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Abstract

This paper examines some of the statistical properties of exponential ACD models. To allow for non-
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1 Introduction

Engle and Russell (1998) propose a new econometric framework for the modelling of

intertemporally correlated event arrival times, termed the Autoregressive Conditional

Duration (ACD) model. A feature of Engle and Russell’s linear ACD specification with

exponential or Weibull errors is that the implied conditional hazard functions (CHF)

are restricted to being either constant, increasing or decreasing. Zhang, Russell and

Tsay (2001), Hamilton and Jorda (2002) and Bauwens and Veredas (2004) questioned

whether this assumption is an adequate one. As an alternative to the Weibull distri-

bution used in the original ACD model, Lunde (1999) employs a formulation based

on the generalized Gamma (GG) distribution, while Grammig and Maurer (2000) and

Hautsch (2001) utilize the Burr and generalized F (GF) distributions respectively.

The last ten years or so, several extensions to Engle and Russell’s (1998) basic

process have been proposed. Bauwens, Giot, Grammig and Veredas (2004) and Pacurar

(2008) review several duration models that have been proposed in the literature.1Lunde

(1999) and Bauwens and Giot (2000, 2001a) model the effect of recent durations on the

conditional mean with a logarithmic transformation. We call this model exponential

ACD (EACD) because of its resemblance to Nelson’s EGARCH model (Nelson, 1991).2

Giot (2001) uses it to obtain a direct estimate of the intraday volatility for the IBM

stock traded on the NYSE,. Dufour and Engle (2000) suggest a version of it which

allows for an asymmetric response to innovation shocks. The exponential formulation

avoids some of the parameter restrictions postulated by the original ACD specification.

The objective of this paper is to investigate some of the statistical properties of two

versions of the EACD specification, which allow us to obtain analytically the uncon-

ditional moments implied by the model. In addition, since Engle and Russell (1998)

find that the Weibull distribution suffers from remaining excess dispersion we use two

alternative distributions which include the Weibull as a special case: the GF and the

GG.3 For the aforementioned models we provide existence conditions of the second mo-

ments of the durations. We also derive analytical expressions for the autocorrelation

function (ACF) of the durations.4 Bauwens and Giot (2001a) and Bauwens, Galli and

1Recent contributions include Grammig and Wellner (2002), Bauwens and Giot (2003), Li and Wu
(2003), Feng, Jiang and Song (2004), Fernandes (2004), Ghysels, Gouriéroux and Jasiak (2004), Focardi
and Fabozzi (2005), Giot (2005), Fernandes, Medeiros and Veiga (2006) and Meitz and Teräsvirta
(2006).

2This model is termed logarithmic ACD(LACD) by Bauwens and Giot (2000).
3Details on the properties of this distribution can also be found in Bauwens and Giot (2001b).
4He, Teräsvirta and Malmsten (2002), Demos (2002) and Karanasos and Kim (2003) studied the

moment structure of exponential GARCH models. Karanasos, Psaradakis and Sola (2003) examined
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Giot (2008) also provide analytical expressions for the unconditional moments and ACF

for the models belonging to the EACD class as defined in Bauwens and Giot (2000).

We should also mention that Carrasco and Chen (2002) provide sufficient conditions

to ensure β-mixing and finite higher order moments for various linear and nonlinear

GARCH, stochastic volatility, and ACD models. To facilitate model identification, the

results for the ACF of the durations can be applied so that properties of the observed

data can be compared with the theoretical properties of the models. The significance

of our results extends to the development of misspecification tests and estimation.

The rest of the paper is organized as follows. Section 2 briefly reviews the ACD

model of Engle and Russell (1998) and considers the properties of the GG and GF

distributions. Section 3 provides a detailed description of the EACDmodel. In addition,

it derives the ACF of the durations for its various versions. Section 4 concludes the

paper. The proofs are relegated to the Appendix.

2 The ACD Model

Consider a stochastic point process that is simply a sequence of arrival times {t0, t1,...,

tN , . . .} with 0 = t0 < t1 < · · · < tN < · · · . Duration (xi) is the time elapsed between
two consecutive arrival times, i.e. xi = ti − ti−1, i = 1, 2, . . ..

The ACD model of Engle and Russell (1998) specifies the observed duration as a

mixing process

xi = ψiεi, (1)

where {εi}, εi ≥ 0 ∀ i, is a sequence of independent and identically distributed random
variables with density ξ(�i;φ) , ξ(εi) (where φ is a vector of parameters) and mean

equal to one, and ψi denotes the conditional expectation of the ith duration. That is

ψi , ψi(xi−1, . . . , x1; θ) = E(xi|Ii−1),

where Ii−1 denotes the conditioning information set generated by the durations preced-

ing xi and θ is a vector of parameters.

The flexibility of the model (1) lies in the rich host of candidates for the specification

of the dynamic structure of ψi as well as the conditional density ξ.

the dependence structure of long-memory GARCH processes. To capture the long range time depen-
dence in intertrade durations Jasiak (1998) proposes the fractionally integrated ACD (FIACD) model.
A similar structure that captures the long-term dependencies in the duration series is the long-memory
ACD (LMACD) introduced by Karanasos (2001, 2004).
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Following Engle and Russell (1998), we express the conditional density of xi as

g(xi, ψi;φ) , g(xi) =
1

ψi

ξ

µ
xi
ψi

¶
. (2)

The above specification can be generalized in many ways. The hazard functions can be

given many parametric shapes. ACD formulations with exponential or Weibull errors

imply that the CHF must either increase, decrease or stay constant during a time-spell.

Grammig and Maurer (2000) investigate whether the restrictions concerning the CHF

can imperil the successful application of ACD models. In a simulation study they show

that the quasi maximum likelihood estimators of the basic ACD process tend to be

biased and inefficient when the true data generating process required non-monotonic

hazard functions. In addition, bias and inefficiency also affected the estimators of

the parameters that were needed to predict expected durations. This entails severe

consequences for the class of GARCH processes for irregularly spaced data, recently

introduced by Engle (2000) and Ghysels and Jasiak (1998), in which ACD models

are employed to predict conditional expected durations that enter the conditional het-

eroskedasticity equation in the form of explanatory variables (abstracted from Grammig

and Maurer, 2000).

Lunde (1999) and Grammig and Maurer(2000) -who use ACD models with GG and

Burr errors respectively- find that for price duration processes of NYSE traded stocks

non-monotonic shapes of the hazard functions are indicated. Both studies, using stan-

dard likelihood ratio tests, reject the exponential and Weibull ACD specifications in

favor of the GG and Burr ACD formulations respectively. Accordingly, in what follows

we examine two three/two-parameter general distributions that include as special or

limiting cases many distributions considered in econometrics and finance. Expressions

are reported that facilitate analysis of hazard functions, other distributional character-

istics and parameter estimation.

2.1 The Generalized F Distribution

First, we examine the GF distribution. This is a particularly useful family of distrib-

utions, which includes among others the Burr type 12, the Lomax, the Fisk, and the

folded t. Its density is given by

ξ(εi) =
aεap−1i qqϕaq

B(p, q)(qϕa + εai )
p+q

, (3)
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where B(·, ·) is the beta function, a > 0, and the parameter ϕ is merely a scale para-

meter. Further, if the ϕ coefficient is

ϕ =
B(p, q)

q
1
aB
¡
p+ 1

a
, q − 1

a

¢ ,
then εi has mean equal to one. The GF distribution has integer moments of order

up to ‘μ’ where -p < μ
a
< q (see McDonald and Richards, 1987a). In a recent paper

Hautsch (2006) uses the GF distribution, which allows for a wide range of possible

hazard shapes. For volume durations he found that it provides a significantly better

fit than the exponential distribution. The mathematical expression for the CHF of the

GF distribution is given in McDonald and Richards (1987b).

The conditional density of xi can be written as

g(xi) =
axap−1i qq(ϕψi)

aq

B(p, q)[q(ϕψi)
a + xai ]

p+q
.

Using the above expression we can write the log-likelihood function of the observations

xi, i = 1, . . . , N as

L =
NX
i=1

ln[g(xi)] = c+
NX
i=1

{(ap− 1)ln(xi) + aqln(ψi)− (p+ q)ln [q(ϕψi)
a + xai ]},

where

c = N{ln(a) + qln(q) + aqln(ϕ)− ln[B(p, q)]}.

2.2 The Generalized Gamma Distribution

In this subsection we examine the GG distribution. This is a particularly useful family

of distributions, which includes among others the Weibull, the generalized Rayleigh,

the Rayleigh, the exponential, and the half normal. Its density is given by

ξ(εi) =
aεap−1i e−(

εi
ϕ )

a

ϕapΓ(p)
, (4)

where Γ(·) denotes the gamma function and the parameter ϕ is merely a scale parameter.
In order to normalize the mean to be equal to one, the ϕ coefficient should be

ϕ =
Γ(p)

Γ(p+ 1
a
)
.
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The GG distribution has defined moments of order ‘μ’, where μ
a
+p > 0. Consequently,

for a > 0, moments of positive integer order are defined. The CHF for the GG function

is examined in Glaser (1980). Lunde (1999), using a GG specification, finds that the

inverted U-shaped form is strongly supported by the data. As documented by Bauwens

and Veredas (2004) the hazard function of several types of financial durations may be

increasing for small durations and decreasing for long durations. To account for this

stylized fact, Bauwens, Giot, Grammig and Veredas (2004), used the GG distribution,

which has two shape parameters and breaks the one-to-one correspondence between the

properties of overdispersion (underdispersion) and of decreasing (increasing) hazard.

Moreover, the conditional density of xi can be written as

g(xi) =
axap−1i e

− xi
ϕψi

a

(ϕψi)
apΓ(p)

.

The log-likelihood function for the generalised Gamma ACD (GG-ACD) model is

L = c+
NX
i=1

(
(ap− 1)ln(xi)−

Ã
xiΓ

¡
p+ 1

a

¢
ψiΓ(p)

!a

− apln(ψi)

)
,

with

c = N

½
ln(a)− (1 + ap)ln[Γ(p)] + apln

∙
Γ

µ
p+

1

a

¶¸¾
.

Lunde (1999) applies the GG-ACDmodel to a random sample consisting of seven stocks

from the fifty stocks with the highest capitalization value on the NYSE. He finds that the

suggested generalization outperformed the formulation employed by Engle and Russell

(1998).

3 Exponential ACD Models

The ACD model is closely related to the GARCH specification and shares some of its

features. Just as the simple GARCH formulation is often a good starting point, the

simplest version of the ACD model seems like a natural starting point. However, as

there are many alternative volatility models, there is a rich host of candidates for the

dynamic specification of the conditional duration. Such formulations include models

analogous to long-memory, exponential and many other GARCHmodels as possibilities.

Fernandes and Grammig (2005) and Hautsch (2006) present a classification of different

types of ACD models.
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One limitation of the linear ACD formulation results from the non-negativity con-

straints on the parameters which are imposed to ensure that ψi remains non-negative for

all i. These constraints imply that an increasing f(εi) in any period increases ψi+j for

all j ≥ 1, ruling out oscillatory behavior in the ψi process. Alternatively, one can use a

model in which the logarithm of the conditional duration follows an ACD-like process.

This is analogous to Nelson’s (1991) EGARCH model for the conditional variance.

Consider the following EACD(n,m) process

B(L)ln(ψi) = ω + C(L)f(εi), (5)

with

B(L) = 1−
nX

j=1

βjL
j =

nY
j=1

(1− λjL),

C(L) =
mX
s=1

csL
s.

Note that λj is the reciprocal of the jth root of the autoregressive polynomial B(L).

We also assume that βn and cm are both not equal to zero.

We will call the specifications in the class where

f(εi) = ln(εi), (6)

and the innovations εi follow the GG distribution, GG-EACD1. When the conditional

distribution of the durations is the GF, these models will be called GF-EACD1.

Furthermore, models in the class where

f(εi) = εai , (7)

and the innovations are drawn from the GG distribution,5 will be called GG-EACD2.

Bauwens and Giot (2000) propose a version of the EACD2 model, with f(εi) = εi

and Weibull errors, under the name logarithmic ACD. Bauwens and Giot (2000) apply

this ACD specification to price durations relative to the bid-ask quote process of three

securities listed on the NYSE. Lunde (1999), using duration data for seven stocks traded

on the NYSE, estimates a version of the GG-EACD2(1,1) model with f(εi) = εi. Giot

(2000) uses an EACD(1,1) model to compute the Value-at-Risk for three stocks traded

5In equation (7) a is one of the parameters of the GG distribution (see equation (4)).
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on the NYSE. Bauwens and Giot (2001a), using duration data for several stocks traded

on the NYSE, estimate EACD(1,1) models with an exponential distribution for the

error term.

3.1 Moments of Exponential ACD Models

Durations between stock market events are often characterized by overdispersion. An-

other important stylized fact is the shape of the ACF of the durations, which usually

decreases slowly from a relatively low positive first-order autocorrelation. It is essential

that, for some parameter values, the ACD models can accommodate such stylized facts.

In the light of this, it is important (a) to know whether the general shape of the sample

autocorrelations is captured by the estimated model and (b) to find the specification for

which the estimated theoretical ACF is closest to the ACF of the data and, therefore,

has the best fit as far as the ACF is concerned. To gain further insight into how well an

ACD formulation fits the data we need to check whether the unconditional moments

computed from the analytical formulae are in line with the empirical ones. Therefore,

analytical results on the moments and autocorrelations of the durations for the EACD

models can indicate whether these specifications provide a better alternative to the

standard ACD process.

Assumption 1. The polynomials B(L) and C(L) in equation (5) have no common roots.

Assumption 2. B(z) = 0 and C(z) = 0 have no roots in the closed disc {z : |z| ≤ 1}.
In what follows we only examine the case where the roots of the autoregressive

polynomial B(L) are distinct. In order to simplify the description of our analysis we

will introduce the following notation: δ(l) = δl.

Lemma 1 Under assumptions 1 and 2, the μth power of the duration for the EACD

model in equations (1) and (5) can be expressed as

xμi = e
μω
B(1) εμi

∞Y
l=1

[eμlf(εi−l)] (μ ∈ R+), (8)

with
μl , μ(l) = μδl = μ

nX
j=1

ζjzjl,

and

ζj =
λn−1jQn

f=1,f 6=j(λj − λf)
,

zjl =

( Pl−1
r=0 cl−rλ

r
j , if l ≤ m,

zjmλ
l−m
j , if l > m

,
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where cs, λj are defined in equation (5).

Lemma 2 Let assumptions 1 and 2 hold. Suppose further that E(ε2μi ), E(e
2μlf(εi)), and

E(εμi e
μlf(εi)) are finite for all l. Then the 2μth moment of the duration and the kth

(k ∈ N) autocorrelation of the μth power of the duration, ρk(x
μ
i ), for the ACD model

in equations (1) and (5), have the form

E(x2μi ) = e
2μω
B(1)E(ε2μi )

∞Y
l=1

[E(e2μlf(εi−l))], (9)

ρk(x
μ
i ) = E(εμi )

(
E[εμi−ke

μkf(εi−k)]
k−1Y
r=1

[E(eμrf(εi−r))]
∞Y
l=1

[E(e(μk+l+μl)f(εi−k−l))]

− E(εμi )
" ∞Y
l=1

[E(eμlf(εi−l))]

#2⎫⎬⎭ ·⎧⎨⎩E(ε2μi )
∞Y
l=1

£
E(e2μlf(εi−l))

¤
− [E(εμi )]2

" ∞Y
l=1

[E(eμlf(εi−l))]

#2⎫⎬⎭
−1

, (10)

where
0Q

r=1

[·] = 1.

Remark 1. For the practical computation of the moments in lemma 2 , the infinite

products that appear in equations (9)-(10) can be truncated after a sufficiently large

number of terms since μl tends to zero. In practice, we found that for first and second

moments, truncation after 1000 terms was more than sufficient to get a high accuracy

(see also Bauwens and Giot, 2001a and Bauwens, Galli and Giot, 2008).

The 2μth moment and the kth autocorrelation of the duration, for the EACD mod-

els, have been independently obtained by Bauwens, Galli and Giot (2008) (see also

Bauwens and Giot, 2001a). When considering the EACD(n,m) model in equation

(5), theorems 1 and 2 in Bauwens, Galli and Giot (2008) and equations (9)-(10) are

equivalent.

Fernandes and Grammig (2006) propose an EACD model with f(εi) = [|εi − b| +
γ(εi− b)]υ, under the name asymmetric Box-Cox ACD (ABC-ACD). This specification

provides a flexible functional form that permits the logarithm of the conditional duration

to respond in distinct manners to small and large shocks. For the ABC-ACD(1,1)

process they report expressions for the 2μth moment and kth autocovariance of the

duration which are similar to our equations (9)-(10).

Next, recall that B(·, ·) indicates the beta function and p, q, a are the parameters of
the GF distribution (see equation (3)).
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Theorem 1 Suppose that assumptions 1 and 2 hold and that both 2μ
a
,2μl
a
∈ (−p, q).

Then the 2μth moment of the duration and the kth autocorrelation of the μth power

of the duration, for the GF-EACD1(n,m) model in equations (1), (3) and (5)-(6), are

given by

E(x2μi ) = e
2μω
B(1)B2μ

∞Y
l=1

(B2μl), (11)

ρk(x
μ
i ) =

Bμ

n
Bμ+μk

Qk−1
r=1(Bμr)

Q∞
l=1(Bμk+l+μl)−Bμ

£Q∞
l=1(Bμl)

¤2o
B2μ

Q∞
l=1(B2μl)− (Bμ)2

£Q∞
l=1(Bμl)

¤2 , (12)

with

Bμl , B(μl) =
[B(p, q)](μl−1)B

¡
p+ μl

a
, q − μl

a

¢£
B
¡
p+ 1

a
, q − 1

a

¢¤μl ,

where μl is defined in lemma 1.

To illustrate the preceding general theory we consider the EACD1(1,1) process when

the distribution of the innovations is either Lomax or Fisk. These models will be called

Lomax EACD1 (L-EACD1) and Fisk EACD1 (F-EACD1) respectively. In these cases

μl = μcβl−1, where c = c1, β = β1. We have the following corollaries.

Corollary 1a For the F-EACD1(1,1) model, with a = 4 and |c|, |β| < 1, the kth

autocorrelation of the duration is given by equation (12) with

Bμl =
Γ
¡
1 + μl

4

¢
Γ
¡
1− μl

4

¢£
Γ
¡
5
4

¢
Γ
¡
3
4

¢¤μl , μl = cβl−1.

Proof. The proof follows from theorem 1, by setting p = q = μ = 1, a = 4 and

μl = cβl−1. ¥
Corollary 1b For the L-EACD1(1,1) model, with q = 3, −0.50 < c < 1 (c 6= 0),

|β| < 1 and −0.50 < cβ, the kth autocorrelation of the duration is given by equation

(12) with

Bμl = Γ(1 + μl)Γ(3− μl)2
(μl−1), μl = cβl−1.

Proof. The proof follows from theorem 1, by setting p = a = μ = 1, q = 3 and

μl = cβl−1. ¥
Figures 1 and 2 plot the theoretical ACF of the duration of the above processes

with (c, β) ∈ {(0.05, 0.995), (0.80, 0.995), (0.05, 0.98), (0.80, 0.98)} (we used Maple to
evaluate the autocorrelations).
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Figure 1
Autocorrelation function of xi for F-EACD1(1,1), a = 4

c = 0.05, β = 0.995. c = 0.80, β = 0.995.

c = 0.05, β = 0.98. c = 0.80, β = 0.98.

Figure 2
Autocorrelation function of xi for L-EACD1(1,1), q = 3

c = 0.05, β = 0.995. c = 0.80, β = 0.995.

c = 0.05, β = 0.98. c = 0.80, β = 0.98.
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Next, recall that Γ(·) indicates the gamma function and p, a are the parameters of

the GG distribution (see equation (4)). We have the following theorem.

Theorem 2 Let assumptions 1 and 2 hold and 2μ
a
, 2μl

a
> −p. Then the 2μth moment

of the duration and the kth autocorrelation of the μth power of the duration, for the

GG-EACD1(n,m) model in equations (1) and (4)-(6), are given by

E(x2μi ) = e
2μω
B(1)Γ2μ

∞Y
l=1

(Γ2μl), (13)

ρk(x
μ
i ) =

Γμ
n
Γμ+μk

Qk−1
r=1(Γμr)

Q∞
l=1(Γμk+l+μl)− Γμ

£Q∞
l=1(Γμl)

¤2o
Γ2μ

Q∞
l=1(Γ2μl)− (Γμ)2

£Q∞
l=1(Γμl)

¤2 , (14)

with

Γμl , Γ(μl) =
Γ
¡
p+ μl

a

¢
[Γ(p)](μl−1)

[Γ
¡
p+ 1

a

¢
]μl

,

where μl is defined in lemma 1.

To illustrate the general result we consider the EACD1(1,1) process with innovations

that are drawn from either the Rayleigh or the exponential distribution. These mod-

els will be called Rayleigh EACD1 (R-EACD1) and exponential EACD1 (E-EACD1)

respectively. In these cases μl = μcβl−1. We have the following corollaries.

Corollary 2a For the R-EACD1(1,1) model satisfying |c|, |β| < 1, the kth autocorre-

lation of the duration is given by equation (14) with

Γμl =
Γ
¡
1 + μl

2

¢£
Γ
¡
3
2

¢¤μl , μl = cβl−1.

Proof. The proof follows from theorem 2, by setting p = μ = 1, a = 2 and μl = cβl−1.

¥
Corollary 2b For the E-EACD1(1,1) model satisfying −0.50 < c < 1 (c 6= 0), |β| < 1
and −0.50 < cβ the kth autocorrelation of the duration is given by equation (14) with

Γμl = Γ(1 + μl), μl = cβl−1.

Proof. The proof follows from theorem 2, by setting p = a = μ = 1, and μl = cβl−1.

¥
For the E-EACD1(1,1) model Bauwens and Giot (2001a) illustrate the variation of

ρ1(xi) as a function of c (from 0 to 0.20) and β (from 0.80 to 0.98).

Figures 3 and 4 plot the theoretical ACF of the duration of the above processes with

(c, β) ∈ {(0.05, 0.995), (0.80, 0.995), (0.05, 0.98), (0.80, 0.98)}.
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Figure 3.
Autocorrelation function of xi for R-EACD2(1,1)

c = 0.05, β = 0.995. c = 0.80, β = 0.995.

c = 0.05, β = 0.98. c = 0.80, β = 0.98.

Figure 4
Autocorrelation function of xi for E-EACD2(1,1)

c = 0.05, β = 0.995. c = 0.80, β = 0.995.

c = 0.05, β = 0.98. c = 0.80, β = 0.98.
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Theorem 3 Suppose that assumptions 1 and 2 hold and 2μ
a
> −p, 2μl < ϕ−a. Then

the 2μth moment of the duration and the kth autocorrelation of the μth power of the

duration, for the GG-EACD2(m,n) model in equations (1), (4)-(5) and (7), are given

by

E(x2μi ) = e
2μω
B(1)Γ2μ

∞Y
l=1

(∆2μl), (15)

ρk(x
μ
i ) =

Γμ
n
∆μ,μk

Qk−1
r=1(∆μr)

Q∞
l=1(∆μk+l+μl)− Γμ

£Q∞
l=1(∆μl)

¤2o
Γ2μ

Q∞
l=1(∆2μl)− (Γμ)2

£Q∞
l=1(∆μl)

¤2 , (16)

with

∆μ,μk , ∆(μ, μk) =
Γ
¡
p+ μ

a

¢
[Γ(p)](μ−1)[Γ

¡
p+ 1

a

¢
]pa©£

Γ(p+ 1
a
)
¤a − μk[Γ(p)]

a
ª(p+μ

a )
,

∆μl , ∆(μl) =
[Γ
¡
p+ 1

a

¢
]pa©£

Γ(p+ 1
a
)
¤a − μl[Γ(p)]

a
ªp ,

where μl, and Γμ are defined in lemma 1 and theorem 2 respectively, and p, a are the

parameters of the GG distribution.

As an illustration we consider the GG-EACD2(1,1) model. Let Φ be the basic

hypergeometric series denoted by 1Φ0(b; d, z) =
P∞

j=0
(b;d)j
(d;d)j

zj, where (b; d)j is the d-

shifted factorial.

Corollary 3a For the GG-EACD2(1,1) model satisfying |β| < 1,−1 < c < ϕ(−a)

2μ
(c 6= 0)

and cβ < ϕ(−a)

2μ
the kth autocorrelation of the μth power of the duration is given by

ρk(x
μ
i ) =

Γμ
n
∆μ,μk

£
1Φ0(β

k−1; β, c∗)
¤p
[1Φ0(0;β, ck)]

p − Γμ [1Φ0(0;β, c
∗)]p
o

Γ2μ [1Φ0(0;β, 2c∗)]
p − (Γμ)2 [1Φ0(0;β, c∗)]2p

, (17)

with

c∗ =
cμ [Γ(p)]a£
Γ(p+ 1

a
)
¤a , ck , c(k) = c∗(1 + βk), μl = μcβl−1,

where Γμ and ∆μ,μkare defined in lemma 1 and theorem 3 respectively.

Proof. The proof follows from theorem 3, by setting μl = μcβl−1. ¥
As a further illustration we consider the R-EACD2 and E-EACD2 processes of order

(1,1). We have the following corollaries.

Corollary 3b For the R-EACD2(1,1) model satisfying |β| < 1, −1 < c < 0.393

(c 6= 0), cβ < 0.393 the kth autocorrelation of the duration is given by equation (17),
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with p = μ = Γμ = 1 and

∆1,μk =
1

{1− 1.273μk}
3
2

, c∗ = 1.273c.

Proof. The proof follows from corollary 3a, by setting p = μ = 1, and a = 2. ¥
Figure 5 plots the theoretical ACF of the duration of the above process with (c, β) ∈

{(0.05, 0.995), (0.30, 0.995), (0.05, 0.98), (0.30, 0.98)}.

Figure 5
Autocorrelation function of xi for R-EACD2(1,1)

c = 0.05, β = 0.995. c = 0.30, β = 0.995.

c = 0.05, β = 0.98. c = 0.30, β = 0.98.

Corollary 3c For the E-EACD2(1,1) model satisfying |β| < 1, −1 < c < 0.50 (c 6= 0)
and cβ < 0.50 the kth autocorrelation of the duration is given by equation (17), with

p = μ = Γμ = 1 and

∆1,μk =
1

(1− μk)
2
, c∗ = c.

Proof. The proof follows from corollary 3a, by setting p = a = μ = 1. ¥
For the E-EACD2(1,1) model Bauwens and Giot (2001a) illustrate the variation of

ρ1(xi) as a function of c (from 0 to 0.20) and β (from 0.80 to 0.98).
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Figure 6 plots the theoretical ACF of the duration of the above process with (c, β) ∈
{(0.05, 0.995), (0.40, 0.995), (0.05, 0.98), (0.40, 0.98)}.

Figure 6
Autocorrelation function of xi for E-EACD2(1,1)

c = 0.05, β = 0.995. c = 0.40, β = 0.995.

c = 0.05, β = 0.98. c = 0.40, β = 0.98.

For all the models in corollaries 1-3 the parameters c and β control the decay of the

theoretical autocorrelation function. We have the following remarks.

Remark 2a. In all cases it is seen that the autorrelations start higher and decrease more

rapidly when the value of c is high than when it is low.

Remark 2b. In all cases, when the value of c is low, the model based autocorrelations

seem to start higher and decrease more slowly when the value of β is high than when

it is low.

Remark 2c. In all cases, when the value of c is high, it is seen that the autocorrelations

start higher and decrease faster when the value of β is high than when it is low.

Until the present contribution and the papers by Bauwens and Giot (2001a), and

Bauwens, Galli and Giot (2008), the unconditional moments implied by the logarith-

mic(exponential) ACDmodels were not available analytically. Bauwens and Giot (2000)

relied therefore on numerical simulations to compute these moments.
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4 Conclusions

This paper has provided a detailed description of the various EACD models. We

also investigated the properties of the GG and GF distributions, which allow for non-

monotonic hazard functions. For all ACD specifications we derived analytical expres-

sions of the ACF of the durations. Conditions for the existence of the first two moments

of the durations were also established. The derivation of the autocorrelations of the

durations and their comparison with the corresponding sample equivalents will help

the investigator (a) to decide which is the most appropriate method of estimation (e.g.

maximum likelihood estimation, minimum distant estimator) for a specific model, (b)

to choose, for a given estimation technique, the model (e.g. LMACD, EACD1, EACD2)

that best replicates certain stylized facts about the data and, (c) in conjunction with the

various model selection criteria, to identify the optimal order of the chosen specification.

Appendix

Proof. [Lemma 1] The logarithm of ψi in equation (5) can be expressed as an infinite

distributed lag of f(εi) terms:

ln(ψi) =
ω

B(1)
+

C(L)

B(L)
f(εi).

The above expression can be written as

ln(ψi) =
ω

B(1)
+

∞X
l=1

δlf(εi−l), (A.1)

where

δl =
nX

j=1

ζjzjl,

with

ζj =
λn−1jQn

f=1,f 6=j(λj − λf)
,

zjl ≡
( Pl−1

r=0 cl−rλ
r
j , if l ≤ m,

zjmλ
l−m
j , if l > m

.
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From equation (A.1) it follows that

ψi = e
ω

B(1)

∞Y
l=1

[eδlf(εi−l)].

Raising both sides of the above equation to power μ and using the fact that xμi = ψμ
i ε

μ
i

yields equation (8). ¥
Proof. [Lemma 2] Rewriting (8) we have

xμi = e
μω
B(1) εμi

∞Y
l=1

[eμlf(εi−l)], (A.2a)

or

xμi−k = e
μω
B(1) εμi−k

∞Y
l=1

[eμlf(εi−k−l)], (A.2b)

where μl = μδl.

Multiplying equation (A.2a) by (A.2b) and taking expectations yields

E(xμi x
μ
i−k) = e

2μω
B(1)E(εμi )E(ψ

μ
i ε

μ
i−kψ

μ
i−k) =

= e
2μω
B(1)E(εμi )E

£
εμi−ke

μkf(εi−k)
¤ k−1Y
r=1

[E(eμrf(εi−r))]
∞Y
l=1

[E(e(μk+l+μl)f(εi−k−l))].

Using the above expression and the fact that ρk(x
μ
i ) =

E(xμi x
μ
i−k)−[E(x

μ
i )]

2

E(x2μi )−[E(xμi )]2
we obtain equa-

tion (10). ¥
Proof. [Theorem 1] Recall that for the EACD1 model, we have

f(εi) = ln(εi). (A.3)

In addition, the μth moment for the GF distribution is

E(εμi ) =
B(p+ μ

a
, q − μ

a
)B(p, q)μ−1

B
¡
p+ 1

a
, q − 1

a

¢μ ∀ i, (A.4)

where p, q and a are the parameters of the GF distribution (see equation (3)). Inserting

equations (A.3)-(A.4) into equations (9)-(10) yields equations (11)-(12). ¥
Proof. [Theorem 2] When the innovations {εi} are drawn from the GG distribution, we
have

E(εμi ) =
Γ(p+ μ

a
)Γ(p)μ−1

Γ
¡
p+ 1

a

¢μ ∀ i, (A.5)
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where p and a are the parameters of the GG distribution (see equation (4)). Inserting

equations (A.3) and (A.5) into equations (9)-(10) yields equations (13)-(14). ¥
Proof. [Theorem 3] Recall that for the GG-EACD2 model, we have

f(εi) = εai , (A.6)

where a is one of the parameters of the GG distribution. Further, by direct computation

we obtain

E(εμi e
μkε

a
i ) =

Γ(p+ μ
a
)[Γ(p)](μ−1)

£
Γ
¡
p+ 1

a

¢¤pa©£
Γ
¡
p+ 1

a

¢¤a − μk[Γ(p)]
a
ª(p+μ

a )
∀ i. (A.7)

Note that equation (A.7), when μk = 0, gives equation (A.5). Inserting equations

(A.5)-(A.7) into equations (9)-(10) yields equations (15)-(16). ¥
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