expected, the antocorrelation
[unction ol the LMACD{1.1} process decays at a
very slow rate. When ¢ = 08, 5 = 0 and d = 45,
for nstanee, the duralion st has an awtocorrela-
tion coefficient around 0.5 at lag 1,000,

4 Conclusion

This papear has provided a detailed description ol
the lonp-memory ACD model.  We also investi-
pated the properties of the generalized F distril-
ution which allows for non-wonelonic hazard func-
tions. For all ACD specifications we derived analyti-
cal expressions of the autocorrelation function of the
durations, Conditions for the existence of the first
two moments of the duratinns wora also established.
The derivation of the autocorrelations of the du-
rations and their comparison with the correspond-
ing sample equivalents will help the investigator (a)
to decide which is the most appropriate method
of estimation (e maximuwn likelihood estimation
(MLE), minimum distant estimator (MDE)) for a
specific model, {(h) to chose, for a given estimation
technigue, the model that best replicates certain
stylized facts of the data and, ()} in conjunction

with the various model selection criteria, to identify
the optimal order of the chosen specification,
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Fig. 1: Antocorrelation funclion of x;.
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Appendix

Proof. |Lemua 1) From {4} we have thal

-1

wy=w= [l —L}'d H“_}U‘L} 4 L,

j=1

W]

where

Henee

i=l1

and

we ol

Pr
have

whers

Using

e 0h

P

Pl

whers
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where the operator (1 — vL)™% is defined as with
o [~ g inf £,m}
1L —d: ( ; )L__TIIJL;_ min{ fm 3
{ ) 1=ZLI' J My = Z .:‘l.jr r{---ur},
. vl
Hence, on account of yn—1
M2 ———
o i
1-ML S
HIL } Z ]-_[f_-l E;E'J ‘)"E}{l -3 -L} r=1rml
and But since
min{lae} za
(1-nLyowy= Y Z;ﬁﬂ—f{_”}r i . _ - 2d)T(d |k —jl)
Fo Ok S =TT = d)T(L—d + [k —j])
we obtain (Ha). H
. . and
Prool. [Lemma 2] Rewriting equation (5a) we nAdA
have E_._._ =hy,
_:.:?_1 L — MAr
me=w 4 ) Witk (10
=0 it follows that
where w is defined in {6h).
Rrom (T0)ik follaws thit . T Tﬂ%{— il mE S Tl 42T Y
Mgl o= Tdal TaT=TT T
el i T?{:‘Tl%r'_lr“ #Rridiny the
WMﬂ=(ZﬁﬂE (1) {rmompavsio s [ MG - D o
J=0

Using the fact that

eof) = £ 1 - g7
we obtain the second moment of the duration
E@J”
-y (TResd)

E{af) =

]
Proof. [Thecrem 1] J'Lpplying (5k) vields

T 1.
2 gm0 W |k sz

.-=ﬂ E_r—-—-:so [""F'k )

( =iA—1+i= ML Lo ST T NI
JET Ty Py LU 11 i .24 il
e (e LT B e T (e ey o el B B

{E.cnzj..uwa I B
( Py + Al e )

where

m--1{

= ey (to= 1), =

w=l}

Al

]‘[{l—,?'.g,?'. ]l

=l

iy

Henen, upon obssrving that

pulms) = ;
TSR TEREE <t = puesiis
where Fl~d+£-.—£+:]r__
—d —d) |he=j |
- B | (-1, Trasken ' |
Qt'-r-,.k E; (lk—jl"‘?ﬁ)(r F{l dI-k_l_{}j'{d—k'i‘i-l,]—I"]r+k+lr~}u'.}s

T PO

Ty

D3N N A

[=1 =1 j=0

(#) is obtained. W




