Problem Set 1.

Question 1.

The correlation coefficient between X and $\mathrm{Y}\left(r_{X Y}\right)$ is given by

$$
r_{X Y}=\frac{n \sum x y}{\sqrt{\sum x^{2}} \sqrt{\sum y^{2}}}=\frac{\sum X Y-\left(\sum X\right)\left(\sum Y\right) / n}{\sqrt{\sum X^{2}-\left(\sum X\right)^{2} / n} \sqrt{\sum Y^{2}-\left(\sum Y\right)^{2} / n}}
$$

where we used the fact that

$$
\sum x y=\sum X Y-\left(\sum X\right)\left(\sum Y\right) / n
$$

Multiplying both the numerator and the denominator by n gives

$$
r_{X Y}=\frac{n \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{\sqrt{n \sum X^{2}-\left(\sum X\right)^{2}} \sqrt{n \sum Y^{2}-\left(\sum Y\right)^{2}}} .
$$

Problem Set 2.

Question 1.

Solve exercise 1.12 in Johnston and Dinardo.
In what follows we will denote $X^{\prime}=a X+b$, and $Y^{\prime}=c Y+d$.
The correlation coefficient between X^{\prime} and $Y^{\prime}\left(r^{\prime}\right)$ is given by

$$
r^{\prime}=\frac{\sum x^{\prime} y^{\prime}}{\sqrt{\sum\left(x^{\prime}\right)^{2}} \sqrt{\sum y^{\prime 2}}}
$$

It can be seen that

$$
x^{\prime}=X^{\prime}-\overline{X^{\prime}}=a x, \text { and } y^{\prime}=c y
$$

Thus, we have

$$
r^{\prime}=\frac{\sum a x c y}{\sqrt{\sum(a x)^{2}} \sqrt{\sum(c y)^{2}}}=\frac{\sum x y}{\sqrt{\sum x^{2}} \sqrt{\sum y^{2}}}=r .
$$

Problem Set 3.

Question 1.

Note that

$$
d[\ln (y)]=\frac{\partial[\ln (y)]}{\partial y} d y=\frac{1}{y} d y, \text { and } d[\ln (x)]=\frac{1}{x} d x .
$$

Thus, we have

$$
\frac{d[\ln (y)]}{d[\ln (x)]}=\frac{x}{y} \frac{d y}{d x}=\frac{d y / y}{d x / x}=e_{x}^{y}
$$

where e_{x}^{y} denotes the elasticity of y with respect to x.

Question 2.

The main equation is:

$$
\frac{100}{100-y}=\alpha+\frac{\beta}{x} .
$$

The two asymptotes are:

$$
\begin{aligned}
& y \quad \rightarrow \quad \infty \Rightarrow 0=\alpha+\frac{\beta}{x} \Rightarrow x=-\frac{\beta}{\alpha} \\
& x \quad \rightarrow \quad \infty \Rightarrow \frac{100}{100-y}=\alpha \Rightarrow y=100\left(1-\frac{1}{\alpha}\right)
\end{aligned}
$$

Next, we denote $y^{\prime}=\frac{100}{100-y}$ and $x^{\prime}=\frac{1}{x}$ and we estimate the following regression:

$$
y^{\prime}=\alpha+\beta x^{\prime}
$$

The estimates of α and β are $a=2.068(.159)$ and $b=16.266(1.323)$ with standard errors inside the parentheses.

Problem Set 4.

Question 1 a.
The likelihood function is given by

$$
\begin{aligned}
L(\theta ; x)= & \theta^{x_{1}}(1-\theta)^{1-x_{1}} \times \cdots \times \theta^{x_{n}}(1-\theta)^{1-x_{n}}= \\
& \theta^{\sum x}(1-\theta)^{n-\sum x} .
\end{aligned}
$$

The log-likelihood function is given by

$$
\ln [L(\theta ; x)]=\sum x \ln (\theta)+\left(n-\sum x\right) \ln (1-\theta)
$$

Thus, the first derivative with respect to θ is given by

$$
\frac{\partial\{\ln [L(\theta ; x)]\}}{\partial \theta}=\frac{\sum x}{\theta}-\frac{\left(n-\sum x\right)}{1-\theta} .
$$

We set the first derivative equal to 0 and we solve with respect to θ :

$$
\widehat{\theta}=\frac{\sum x}{n}=\bar{x} .
$$

Question 4.

We express the regression in deviations from the means:

$$
y=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+u
$$

The vector b with the estimated parameters is given by

$$
b=\left(x^{\prime} x\right)^{-1} x^{\prime} y
$$

where

$$
x^{\prime} x=\left[\begin{array}{ccc}
\sum x_{1}^{2} & \sum x_{1} x_{2} & \sum x_{1} x_{3} \\
\sum x_{1} x_{2} & \sum x_{2}^{2} & \sum x_{2} x_{3} \\
\sum x_{1} x_{3} & \sum x_{2} x_{3} & \sum x_{3}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
10 & 10 & 5 \\
10 & 30 & 15 \\
5 & 15 & 20
\end{array}\right],
$$

and

$$
x^{\prime} y=\left[\begin{array}{l}
\sum x_{1} y \\
\sum x_{2} y \\
\sum x_{3} y
\end{array}\right]=\left[\begin{array}{c}
7 \\
-7 \\
-26
\end{array}\right] .
$$

Thus

$$
b=\left[\begin{array}{ccc}
10 & 10 & 5 \\
10 & 30 & 15 \\
5 & 15 & 20
\end{array}\right]^{-1}\left[\begin{array}{c}
7 \\
-7 \\
-26
\end{array}\right]=\left[\begin{array}{c}
1.4 \\
0.2 \\
-1.8
\end{array}\right]
$$

Next, the RSS are given by

$$
\mathrm{RSS}=e^{\prime} e=(y-x b)^{\prime} e=y^{\prime} e-b^{\prime} x^{\prime} e=y^{\prime} e
$$

and

$$
y^{\prime} e=y^{\prime}(y-x b)=y^{\prime} y-y^{\prime} x b=y^{\prime} y-b^{\prime} x^{\prime} y=60-55.2
$$

since

$$
b^{\prime} x^{\prime} y=\left[\begin{array}{lll}
1.4 & 0.2 & -1.8
\end{array}\right]\left[\begin{array}{c}
7 \\
-7 \\
-26
\end{array}\right]=55.2
$$

and $y^{\prime} y=\sum y^{2}=60$.
Thus, it follows that

$$
s^{2}=\frac{\mathrm{RSS}}{n-k}=\frac{4.8}{20}=0.24 .
$$

Finally, the variance-covariance matrix of the three estimates is

$$
s^{2}\left(x^{\prime} x\right)^{-1}=0.24\left[\begin{array}{ccc}
0.15 & -0.05 & 0 \\
-0.05 & 0.07 & -0.04 \\
0 & -0.04 & 0.08
\end{array}\right] .
$$

Testing the hypothesis $\beta_{1}=1$ gives:

$$
t=\frac{b_{1}-1}{\mathrm{SE}\left(b_{1}\right)}=\frac{0.4}{\sqrt{0.24 \times 0.15}}=2.108
$$

Problem Set 5.

Question 4.
The relationship between the β 's and the α 's is:

$$
\beta_{2}=\alpha_{2}+\beta_{3}, \beta_{3}=\alpha_{3} \Rightarrow \beta_{2}=\alpha_{2}+\alpha_{3} .
$$

Testing the hypothesis that $\beta_{2}=0$ (average speed has no effect on fatalities) gives:

$$
t=\frac{\left(\alpha_{2}+\alpha_{3}\right)}{\sqrt{\operatorname{var}\left(\alpha_{2}+\alpha_{3}\right)}}=\ldots=-0.226
$$

It is insignificant so we accept the null.

