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The constant conditional correlation general autoregressive conditional heteroske-
dasticity ~GARCH! model is among the most commonly applied multivariate
GARCH models and serves as a benchmark against which other models can be
compared+ In this paper we consider an extension to this model and examine its
fourth-moment structure+ The extension, first defined by Jeantheau~1998, Econo-
metric Theory14, 70–86!, is motivated by the result found and discussed in this
paper that the squared observations from the extended model have a rich autocor-
relation structure+ This means that already the first-order model is capable of repro-
ducing a whole variety of autocorrelation structures observed in financial return
series+ These autocorrelations are derived for the first- and the second-order con-
stant conditional correlation GARCH model+ The usefulness of the theoretical
results of the paper is demonstrated by reconsidering an empirical example that
appeared in the original paper on the constant conditional correlation GARCH
model+

1. INTRODUCTION

Univariate models for conditional heteroskedasticity have long been popular
in financial econometrics and volatility forecasting, and a large number of
applications have been published using general autoregressive conditional
heteroskedasticity~GARCH! models+ The probability structure of univariate
GARCH~ p,q! models has recently been under study+ Conditions of the exis-
tence of moments and, in particular, the fourth-moment structure of these mod-
els have been derived~see, e+g+, He and Teräsvirta, 1999a, 1999b; Karanasos,
1999!+ These results are important as they help the user to find out how well
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the GARCH model and its extensions are capable of characterizing stylized
facts typical of many high-frequency financial time series+ For general results
on the existence of moments in volatility models, see Carrasco and Chen~2002!
and Lanne and Saikkonen~2002!+

GARCH models have been generalized to the vector case, but the number of
applications has remained rather limited compared to univariate models+ Multi-
variate GARCH models are surveyed in Bollerslev, Engle, and Nelson~1994!
and Gouriéroux~1997, Ch+ 6!; see also Palm~1996! for a short review+ As yet
relatively little is known about the moment structure of these models+ Engle
and Kroner~1995! derive a necessary and sufficient condition for weak station-
arity of vector GARCH models, but results for higher order moments do not
seem to exist in the literature+ Our starting point is one of the frequently applied
multivariate GARCH models, the so-called constant conditional correlation gen-
eralized autoregressive heteroskedasticity~CCC-GARCH! model of Bollerslev
~1990!+ Bollerslev’s model is in turn a generalization of the constant condi-
tional correlation ARCH model that appears in Cecchetti, Cumby, and Figlewski
~1988!+ In this paper we consider an extended version of the CCC-GARCH
model+We derive a sufficient condition for the existence of the fourth moments
for this model and, most important, its complete fourth-moment structure+
Because of rather involved calculations we restrict our considerations to the
second-order CCC-GARCH model+ As most of the applications seem to rely on
first-order models, this does not appear to be a serious restriction+ Two other
papers containing results on fourth moments of multivariate GARCH models,
Hafner~2003! and Karanasos~2003!, should be mentioned here+ These papers
contain rather general fourth-moment expressions that are not directly applica-
ble to the rather specific problem considered in this paper+

Our model is an extension to the original CCC-GARCH model as defined in
Jeantheau~1998!; see also Ling and McAleer~2003!+ In particular, we show
that the squared observations of the extended first-order CCC-GARCH model
can already have a remarkably rich correlation structure able to cover many
shapes of autocorrelation functions that have been observed in practice+ This
motivates the extension of the standard CCC-GARCH model+ In particular, the
autocorrelations of individual processes do not necessarily decay monotoni-
cally from the first lag onward+ By comparison, the autocorrelations of squared
observations in the standard CCC-GARCH~1,1! model still have the same
properties as they do in the univariate GARCH~1,1! model+ This includes the
exponential decay of the autocorrelations of squared observations from the first
lag for all variables in the model+ Using an empirical example in Bollerslev
~1990! we demonstrate how the use of the correlation structure of the CCC-
GARCH~1,1! model worked out in this paper helps one to enrich the interpre-
tation of the estimated models+

The plan of the paper is as follows+ The extended CCC-GARCH model is
defined in Section 2+ Sections 3 and 4 contain the main results on the fourth-
moment structure of this model+ Section 5 briefly takes up a special case, a
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bivariate first-order model+ Section 6 contains an empirical example, and the
conclusions can be found in Section 7+ The proofs of results appear in the
Appendix+

2. THE EXTENDED CONSTANT CONDITIONAL CORRELATION
GARCH MODEL

Following Jeantheau~1998!, consider the following vector stochastic process:

yt 5 m 1 «t , (1)

«t 5 Dt zt , (2)

whereDt 5 diag$h1t , + + + , hMt % and hit is the conditional standard deviation of
«it , i 5 1, + + + ,M+ Furthermore, the stochastic vectorzt 5 ~z1t , + + + , zMt !

' is inde-
pendent and identically distributed~i+i+d+! with mean0 and positive definite
covariance matrixR 5 @ rij # such thatrii 5 1 andrij Þ 0, i, j 5 1, + + + ,M+ The
main diagonal elements ofR are restricted to unity for identification reasons;
compare this with the univariate case, in which customarilyEzt

2 5 1+ Further-
more, ht 5 ~h1t , + + + , hMt !

' is anM 3 1 vector of conditional standard deviations
of «t+ Let

«t
~2! 5 ~«1t

2 , + + + ,«Mt
2 !' 5 Z t

2ht
~2! , (3)

where ht
~2! 5 ~h1t

2 , + + + , hMt
2 !' and Z t 5 diag$z1t , + + + , zMt %+ Define the vector

GARCH~ p,q! process

ht
~2! 5 a0 1 (

i51

q

A i «t2i
~2! 1 (

j51

p

Bj ht2j
~2! , (4)

wherea0 is anM 3 1 vector with positive elements andA i , i 5 1, + + + ,q, andBj ,
j 5 1, + + + , p, areM 3 M matrices such that each element ofht

~2! is positive for
every t+ Note that~4! defines the diagonal elements ofDt + From ~2! it follows
that

E~«t 6Ft21! 5 0, (5)

E~«t «t
' 6Ft21! 5 Dt RDt , (6)

whereFt21 is thes-field generated by all the available information up through
time t 2 1+

Remark 1+ A sufficient condition forht
~2! . 0 for all t is that all elements in

a0 be positive and all elements inA i andBj for eachi and j be nonnegative+
~Note that all vector and matrix inequality signs in this paper represent element-
by-element inequality+! From Nelson and Cao~1992! we conjecture that this
condition is not necessary, at least not ifp . 1 or q . 1 or both+ It follows
from zt ; iid ~0,R! that E~«t «t

' 6Ft21! is positive definite+
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Remark 2+ The vector GARCH process defined by equations~2!–~6! is a
multivariate GARCH model with constant conditional correlations+ The CCC-
GARCH model of Bollerslev~1990! is obtained by assuming thatA i , B j ,
i 5 1, + + + ,q, and j 5 1, + + + , p are diagonal matrices+ In particular, settingBj 5 0,
j 5 1, + + + , p, yields the constant conditional correlation ARCH model intro-
duced in Cecchetti et al+ ~1988!+

3. THE FOURTH-MOMENT STRUCTURE OF THE SECOND-ORDER
EXTENDED CCC-GARCH MODEL

In this section we consider the vector GARCH~2,2! model defined in~2!–~6!
and setCit 5 @ci, jlt # 5 A i Z t

2 1 Bi , i 5 1,2+ Note that$Cit % is a sequence of i+i+d+
random matrices such thatCit is independent ofht

~2! + By ~3! we may rewrite
~4! as

ht
~2! 5 a0 1 C1, t21ht21

~2! 1 C2, t22ht22
~2! + (7)

Let GCi
5 ECit and GCiJCj

5 E~Cit J Cjt !, i, j 5 1,2, whereJ denotes the
Kronecker product of two matrices+ Let l~G! denote the modulus of the largest
eigenvalue ofG+ We can now state the following result+

THEOREM 1+ The vectorGARCH(2,2) process defined in (2) and (3) and
(7) is weakly and strictly stationary if

l~GC1
1 GC2

! , 1+ (8)

Proof+ Apply Proposition 3+1 of Jeantheau~1998! to $«t % defined in~2! and
~3! and~7!+ n

Remark 3+ Bollerslev and Engle~1993! and Engle and Kroner~1995!
derived a necessary and sufficient condition for weak stationarity of a vector
GARCH~ p,q! model without the assumption of the constant conditional corre-
lation+ Condition~8! is a special case of their result+When it holds, the uncon-
ditional variances of the elements of«t in the vector GARCH~2,2! model ~2!
and~3! and~7! are

m2 5 E«t
~2! 5 ~I M 2 GC1

2 GC2
!21a0+ (9)

We are now ready to state our result concerning the fourth-order uncondi-
tional moment matrix of model~2! and~3! with ~7!+ Let vec~A! be a vector in
which the columns of theM 3 M matrix A are stacked one underneath the
other+ Then vec~A'! 5 K MM vec~A!, whereK MM is theM 2 3 M 2 commutation
matrix ~see, e+g+, Magnus, 1988, pp+ 35–37!+ We have the following theorem+

FOURTH-MOMENT STRUCTURE OF CCC-GARCH 907



THEOREM 2+ Consider the vectorGARCH(2,2) model (2) and (3) and (7).
Assume that condition (8) holds andGZJZ 5 E~Z t

2 J Z t
2! exists+ Then the

fourth-order moment matrixE@«t
~2! «t

~2!'# of $«t % exists if

l~G! , 1, (10)

where

G 5 ~GC1JC1
1 GC2JC2

!

1 ~I M 2 1 K MM !@~GC1
J I M !~I M 2 2 GC2

J GC2
!21GC1JC2

1 ~GC1
J GC2

!~I M 2 2 GC2
J GC2

!21GC2JC1
# +

Under (10),

vecE@«t
~2! «t

~2!'#

5 GZJZ~I M 2 2 G!21 Hvec~a0a0
' !

1 F(
i51

2

~GCi
J a0 1 a0 J GCi

!

1 ~I M 2 1 K MM !~GC1
J I M !

3 @~I M J GC2
!~I M 2 2 GC2

J GC2
!21~a0 J I M !

1 ~GC2
J GC2

!~I M 2 2 GC2
J GC2

!21~I M J a0!#G
3 ~a0

' J I M !vec~I M 2 GC1
2 GC2

!21J + (11)

Proof+ See the Appendix+

Remark 4+ Figure 1 helps to compare the largest absolute eigenvalues in con-
dition ~10! and the one of Ling and McAleer~2003! for the existence of the
fourth-order unconditional moments in CCC-GARCH~2,2! models+ The graphs
are obtained by fixing values of all parameters of the model butb2,11 and let-
ting b2,11 increase from 0+2+ The moduli of the largest eigenvalues of matrixG
in CCC-GARCH~2,2! models are monotonically increasing functions of the
parameterb2,11+ The solid curve is forl~G!, whereG is defined in~10!, whereas
the dashed-dotted one is the counterpart of the solid one withG 5 E~A t J A t !
defined in Theorem 2+2 of Ling and McAleer~2003!+ It is seen that these two
curves have an intersection exactly atl~G! 5 1 ~dashed line!+ Similar graphs
can be obtained for any other parameter combination, and it appears that those
two conditions, although they look different, always give the same answer+ The
advantage of condition~10! is that it can be used in deriving the fourth-moment
matrix of «t+
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Remark 5+ SettingM 5 1 in ~10! and~11! yields the condition for the exis-
tence of the fourth-order moment for the univariate GARCH~2,2! model

g 5 ~gc13c1
1 gc23c2

! 1 2gc1
gc13c2

~12 gc2
!21 , 1, (12)

wheregci
5 ai,11 1 bi,11, gci3ci

5 bi,11
2 1 2ai,11bi,11 1 ai,11

2 Ez1t
4 , i 5 1,2, and

gc13c2
5 b1,11b2,11 1 a1,11b2,11 1 a2,11b1,11 1 a1,11a2,11Ez1t

4 , and the expression
for the fourth unconditional moment of«1t :

E«1t
4 5

a0
2~Ez1t

4 !@~11 gc1
1 gc2

!~12 gc2
! 1 2gc1

gc2
#

~12 gc1
2 gc2

!~12 g!
+

Figure 1. Moduli of the largest eigenvalues of matricesG for a CCC-GARCH~2,2!
model as a function of parameterb2,11 when ~a! G is defined by condition~10! ~solid
curve! and~b! G 5 E~A t J A t ! is defined in Theorem 2+2 of Ling and McAleer~2003!
~dashed-dotted curve!+ The parameters of the model area1,115 0+06, a1,125 0+08, a1,215
0+1, a1,22 5 0+12, a2,11 5 0+07, a2,12 5 0+1, a2,21 5 0+08, a2,22 5 0+12, b1,11 5 0+05,
b1,12 5 0+08, b1,21 5 0+11, b1,22 5 0+2, b2,12 5 0+09, b2,21 5 0+1, andb2,22 5 0+12, and the
nondiagonal element of the correlation matrix of the standard normal error process$zt %
equals 0+2+
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Both are derived in He and Teräsvirta~1999a!+ The necessary and sufficient
conditions for finite fourth-order moments of GARCH~2,1! and GARCH~1,2!
models of Bollerslev~1986! are nested in~12!+ The result illustrated in Fig-
ure 1 also holds for the univariate GARCH~2,2! model: the left-hand side of
~12! and the corresponding eigenvalue in Theorem~2+1! of Ling and McAleer
~2002! intersect atl~G! 5 1+1

Next we consider the relationship between the distributions of«t andzt through
their fourth-moment structure+ For this purpose, let m2 5 ~m21, + + + ,m2M !' 5
E«t

~2! and M 2 5 diag$m21, + + + ,m2M % and define the multivariate “rescaled
fourth-moment matrix” of$«t % in ~2!–~4! as

K 5 M 2
21@E~«t

~2! «t
~2!'!#M 2

21+

The j th diagonal element ofK is the kurtosis of«jt , j 5 1, + + + ,M+

COROLLARY 1+ Assume thatGZJZ exists and (10) holds for the vector
GARCH(2,2) model (2) and (3) and (7). Then

vec~K ! $ vec~K ~zt !!, (13)

where the inequality sign refers to element-by-element inequality andK ~zt ! is
the “rescaled fourth-moment matrix” of$zt %.

Inequality~13! follows from Jensen’s inequality+ To illustrate, if zt has a multi-
variate normal distribution, the unconditional distribution of«t is leptokurtic in
the sense of~13!+

The cross-moment matrixGCiJCj
, i Þ j, is required in the considerations if

the vector model is of higher order than one+ Expressions in Theorem 2 sim-
plify for the vector GARCH~1,1! model+ This is seen from the following result+

COROLLARY 2+ Let the assumptions of Theorem 2 hold and assume
C2t 5 0 in (7). Then the fourth-order moment matrixE@«t

~2! «t
~2!'# of $«t % for the

vectorGARCH(1,1) model (2) and (3) and (7) exists if

l~GC1JC1
! , 1+ (14)

Under (14),

vecE@«t
~2! «t

~2!'# 5 GZJZ $~I M 2 2 GC1JC1
!21 @vec~a0a0

' !

1 ~GC1
J a0 1 a0 J GC1

!~a0
' J I M !

3 vec~I M 2 GC1
!21#%+ (15)

4. AUTOCORRELATION FUNCTION OF SQUARES
FOR THE EXTENDED CCC-GARCH MODEL

In this section we shall derive the multidimensional correlation function
of $«t

~2! % for our vector GARCH~2,2! process+ Let m2 5 E«t
~2! as before and
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GM~n! 5 @gij ~n!# 5 E@~«t
~2! 2 m2!~«t2n

~2! 2 m2!'# + Furthermore, let DM 5
diag$g11

102~0!, + + + ,gMM
102~0!%+ To fix notation, write the nth-order autocorrelation

matrix of $«t
~2! % for the vector GARCH~2,2! process as

RM ~n! 5 DM
21GM ~n!DM

21 (16)

for n $ 1+
The i th diagonal element, rii ~n!, i 5 1, + + + ,M, of RM~n! in ~16!, is the nth

autocorrelation of the squared observations for thei th component$«it %, whereas
rij ~n!, i, j 5 1, + + + ,M, i Þ j, the off-diagonal elements ofRM~n!, represent the
cross-correlations between«it

2 and«jt2n
2 +

To obtainRM~n!, we must find an expression forEGM~n! 5 E@«t
~2! «t2n

~2!'# + This
can be done by applying~7! to «t

~2! recursively up to thenth step and further
applying Theorem 2 toE@«t

~2! «t
~2!'# + The final result appears in the following

theorem+

THEOREM 3+ Assume thatGZJZ andm2 in (9) exist and condition (10) holds
for the vectorGARCH(2,2) model (2) and (3) and (7). Then the nth-order auto-
correlation matrixRM~n! of $«t

~2! % has the stacked form

vec~RM ~n!! 5 ~DM
21 J DM

21!vec~GM ~n!!, (17)

where

vec~GM ~n!! 5 vec~ EGM ~n!! 2 vec~m2 m2
' ! (18)

such that for n5 1,2,

vec~ EGM ~1!! 5 ~I M J a0!m2 1 GZJC1
vec~ EGM ! 1 vec~ E EGM !, (19)

vec~ EGM ~2!! 5 ~I M J a0!m2 1 GZJC2
vec~ EGM !

1 ~I M J GC1
!vec~ EGM ~1!!+ (20)

Furthermore, for n$ 3,

vec~ EGM ~n!! 5 ~I M J a0!m2 1 ~I M J GC1
!vec~ EGM ~n 2 1!!

1 ~I M J GC2
!vec~ EGM ~n 2 2!! (21)

with

vec~ EGM ! 5 ~GZJZ!21 vecE~«t
~2! «t

~2!'!+ (22)
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In (19),

vec~ E EGM ! 5 @~I M J GC2
!~I M 2 2 GC2

J GC2
!21~a0 J I M !

1 ~GC2
J GC2

!~I M 2 2 GC2
J GC2

!21~I M J a0!#

3 ~a0
' J I M !vec~I M 2 GC1

2 GC2
!21

1 @~I M 2 2 GC2
J GC2

!21GC1JC2

1 ~GZ J GC2
!~I M 2 2 GC2

J GC2
!21GC2JC1

# vec~ EGM !, (23)

and GZJCi
5 E~Z t

2 J Cit !, i 5 1,2.

Proof+ See the Appendix+

If the assumptions of Theorem 3 are satisfied and the first two autocorrela-
tion matricesRM~1! andRM~2! are known we can compute thenth autocorre-
lation matrixRM~n! recursively through equations~17!–~23!+ The autocorrelation
structure simplifies for the first-order model+We state this result in the follow-
ing corollary+

COROLLARY 3+ Assume that the assumptions of Theorem 3 hold andC2t 5 0
in (7). Then the vectors (19)–(21) in the definition of the autocorrelation matrix
RM~n! of $«t

~2! % for the CCC-GARCH(1,1) model (2) and (3) and (7) are

vec~ EGM ~1!! 5 ~I M J a0!m2 1 GZJC1
vec~ EGM !, (24)

vec~ EGM ~n!! 5 ~I M J a0!m2 1 ~I M J GC1
!vec~ EGM ~n 2 1!!, n $ 2 (25)

with

vec~ EGM ! 5 ~I M 2 2 GC1JC1
!21 @vec~a0a0

' ! 1 ~GC1
J a0 1 a0 J GC1

!

3 ~a0
' J I M !vec~I M 2 GC1

!21# + (26)

A number of theoretical properties of the autocorrelation matrix$RM~n!%,
n 5 1,2, + + + , for the first-order model, obtained through Corollary 3, are listed
here:

1+ RM~n! r 0 asn r `+
It follows from Corollary 3 that we can write

vec~ EGM ~n!! 5 F(
i50

n22

~I M J GC1
! i G~I M J a0!m2

1 ~I M J GC1
!n21 vec~ EG~1!!+ (27)
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Under condition~10!, limnr`vec~ EGM~n!! 5 @I M 2 2 ~I M J GC1
!#21~I M J

a0!m2+ This implies

vec~GM ~n!! r 0, asn r `+

2+ The autocorrelation matricesRM~n! satisfy the Yule–Walker equations+
Suppose that vec~ EGM~1!! is known so that vec~RM~1!! is known ~see~17!

and~18!!+ It follows from equation~25! that vec~RM~n!!, for anyn $ 2, can be
solved byRM~1! and~I M J GC1

! through

vec~RM ~n!! 5 ~DM
21 J DM

21! HF(
i50

n22

~I M J GC1
! i G~I M J a0!m2J

1 ~DM
21 J DM

21!$~I M J GC1
!n21 vec~ EGM ~1!! 2 vec~m2 m2

' !%+

(28)

In particular,

vec~RM ~2!! 5 ~DM
21 J DM

21!$~I M J a0!m2% 1 vec~RM ~1!!+

3+ The first-order auto- and cross-correlationsrij ~1! for i, j 51, + + + ,M, in RM~1!
are positive if the positivity restrictionsa0i . 0, al, ij andbl, ij $ 0, i, j 51, + + + ,M,
l 5 1, + + + ,max$ p,q%, mentioned in Section 2, are satisfied+

4+ The decay rate ofRM~n! as a function ofn depends on the eigenvalues of
~I M J GC1

!+ WhenM 5 2 the autocorrelations inR2~n! will exhibit a mixture
of decaying exponential decay, because~I M J GC1

! only has real roots+ When
M $ 3 the autocorrelations display a mixture of exponential decay if there exists
a dominant real root in~I M J GC1

! and dampening sinusoidal behavior if the
moduli of the complex conjugate pairs of eigenvalues are sufficiently large+ An
example of the latter case is depicted in Figure 2+ WhenM 5 1, the decay rate
of the autocorrelation function of the squared observations for the univariate
GARCH~1,1! model is exactly~I 1 J GC1

! 5 gc1
5 E~a1,11zt

2 1 b1,11!+ In this
case the decay is exponential asr ~n! 5 gc1

n21r ~1!, n $ 2+ This property also
holds whenM . 1 andA1 andB1 are diagonal matrices as in Bollerslev~1990!+
Thus our extension of the CCC-GARCH model allows a considerably richer
autocorrelation structure than the original CCC-GARCH model+

5. BIVARIATE GARCH(1,1) MODEL

To illustrate the general correlation results we consider the bivariate
GARCH~1,1! process~2! and ~3! and ~7!+ The correlation matrix of$«t

~2! % for
this process is obtained as a special case of Corollary 3+

COROLLARY 4+ Let M5 2, C2t 5 0, and c1,12t 5 c1,21t 5 0 in (7). Further-
more, letGC1

5 @gij # wheregij 5 Ec1, ijt for i, j 5 1,2, GC1JC1
5 @gij , kl # where

gij , kl 5 E~c1, ijt c1, klt ! for i, j, k, l 5 1,2, and, finally, GZJC1
5 @gzi c1, jk

# where
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Figure 2. Auto- and cross-correlations of squared observations of a three-dimensional extended CCC-GARCH~1,1! process, lags 1–8+
HereGC has a pair of complex conjugate eigenvalues with modulus5 0+432 and a real root5 0+858+ The parameter values area01 5 0+1,
a02 5 0+2, a03 5 0+25, a11 5 0+05, a12 5 0+25, a13 5 0+06, a21 5 0+07, a22 5 0+08, a23 5 0+25, a31 5 0+25, a32 5 0+08, a33 5 0+08, b11 5
0+05, b12 5 0+4, b13 5 0+05, b21 5 0+05, b22 5 0+07, b23 5 0+3, b31 5 0+25, b32 5 0+08, andb33 5 0+08+ The correlation matrix of the standard
normal error process$zt % has the following nondiagonal elements: r12 5 0+2, r13 5 0+3, andr23 5 0+23+

9
1

4



gzi cjk
5 E~zit

2c1, jkt !, for i, j, k 5 1,2+ Assume thatz 5 ~z1t , z2t !
' ; NID ~0,R!

and, furthermore, that condition (10) holds for the bivariateGARCH(1,1) model
(2) and (3) with (7). ThenR2~n! 5 @rij ~n!# in (17) for i, j 5 1,2 has the simpli-
fied form

r11~n! 5
g11

n21@gz1c11
~12 g11

2 ! 2 g11~12 g11,11!#

3~12 g11
2 ! 2 ~12 g11,11!

,

r21~n! 5
g22

n21@~12 g11,11!~12 g22,22!#102 @gz1c22
~12 g11g22! 2 g22~12 g11,22!#

$@3~12 g11
2 ! 2 ~12 g11,11!# @3~12 g22

2 ! 2 ~12 g22,22!#%102 ,

r12~n! 5
g11

n21@~12 g11,11!~12 g22,22!#102 @gz2c11
~12 g11g22! 2 g11~12 g11,22!#

$@3~12 g11
2 ! 2 ~12 g11,11!# @3~12 g22

2 ! 2 ~12 g22,22!#%102 ,

r22~n! 5
g22

n21@gz2c22
~12 g22

2 ! 2 g22~12 g22,22!#

3~12 g22
2 ! 2 ~12 g22,22!

+

According to Corollary 4, the elements inR2~n!, n $ 1, decay exponentially+
The autocorrelationsr11~n! and cross-correlationsr12~n!, n $ 1, have the decay
rate g11, whereasr21~n! and r22~n! also have a common decay rateg22+ The
exponential decay rates generalize to the caseM . 2 and are a characteristic
feature of the standard CCC-GARCH model+

6. AN EMPIRICAL EXAMPLE

The purpose of this section is to illustrate practical usefulness of our theoreti-
cal results+ Bollerslev ~1990! fitted two CCC-GARCH models with nonzero
constant conditional correlations to a set of five weekly exchange rate return
series+ His purpose was to analyze the dynamic behavior of these returns before
the introduction of the European monetary system~EMS! and thereafter+ The
pre-EMS period ran from July 1973 to the second week of March 1979~299
observations! and the second, the EMS period, from the third week of March
1979 to the second week of August 1985~333 observations!+ The estimated
constant correlations from the pre-EMS and EMS models appear in Table 1+
The parameter estimates are not reproduced and can be found in Tables 1 and 2
of Bollerslev ~1990!+ The exchange rates that are rates against the U+S+ dollar
are indexed as follows: 15 DM ~the Deutschmark!, 2 5 FF ~the French franc!,
3 5 IL ~the Italian lira!, 4 5 SF ~the Swiss franc!, and 55 BP ~the British
pound!+ Bollerslev concluded, among other things, that the conditional correla-
tions are significantly higher for the EMS period than for the period preceding it+
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Using plug-in auto- and cross-correlation estimates based on the definitions
of the true quantities derived in the previous sections we are able to complete
Bollerslev’s analysis+ However, in the pre-EMS model, [g33 . 1, so that the IL
process does not have a finite variance+As this would invalidate our small exam-
ple, we shrink the estimate ofa33 to 0+287 to satisfy the fourth-moment exis-
tence condition for the pre-EMS system+ Estimated auto- and cross-correlations
of the squared observations from the two models after this adjustment can be
found in Table 2+ The individual autocorrelations are relatively high and persis-
tent for FF and SF and, of course, very high and persistent for IL~the adjusted
[g33 remains just below unity!+ On the other hand, they are low for DM+ It may

also be noted that most cross-correlations are negligible+
This can be compared with the results from the model for the EMS period+

The autocorrelation structure of DM is practically unaffected by EMS+ But then,
the three rates with previously large autocorrelations of squared returns are now
much more weakly autocorrelated than before+ The autocorrelations in the BP
not included in the EMS increase slightly+ Thus, although the conditional cor-
relations between the returns of EMS currencies increase as a result of the EMS,
the autocorrelations of squared returns decrease+ The anchor currency of the
monetary system, DM, constitutes an exception+ On the other hand, cross-
correlations appear where none were observed before the EMS: note the ones
between DM and IL and FF and IL+ It seems that in the EMS period, the changes
in the volatility of DM and FF have dynamic effects on the volatility of IL+
This may not be unexpected as these currencies belong to the EMS during the
observation period+ Finally, about the only nonnegligible pre-EMS cross-
correlations, the ones between BP and DM, practically vanish in the EMS period+
As BP has not been a part of the EMS during the observation period, this may
not be an unexpected result either+

Table 1. The estimated constant correlations[rij , i, j 5 DM, FF, IL , SF, BP,
from the two estimated CCC-GARCH models~EMS period and pre-EMS period!
of Bollerslev~1990!

EMS Pre-EMS

i DM FF IL SF BP DM FF IL SF BP

[rDMi 1 0+932 0+886 0+917 0+674 1 0+607 0+425 0+714 0+443
[rFFi — 1 0+876 0+866 0+676 — 1 0+441 0+517 0+488
[rILi — — 1 0+816 0+622 — — 1 0+336 0+345
[rSFi — — — 1 0+635 — — — 1 0+305
[rBPi — — — — 1 — — — — 1

Source: Tables 1 and 2 of Bollerslev~1990!+
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These results should be viewed with caution because one parameter estimate
was adjusted to allow the estimated pre-EMS process to have finite uncondi-
tional fourth moments+ Besides, the uncertainty in the parameter estimates is
not accounted for in the discussion+We emphasize, however, that the main pur-
pose of this example is to demonstrate practical uses of the theoretical results
of the paper+ The example shows that the fourth-moment results are useful
already in the case of the standard first-order CCC-GARCH model, and the
same can be said about more general situations also+

Table 2. Auto- and cross-correlationsrij ~n!, i, j 5 DM, FF, IL , SF, BP, n 5 1,
2, 5, 10, are computed from the two estimated CCC-GARCH models~EMS
period and pre-EMS period! of Bollerslev~1990!

EMS Pre-EMSa

1 2 5 10 1 2 5 10

r11~n! 0+0462 0+0441 0+0384 0+0305 0+0584 0+0562 0+0502 0+0416
r12~n! 0+0207 0+0205 0+0201 0+0193 0+0577 0+0491 0+0301 0+0133
r13~n! 0+1167 0+0977 0+0573 0+0235 0+0059 0+0054 0+0041 0+0026
r14~n! 0+0638 0+0633 0+0616 0+0588 0+0519 0+0507 0+0475 0+0425
r15~n! 0+0461 0+0444 0+0399 0+0334 0+0217 0+0170 0+0083 0+0025
r21~n! 0+0370 0+0353 0+0307 0+0244 0+0234 0+0226 0+0201 0+0167
r22~n! 0+0150 0+0148 0+0144 0+0138 0+2039 0+1733 0+1064 0+0472
r23~n! 0+1088 0+0911 0+0534 0+0219 0+0074 0+0068 0+0051 0+0032
r24~n! 0+0554 0+0549 0+0535 0+0511 0+0258 0+0252 0+0236 0+0211
r25~n! 0+0407 0+0392 0+0353 0+0295 0+0309 0+0243 0+0118 0+0036
r31~n! 0+0401 0+0383 0+0338 0+0265 0+0020 0+0019 0+0017 0+0014
r32~n! 0+0206 0+0204 0+0199 0+0191 0+0050 0+0042 0+0026 0+0011
r33~n! 0+2175 0+1821 0+1067 0+0438 0+4939 0+4510 0+3432 0+2177
r34~n! 0+0481 0+0477 0+0464 0+0443 0+0022 0+0021 0+0020 0+0018
r35~n! 0+0422 0+0408 0+0366 0+0306 0+0020 0+0016 0+0007 0+0002
r41~n! 0+0470 0+0449 0+0391 0+0311 0+0307 0+0295 0+0264 0+0218
r42~n! 0+0304 0+0301 0+0294 0+0282 0+0270 0+0229 0+0014 0+0062
r43~n! 0+0841 0+0704 0+0412 0+0169 0+0029 0+0026 0+0020 0+0012
r44~n! 0+2115 0+2096 0+2040 0+1949 0+3532 0+3454 0+3231 0+2891
r45~n! 0+0497 0+0479 0+0431 0+0361 0+0060 0+0047 0+0023 0+0007
r51~n! 0+0265 0+0253 0+0221 0+0175 0+0894 0+0861 0+0769 0+0637
r52~n! 0+0138 0+0137 0+0133 0+0127 0+0393 0+0334 0+0205 0+0091
r53~n! 0+0590 0+0494 0+0289 0+0119 0+0040 0+0036 0+0028 0+0017
r54~n! 0+0437 0+0434 0+0422 0+0403 0+0071 0+0069 0+0065 0+0058
r55~n! 0+1712 0+1652 0+1484 0+1242 0+1331 0+1104 0+0511 0+0154

arij ~n!, n 5 1,2,5,10, are computed from the estimated pre-EMS model by reducing the estimate ofa33 to 0+287
to satisfy condition~10! for this pre-EMS system+
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7. CONCLUSIONS

In this work we have derived the fourth-moment structure for a constant-
correlation GARCH model that contains as a special case the CCC-GARCH
model of Bollerslev~1990!+We demonstrate the fact that already the first-order
version of this model is capable of characterizing processes with rather general
autocorrelation structures+ This extended model could then be a viable alterna-
tive to the standard CCC-GARCH model+

Despite the appealing theoretical properties of the extended model,more work
is needed to find out how useful the model is in practice+ Wong, Li , and Ling
~2002! can be seen as a first step in this direction+ In their application, the non-
diagonal parameters in the coefficient matrices of the model appear to be non-
zero+ Whether or not the extended model reduces the need for time-varying
correlations—another extension of the basic CCC-GARCH model~see Engle,
2002; Tse and Tsui, 2002!—remains a question for further work+

NOTE

1+ This requires, however, that in Theorem 2+1 of Ling and McAleer~2002!, l~G! is redefined
to be the largest eigenvalue ofG instead of being the smallest eigenvalue+

The proof of the necessary condition for the existence of the fourth moment of the GARCH~ p,q!
model in He and Teräsvirta~1999a! is complete+ It is important to note that the authors begin by
representing the recursion formula for the squared conditional variance functionht

2 such that it has
a bilinear form~see pp+ 835–836!+ The advantage of this form is obvious from formula~A+21!+ The
authors show that under some conditions, limkr` a'(i

k G i b 5 c implies l~G! , 1, where a 5
~a1, + + + ,ap* !

', b 5 ~b1, + + + ,bp* !
' for ai . 0, bi $ 0 ~i 5 1, + + + , p*! andb Þ 0, andG s 5 @gij

~s!# , which
is a positive~ p* 3 p*! matrix ~gij

~s! . 0 for any s $ 2!, and G is well defined+ To see that the
necessary conditionl~G! , 1 holds for~A+21!, set limkr` a'(i

k G i b 5 c+ That is, for any given
« . 0, there exists an integerN . 0 such that6a'(i

k G i b 2 c6 , « for anyk . N+ It follows from
the positiveness ofa andG i and nonnegativeness ofb that for anyi, j 5 1, + + + , p* and« andN given
previously, 6(i (j ai ~(i

k gij
~s!!bj 2 c6 , «, which implies that( i51

k G i converges ask approaches
infinity+ This shows that the necessary conditionl~G! , 1 in Lemma 4 of He and Teräsvirta
~1999a! holds+ Ling and McAleer~2002, note 1! argue that this result is proved by concluding that
(i
` G i , ` follows from (i

` G i b , `+ This is not the case+
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APPENDIX

Let Ii be an indicator function defined for nonnegative integersi such that

Ii 5 H1, if i 5 0,2, + + +

0, if i 5 1,3, + + + +

LEMMA 1 + Let k $ 1+ For the vectorGARCH(2,2) model (2) and (3) and (7),
vec~C2, t22ht22

~2! ht21
~2!'C1, t21

' ! can be expressed in terms ofht2i
~2! , vec~ht2j

~2! ht2j
~2!'!, and

vec~ht2i
~2! ht2j

~2!'! as follows:
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vec~C2, t22ht22
~2! ht21

~2!'C1, t21
' !

5 (
j51

k H~C1, t21 J I M !F)
i51

j

~Ii21~I M J C2, t2~i11! ! 1 Ii ~C2, t2~i11! J I M !!G
3 @Ij21~a0 J I M ! 1 Ij ~I M J a0!#J ht2~11j !

~2!

1 (
j51

k H~C1, t21 J I M !F)
i51

j

~Ii21~I M J C2, t2~i11! ! 1 Ii ~C2, t2~i11! J I M !!G
3 @Ij21~C1, t2~11j ! J I M ! 1 Ij ~I M J C1, t2~11j ! !#J vec~ht2~11j !

~2! ht2~11j !
~2!' !

1 ~C1, t21 J I M ! )
j50

k

@Ij ~I M J C2, t2~21j ! ! 1 Ij11~C2, t2~21j ! J I M !#

3 @Ik11 vec~ht2~11k!
~2! ht2~21k!

~2!' ! 1 Ik vec~ht2~21k!
~2! ht2~11k!

~2!' !# + (A.1)

Proof. Applying ~7! to ht21
~2! in ht22

~2! ht21
~2!' yields

vec~C2, t22ht22
~2! ht21

~2!'C1, t21
' ! 5 ~C1, t21 J C2, t22!~a0 J I M !ht22

~2!

1 ~C1, t21 J C2, t22!~C1, t22 J I M !vec~ht22
~2! ht22

~2!' !

1 ~C1, t21 J C2, t22!~C2, t23 J I M !vec~ht22
~2! ht23

~2!' !+

(A.2)

Applying ~7! to ht22
~2! in ht22

~2! ht23
~2!' on the right-hand side of~A+2! and continuing the

iteration until thekth step gives~A+1!+ n

LEMMA 2 + Assume thatGZJZ exists and condition (8) holds for$«t % defined in (2)
and (3) and (7). Then

St2k
a+s+

&& 0 as kr `, (A.3)

where

St2k 5 ~C1, t21 J I M ! )
j50

k

@Ij ~I M J C2, t2~21j ! ! 1 Ij11~C2, t2~21j ! J I M !#

3 @Ik11 vec~ht2~11k!
~2! ht2~21k!

~2!' ! 1 Ik vec~ht2~21k!
~2! ht2~11k!

~2!' !# +

Proof. $Ij ~I M J C2, t2~21j !! 1 Ij11~C2, t2~21j ! J I M !% is a sequence of i+i+d+ random
matrices+ This and the fact thatl~E~I M J C2, t2j !! , 1 for anyj lead to limkr`St2k 5 0
almost surely when the assumptions of the lemma hold+ Then
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EH~C1, t21 J I M ! )
j50

`

@Ij ~I M J C2, t2~21j ! ! 1 Ij11~C2, t2~21j ! J I M !#J
5 GC1 )

j51

`

E~I M J C2, t22j ! )
j51

`

E~I M J C2, t2~2j11! !

5 0+

On the other hand, as$«t % is strictly stationary we can assume that sequence$«t % started
at a finite value in the infinite past+ Then~A+3! holds+ n

Proof of Theorem 2. From ~7! we have

vec~ht
~2! ht

~2!'! 5 vec~a0a0
' ! 1 ~C1, t21 J a0 1 a0 J C1, t21!ht21

~2!

1 ~C2, t22 J a0 1 a0 J C2, t22!ht22
~2!

1 ~C1, t21 J C1, t21!vec~ht21
~2! ht21

~2!' ! 1 ~C2, t22 J C2, t22!vec~ht22
~2! ht22

~2!' !

1 ~I M 2 1 K MM !~C1, t21 J C2, t22!vec~ht22
~2! ht21

~2!' !+ (A.4)

Noting that~C1, t21 J C2, t22!vec~ht22
~2! ht21

~2!' ! 5 vec~C2, t22ht22
~2! ht21

~2!'C1, t21
' ! and apply-

ing Lemmas 1 and 2 yields, after rewriting~A+4!, that

F~L!vec~ht
~2! ht

~2!'! 5 vec~a0a0
' ! 1 Q~L!ht

~2! (A.5)

almost surely+ In ~A+5!, F~L! ~M 2 3 M 2! and Q~L! ~M 2 3 M ! are infinite-order
matrix polynomials in the lag operatorL such thatF~L! 5 (i50

` Fi, t21Li andQ~L! 5

(i51
` Qi Li+ In particular,

F0, t21 5 I M 2 ,

F1, t21 5 2~C1, t21 J C1, t21!,

F2, t21 5 2@~I M 2 1 K MM !~C1, t21 J C2, t22!~C2, t22 J I M ! 1 ~C2, t22 J C2, t22!# ,

Fk11, t21 5 2~I M 2 1 K MM ! (
j51

k H~C1, t21 J I M !F)
i51

j

~Ii21~I M J C2, t2~i11! !

1 Ii ~C2, t2~i11! J I M !!G
3 @Ij21~C1, t2~11j ! J I M ! 1 Ij ~I M J C1, t2~11j ! !#J
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for k 5 2,3, + + + , and

Q1 5 C1, t21 J a0 1 a0 J C1, t21,

Q2 5 C2, t22 J a0 1 a0 J C2, t22

1 ~I M 2 1 K MM !~C1, t21 J C2, t22!~a0 J I M !,

Qk11 5 ~I M 2 1 K MM ! (
j51

k H~C1, t21 J I M !F)
i51

j

~Ii21~I M J C2, t2~i11! !

1 Ii ~C2, t2~i11! J I M !!G
3 @Ij21~a0 J I M ! 1 Ij ~I M J a0!#J

for k 5 2,3, + + + +
Under conditions~8! and~10!, @F~L!#21 exists+ Let Gt 5 2(i51

` Fi, t21Li+ Define

@F~L!#21 5 ~I M 2 2 Gt !
21 5 I M 2 1 Gt 1 Gt Gt21 1 Gt Gt21Gt22 1 {{{+

For the definition, see, for example, Tong ~1990, pp+ 137–138!+ Thus, vec~ht
~2! ht

~2!'! in
~A+5! has a representation

vec~ht
~2! ht

~2!'! 5 @F~L!#21~vec~a0a0
' ! 1 Q~L!ht

~2!! (A.6)

almost surely+
Because$Cit %, i 5 1,2, is a sequence of i+i+d random matrices andl~GC1

1 GC2
! , 1,

it follows that

lim
kr`

(
i51

k

E~Fi ! 5 ~GC1JC1
1 GC2JC2

!

1 ~I M 2 1 K MM !@~GC1
J I M !~I M 2 2 GC2

J GC2
!21GC1JC2

1 ~GC1
J GC2

!~I M 2 2 GC2
J GC2

!21GC2JC1
#

5 G+ (A.7)

Condition~10! implies thatE~F~1!! 5 ~I M 2 2 G! is finite and thatE~F~1!! is invertible+
Similarly,

E~Q~1!! 5 lim
kr`

(
i51

k

E~Qi !

5 (
i51

2

~GCi
J a0 1 a0 J GCi

!

1 ~I M 2 1 K MM !~GC1
J I M !

3 @~I M J GC2
!~I M 2 2 GC2

J GC2
!21~a0 J I M !

1 ~GC2
J GC2

!~I M 2 2 GC2
J GC2

!21~I M J a0!# , `+ (A.8)
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Thus, the matrix sequences of$E~Fi !%i50
` and $E~Qi !%i51

` are absolutely summable+ It
follows from ~A+7! and ~A+8! and condition~8! that $vec~ht

~2! ht
~2!'!% in ~A+6! is finite

almost surely+
Assume thatE~F~1!! andE~Q~1!! have no common eigenvalues+ It follows from ~A+7!

and~A+8! that vec~ht
~2! ht

~2!'! in ~A+6! has a fourth-order weakly stationary solution and
that E~vec~ht

~2! ht
~2!'!! is finite+ Under condition~10!, taking expectations on both sides

of ~A+5! gives

E~vec~ht
~2! ht

~2!'!! 5 @EF~1!#21$vec~a0a0
' ! 1 @EQ~1!# @E~ht

~2!!# %+

Now, E~vec~«t
~2! «t

~2!'!! 5 E~Z t
2 J Z t

2!E~vec~ht
~2! ht

~2!'!!, which concludes the proof of
equation~11!+ n

LEMMA 3 + Assume thatGZJZ exists and condition (10) holds for the vector
GARCH(2,2) model (2) and (3) and (7). Then

E vec~C2, t22ht22
~2! ht21

~2!' Z t21
2 !

5 ~GZ J I M !@~I M J GC2
!~I M 2 2 GC2

J GC2
!21~a0 J I M !

1 ~GC2
J GC2

!~I M 2 2 GC2
J GC2

!21~I M J a0!#

3 ~a0
' J I M !vec~I M 2 GC1

2 GC2
!21

1 @~GZ J I M !~I M 2 2 GC2
J GC2

!21GC1JC2

1 ~GZ J GC2
!~I M 2 2 GC2

J GC2
!21GC2JC1

#E vec~ht22
~2! ht21

~2!' !+ (A.9)

Proof. Equation~A+9! follows from Lemma 1 and Theorem 2+ n

LEMMA 4 + Assume thatGZJZ exists and condition (10) holds for the vector
GARCH(2,2) model (2) and (3) and (7). Let k$ 3+ Then

E~ht
~2! ht2k

~2!' ! 5 ~a0 GC1
GC2!G*

k21Eht2k
* , (A.10)

where

G*5 1
1 0 0

a0 GC1
GC2

0 I 0 2 and ht2k
* 5 1

ht2k
~2!'

ht2k
~2! ht2k

~2!'

ht2~k11!
~2! ht2k

~2!'2 .

Proof. Rewrite~7! as

ht
~2! 5 ~a0 C1, t21 C2, t22!1

1

ht21
~2!

ht22
~2! 2 + (A.11)
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Applying equation~7! to ht21
~2! on the right-hand side of~A+11! and continuing the iter-

ation until thekth step yields

ht
~2! 5 ~a0 C1, t21 C2, t22!C t22

* C t23
* + + +C t2k

* 1
1

ht2k
~2!

ht2~k11!
~2! 2 , (A.12)

where

C t2i
* 5 1

1 0 0

a0 C1, t2i C2, t2~i11!

0 I 0 2 +
Note thatE~C t2i

* C t2j
* ! 5 G*

2 for i Þ j+ Left-multiplying ~A+12! by ht2k
~2!' and taking expec-

tations yields~A+10!+ n

Proof of Theorem 3. We prove Theorem 3 by induction forn+
~i! We shall show that~17!–~21! hold for n 5 3+
First we show that~17!–~19! hold for n 5 1+ Consider

«t
~2! «t21

~2!' 5 Z t
2~a0 1 C1, t21ht21

~2! 1 C2, t22ht22
~2! !ht21

~2!' Z t21
2 + (A.13)

Taking expectations on both sides of~A+13! and expressing them in vec form yields

vecE@«t
~2! «t21

~2!'# 5 ~I M J a0!m2 1 GZJC1
vecE~ht

~2! ht
~2!'!

1 vecE~C2, t22ht22
~2! ht21

~2!' Z t21
2 !+ (A.14)

Set vec EGM 5 vecE~ht
~2! ht

~2!'! and vec E EGM 5 vecE~C2, t22ht22
~2! ht21

~2!' Z t21
2 !+ Rewriting

~A+14! using these definitions and applying Theorem 2 and Lemma 3 yields

vecE@«t
~2! «t21

~2!'# 5 ~I M J a0!m2 1 GZJC1
vec EGM 1 vec E EGM

5 vec EGM ~1!+ (A.15)

Thus, ~17!–~19! hold for n 5 1+
Similarly, for n 5 2,

vecE@«t
~2! «t22

~2!'# 5 ~I M J a0!m2 1 GZJC2
vecE~ht

~2! ht
~2!'!

1 ~I M J GC1
!@~I M J a0!m2 1 GZJC1

vecE~ht
~2! ht

~2!'!

1 vecE~C2, t23ht23
~2! ht22

~2!' Z t22
2 !#

5 ~I M J a0!m2 1 GZJC2
vec EGM 1 ~I M J GC1

!vec EGM ~1!

5 vec EGM ~2! (A.16)

so that~17!–~20! are valid forn 5 2+

924 CHANGLI HE AND TIMO TERÄSVIRTA



We shall now show that~21! holds forn 5 3+ We have

vecE@«t
~2! «t23

~2!'# 5 ~I M J a0!m2 1 ~I M J GC1
!

3 $~I M J a0!m2 1 GZJC2
vecE~ht

~2! ht
~2!'! 1 ~I M J GC1

!

3 @~I M J a0!m2 1 GZJC1
vecE~ht

~2! ht
~2!'!

1 GZJC2
vecE~C2, t24ht24

~2! ht23
~2!' Z t23

2 !#

1 ~I M J GC2
!@~I M J a0!m2 1 GZJC1

vecE~ht
~2! ht

~2!'!

1 vecE~C2, t24ht24
~2! ht23

~2!' Z t23
2 !#%+ (A.17)

Applying ~A+15! and~A+16! to ~A+17! gives

vec EGM ~3! 5 ~I M J a0!m2 1 ~I M J GC1
!vec EGM ~2!

1 ~I M J GC2
!vec EGM ~1!+

~ii ! Assume that~17!–~21! hold for all n # k+ We shall show that they hold forn 5
k 1 1+ From this assumption one obtains

EGM ~k! 5 a0 m2
' 1 GC1

EGM ~k 2 1! 1 GC2
EGM ~k 2 2!

5 ~a0 GC1
GC2!1

m2
'

EGM ~k 2 1!

EGM ~k 2 2!
2

5 ~a0 GC1
GC2!1

1 0 0

a0 GC1
GC2

0 I 0 2 1
m2
'

EGM ~k 2 2!

EGM ~k 2 3!
2

5 + + +

5 ~a0 GC1
GC2!G*

k23 1
m2
'

EGM ~2!

EGM ~1!
2 + (A.18)

On the other hand, using Lemma 4 one obtains

E@«t
~2! «t2~k11!

~2!' # 5 GZE~ht
~2! ht2~k11!

~2!' Z t2~k11!
2 !

5 GZ~a0 GC1
GC2!G*

k22

3 E3C t2k
* C t2~k11!

* 1
1

ht2~k11!
~2!

ht2~k12!
~2! 2 ht2~k11!

~2!' Z t2~k11!
2 4 + (A.19)
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Applying ~A+15! and~A+16! to the right-hand side of~A+19! gives

E3C t2k
* C t2~k11!

* 1
1

ht2~k11!
~2!

ht2~k12!
~2! 2 ht2~k11!

~2!' Z t2~k11!
2 4 5 1

m2
'

EGM ~2!

EGM ~1!2 + (A.20)

It follows from ~A+18! and~A+20! that

G*
k22 1

m2
'

EGM ~2!

EGM ~1!
2 5 G*

k23 1
m2
'

EGM ~3!

EGM ~2!
2

5 {{{

5 1
m2
'

EGM ~k!

EGM ~k 2 1!
2 + (A.21)

Applying ~A+20! to ~A+21! and rewriting it in the vec form completes the proof of equa-
tion ~21! whenn 5 k 1 1+ n
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