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Abstract

The purpose of this paper is to examine the correlation structure of mixed autoregressive and mov-

ing average (ARMA) models, as discussed in Granger and Morris (1976). The technique we use to

obtain the autocorrelations is based on the Wold representation of an ARMA specification as given

in Pandit (1973) or in Karanasos (2001). We give two examples to illustrate our general results:

(i) two ARMA(2,2) processes with identical autoregressive polynomials and different moving average

ones, and (ii) two ARMA(2,1) formulations with different autoregressive and moving average polyno-

mials. The techniques in this paper can be employed to calculate the cross-correlations between the

cross-products of the residuals in multivariate nonlinear time series models, e.g. GARCH and Markov

Switching models.
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1 Introduction

The purpose of this paper is to examine the correlation structure of mixed ARMA time

series models (introduced by Yule, 1921, 1927).

The theoretical autocovariance (acv) function of the ARMA process is an important

tool in time series analysis. The calculation of the theoretical autocovariances is used

(i) to estimate ARMA formulations with conventional exact maximum likelihood (ML)

procedures (ii) to analyze the distribution of estimated ARMA parameters (Hannan,

1970) and (iii) to initialize simulations with ARMA models. The theoretical acf of

the univariate ARMA(p, q) specification has already been derived in the literature.

The autocovariances are obtained in terms of the roots of the autoregressive (AR)

polynomial and the parameters of the moving average (MA) one.

Pandit (1973, pp. 100, 141) and Pandit and Wu1 (1983, pp. 105, 129-130), derived

the acv function of the ARMA(p, q) model (when the roots of the AR polynomial are

distinct) by using its infinite moving average (ima) or Wold representation.2 Nerlove,

Grether and Carvalho (1979, pp. 39, 78-85) used the canonical factorization (cf) of

the autocovariance generating function (agf) to derive a general expression for the acf

of the ARMA(p, q) process (as an illustration they presented the acv function of the

MA(q), AR(p), and ARMA(1,1) specifications).3

Zinde-Walsh (1988) obtained the acv function of the ARMA(p, q) model by using

its standard (see for example, Priestley, 1981) spectral representation.4 She derived

expressions for both cases of simple and multiple roots of the AR polynomial. Karanasos

1Pandit and Wu (1983) examine only the case where q < p.
2They called the coefficient function in this expansion Green’s function (see Miller, 1968). What

Pandit and Wu (1983) have called Green’s function is also referred to in the literature as weighting
function (see Wiener, 1949, and Pugachev, 1957) or as ψ weights (see Box and Jenkins, 1970).
For a proof of Wold’s theorem see Wold (1938, pp. 75-89), Hannan (1970, pp. 136-137), Anderson

(1971, pp. 420-421), Sargent (1979, pp. 257-262) or Brockwell and Davis (1987, pp. 180-182); also
see Hannan (1970, pp. 157-158) for the vector case. Wold’s theorem has also been discussed by, for
example, Nerlove, Grether and Carvalho (1979, pp. 30-36), Pandit and Wu (1983, pp. 87-89), and
Reinsel (1993, p. 7).
The ima representation of the ARMA model has been discussed by, for example, Anderson (1976,

p. 44), Pandit and Wu (1983, p. 108), Granger and Newbold (1986, pp. 25-26), Brockwell and Davis
(1987, pp. 87-89), Wei (1989, p.56), Hamilton (1994, pp. 59-60), Gourieroux and Monfort (1997,
pp. 160-162); see also Mittnik (1987), Lutkepohl (1993, pp. 220-221), Reinsel (1993, pp. 33-34) or
Gourieroux and Monfort (1997, p. 252) for the vector case.

3The cf of the agf has also been discussed by, for example, Anderson (1976, p. 129), Granger and
Newbold (1986, pp. 26-27), Brockwell and Davis (1987, pp. 102-103), Wei (1989, pp. 242-243), or
Hamilton (1994, pp. 61-63); see also Brockwell and Davis (1987, p. 410) or Reinsel (1993, pp. 33-34),
for the vector case.

4For the important subject of spectral analysis see also the excellent books by Hannan (1967) and
Jenkins and Watts (1968).
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(1998) derived the acv function of the specification of order (p, q) (when the roots of the

AR polynomial are distinct) by expressing it as an AR(1) process with an ARMA(p−
1, q) error. Algorithms for computing the theoretical autocovariances for univariate

ARMA formulations have been suggested in McLeod (1975) and Tunnicliffe Wilson

(1979).

This paper contributes to the above literature by deriving the acv function of the sum

of ARMA specifications when the roots of the AR polynomials are distinct. Granger and

Morris (1976) consider such mixed ARMA models. As most economic series are both

aggregates and are measured with error it follows that these mixed processes are often

found in practice. To facilitate model identification, the results for the autocorrelations

of the aggregate process can be applied so that properties of the observed data can be

compared with the theoretical properties of the models.

We examine three distinct cases, depending on whether the processes have identical

or different autoregressive parts and uncorrelated or correlated innovations. We obtain

our results by using the ima representation of the ARMA(p, q) model, as given in Pandit

(1973) or in Karanasos (2001).5 The autocovariances are expressed in terms of the roots

of the AR polynomials and the parameters of the MA ones. In the case of distinct roots

the results in Zinde-Walsh (1988) or Karanasos (1998) are special cases of our Theorem

1 (see Proposition 1).

2 Mixed ARMA Models

Let yt be an ARMA(p, q) process given by

Φ(L)yt = μ+Θ(L)�t, (1)

with

Θ(L) =

qX
k=0

θkL
k,

Φ(L) = −
pX
l=0

φ0lL
l =

pY
l=1

(1− φlL), φ00 = −1,

where {�t} is a sequence of identical independent distributed (i.i.d) random variables

with mean zero and finite variance σ2. Notice that, φl (l = 1, . . . , p) denotes the inverse

5Karanasos (2001) has also used the ima representation in the context of the GARCH and GARCH
in mean models.
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of the lth root of Φ(L).

Assumption 1 (Stationarity) All the roots of the AR polynomial Φ(L) lie outside
the unit circle.

Assumption 2 (Identifiability) The polynomials Φ(L) and Θ(L) are left coprime.

In other words the representation Φ(L)
Θ(L)

is irreducible.

In what follows we examine only the case where the roots of the AR polynomial Φ(L)

are distinct (φr 6= φl for r, l = 1, . . . , p , and r 6= l). Our first proposition establishes

the lag-m autocorrelation (acr) of yt, ρm(yt) =Corr(yt, yt−m), m � N.
Proposition 1. Under Assumptions 1 and 2, the acr function of yt is given by

ρm(yt) =
γm
γ0

, γm =

pX
l=1

ζ lmλlmBσ2, (2)

with

ζ lm =
φp−1+ml

pQ
r=1

(1− φlφr)
pQ

r=1
r 6=l

(φl − φr)

,

and

λlm =

qX
k=0

θ2k +
mBX
d=1

q−dX
κ=0

θκθκ+d(φ
d
l + φ−dl ) +

qX
d=mB+1

q−dX
κ=0

θκθκ+d(φ
d
l + φd−2ml ),

where mB = min(m, q).6

Proof. See Appendix A.

By considering the model generating the sum of two or more series, Granger and

Morris (1976) have shown that the mixed ARMA model is the one most likely to occur.

They mentioned that “two situations where series are added together are of particular

interpretational importance. The first is where series are aggregated to form some total,

and the second one is where the observed series is the sum of the true process plus an

observational error. Most of the macroeconomic series, such as GNP, unemployment or

exports are aggregates. Virtually any macroeconomic series, other than certain prices or

interest rates, contain important observation errors.” Accordingly the following analysis

6Zinde Victoria Walsh (1988) derived the above result (eq. 2) by using the standard (see for
example, Priestley, 1981) spectral representation for the acv function of a stationary ARMA process
whereas Karanasos (1998) derived the same result by expressing the ARMA(p,q) model as an AR(1)
process with an ARMA(p-1,q) error. Zinde-Walsh’s formula is general as it is not restricted to the
case of distinct roots.
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of the acv function of the sum of ARMA processes can be a useful tool for the applied

economist.

Next, we consider the situation where the stochastic process yt is a simple linear

aggregate of n processes yit, i.e.,

yt =
nX
i=1

yit. (3)

Each individual process yit is assumed to be an ARMA(p, qi) model satisfying

Φ(L)yit = μi +Θi(L)�it, (4)

with

Θi(L) =

qiX
k=0

θikL
k,

where Φ(L) is defined by equation (1). Further, we assume that the innovation vector

²t = [�it]i=1,...,n is i.i.d with mean vector zero and diagonal (positive definite) covariance

matrix Σ = diag{σ} where σ = [σii]i=1,...,n.
Assumption 3 (Identifiability) The polynomials Φ(L) and Θi(L), i = 1, . . . , n,

are left coprime. In other words the representation Φ(L)
Θi(L)

is irreducible.

Proposition 2. Let Assumptions 1 and 3 hold. The acr function of yt is given by

ρm(yt) =
γm
γ0

, γm =
nX
i=1

pX
l=1

ζ lmλil,mB
i
σii, m � N, (5)

with

λil,m =

qiX
k=0

θ2ik +

mB
iX

d=1

qi−dX
κ=0

θiκθiκ+d(φ
d
l + φ−dl ) +

qiX
d=mB

i+1

qi−dX
κ=0

θiκθiκ+d(φ
d
l + φd−2ml ),

where mB
i = min(m, qi) and ζ lm is defined in equation (2).

Proof. See Appendix A.

In the proposition that follows the assumption of independence is weakened to allow

for contemporaneous correlation between the noise series.

Let yt be a simple linear aggregate of n processes yit defined by equations (3) and

(4). In addition, we assume that the (positive definite) covariance matrix Σ is given by

Σ = [σij]i,j=1,...,n.
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Proposition 3. If Assumptions 1 and 3 hold, then the acr function of yt is given by

ρm(yt) =
γm
γ0

, γm =
nX

j=1

nX
i=1

pX
l=1

ζ lmλij,lmσij, m � N, (6)

with

λij,lm =

qjX
c=0

q0iX
d=0

θidθj,d+cφ
c
l +

mB
iX

c=1

q0jX
d=0

θjdθi,d+cφ
−c
l +

qiX
c=mB

i+1

q0jX
d=0

θjdθi,d+cφ
c−2m
l ,

where q0i = min(qi, qj − c), q0j = min(qj, qi − c), and ζ lm, m
B
i are defined in equations

(2) and (5) respectively.

Proof. See Appendix A.

A potential motivation for the derivation of the results in Proposition 3 is that the

autocorrelations of the stochastic process yt in equation (3) can be used to estimate the

parameters in equation (4). The approach is to use the minimum distance estimator

(MDE), which estimates the parameters by minimizing the Mahalanobis generalized

distance of a vector of sample autocorrelations from the corresponding population au-

tocorrelations (see Baillie and Chung, 2001).

As an illustration, consider two ARMA(2,2) processes y1t and y2t

(1− φ1L)(1− φ2L)y1t = μ1 + (1 + θ11L+ θ12L
2)�1t, (7a)

(1− φ1L)(1− φ2L)y2t = μ2 + (1 + θ21L+ θ22L
2)�2t, (7b)

with "
ε1t

ε2t

#
∼ i.i.d (0,Σ), Σ =

"
σ11 σ12

σ21 σ22

#
.

Further, let assumptions 1 and 3 hold and assume that φ1 6= φ2 and Σ is positive

definite.

The cross-covariance between y1t and y2t is given by

Cov(y1t, y2t) = σ12{ φ1[1+θ11θ21+θ12θ22+(θ21+θ11θ22+θ11+θ21θ12)φ1+(θ12+θ22)φ
2
1]

(1−φ1φ2)(1−φ21)(φ1−φ2)

+φ2[1+θ11θ21+θ12θ22+(θ21+θ11θ22+θ11+θ21θ12)φ2+(θ12+θ22)φ
2
2]

(1−φ1φ2)(1−φ22)(φ2−φ1)
}.
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Moreover, the cross-covariances between the two processes, at lag one, are given by

Cov(y1t, y2,t−1) = σ12{ φ21[1+θ11θ21+θ12θ22+(θ21+θ11θ22)φ1+(θ11+θ21θ12)φ
−1
1 +θ22φ

2
1+θ12φ

0
1]

(1−φ1φ2)(1−φ21)(φ1−φ2)

+
φ22[1+θ11θ21+θ12θ22+(θ21+θ11θ22)φ2+(θ11+θ21θ12)φ

−1
2 +θ22φ

2
2+θ12φ

0
2]

(1−φ1φ2)(1−φ22)(φ2−φ1)
},

Cov(y2t, y1,t−1) = σ12{ φ21[1+θ11θ21+θ12θ22+(θ11+θ21θ12)φ1+(θ21+θ11θ22)φ
−1
1 +θ12φ

2
1+θ22φ

0
1]

(1−φ1φ2)(1−φ21)(φ1−φ2)

+
φ22[1+θ11θ21+θ12θ22+(θ11+θ21θ12)φ2+(θ21+θ11θ22)φ

−1
2 +θ12φ

2
2+θ22φ

0
2]

(1−φ1φ2)(1−φ22)(φ2−φ1)
}.

Finally, the cross-covariances between y1 and y2, at lag m (m ≥ 2), are

Cov(y1t, y2,t−m) = σ12{ φ1+m1 [1+θ11θ21+θ12θ22+(θ21+θ11θ22)φ1+(θ11+θ21θ12)φ
−1
1 +θ22φ

2
1+θ12φ

−2
1 ]

(1−φ1φ2)(1−φ21)(φ1−φ2)

+
φ1+m2 [1+θ11θ21+θ12θ22+(θ21+θ11θ22)φ2+(θ11+θ21θ12)φ

−1
2 +θ22φ

2
2+θ12φ

−2
2 ]

(1−φ1φ2)(1−φ22)(φ2−φ1)
},

Cov(y2t, y1,t−m) = σ12{ φ1+m1 [1+θ11θ21+θ12θ22+(θ11+θ21θ12)φ1+(θ21+θ11θ22)φ
−1
1 +θ12φ

2
1+θ22φ

−2
1 ]

(1−φ1φ2)(1−φ21)(φ1−φ2)

+
φ1+m2 [1+θ11θ21+θ12θ22+(θ11+θ21θ12)φ2+(θ21+θ11θ22)φ

−1
2 +θ12φ

2
2+θ22φ

−2
2 ]

(1−φ1φ2)(1−φ22)(φ2−φ1)
}.

Note that, for θ11 = θ21, θ12 = θ22 and �1t = �2t, the two processes are identical

(y1t = y2t = yt) and the above expressions give the autocovariances of the yt process.

That is

Cov(y1t, y2,t−m) = Cov(y2t, y1,t−m) = Covm(yt).

In the following theorem the assumption of identical autoregressive parts is relaxed.

We consider the stochastic process yt defined by equation (3) and we assume that

each individual process yit follows an ARMA(pi, qi) process

Φi(L)yit = μi +Θi(L)�it, (8)

with

Φi(L) = −
piX
l=0

φ0ilL
l =

piY
l=1

(1− φilL),

where Θi(L) and the innovation vector ²t = [�it]i=1,...,n are defined in equation (4).

Finally, φil (l = 1, . . . , pi) denotes the inverse of the lth root of Φi(L).

Assumption 4 (Stationarity condition) All the roots of the autoregressive poly-
nomials Φi(L), i = 1, . . . , n, lie outside the unit circle.
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Assumption 5 (Identifiability condition) The polynomials Φi(L) and Θi(L),

i = 1, . . . , n, are left coprime. In other words the representation Φi(L)
Θi(L)

is irreducible.

In what follows we examine only the case where the roots of the autoregressive

polynomial Φi(L) are distinct (φir 6= φil, for r 6= l, i = 1, . . . , n).

Theorem 1. Under Assumptions 4 and 5, the acr function of yt is

ρm(yt) =
γm
γ0

, γm =
nX

j=1

nX
i=1

(

piX
l=1

ζil,jmλij,lm +

pjX
r=1

ζjr,imλrm,ij)σij, m � N, (9)

with

ζil,jm =
ζil,m

pjQ
r=1

(1− φilφjr)

,

ζ il,m =
φpi−1+mil

piQ
r=1
r 6=l

(φil − φir)

,

and

λij,lm =

qjX
c=0

q0iX
d=0

θidθj,d+cφ
c
il +

mB
iX

c=1

q0jX
d=0

θjdθid+cφ
−c
il ,

λrm,ij =

qiX
c=mB

i+1

q0jX
d=0

θjdθid+cφ
c−2m
jr ,

where mB
i , q

0
i and q0j are defined in equations (5) and (6) respectively.

Proof. See Appendix B.

The derivation of the autocorrelations of mixed ARMA processes and their compar-

ison with the corresponding sample equivalents will help the investigator (a) to decide

which is the most appropriate method of estimation (e.g., ML estimation, MDE) for

a specific model, (b) to choose, for a given estimation technique, the model that best

replicates certain stylized facts of the data and, (c) in conjunction with the various

model selection criteria, to identify the optimal order of the chosen specification.
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As an illustration, consider two ARMA(2,1) processes

(1− φ11L)(1− φ12L)y1t = (1 + θ11L)�1t, (10a)

(1− φ21L)(1− φ22L)y2t = (1 + θ21L)�2t, (10b)

where "
ε1t

ε2t

#
∼ i.i.d (0,Σ), Σ =

"
σ11 σ12

σ21 σ22

#
.

Let assumptions 4 and 5 hold and assume that φi1 6= φi2, i = 1, 2, and Σ is positive

definite.

The cross-covariance between y1t and y2t is

Cov(y1t, y2t) = σ12{ φ11[1+θ11θ21+θ21φ11]
(φ11−φ12)(1−φ11φ21)(1−φ11φ22)

+ φ12[1+θ11θ21+θ21φ12]
(φ12−φ11)(1−φ12φ21)(1−φ12φ22)

+

+ φ221θ11
(φ21−φ22)(1−φ21φ11)(1−φ21φ12)

+ φ222θ11
(φ22−φ21)(1−φ22φ11)(1−φ22φ12)

}.

Moreover, the covariances between the two processes, at lag m (m ≥ 1), are given by

Cov(y1t, y2,t−m) = σ12{ φ1+m11 [1+θ11θ21+θ21φ11+θ11φ
−1
11 ]

(φ11−φ12)(1−φ11φ21)(1−φ11φ22)
+

φ1+m12 [1+θ11θ21+θ21φ12+θ11φ
−1
12 ]

(φ12−φ11)(1−φ12φ21)(1−φ12φ22)
},

and

Cov(y2t, y1,t−m) = σ12{ φ1+m21 [1+θ11θ21+θ11φ21+θ21φ
−1
21 ]

(φ21−φ22)(1−φ21φ11)(1−φ21φ12)
+

φ1+m22 [1+θ11θ21+θ11φ22+θ21φ
−1
22 ]

(φ22−φ21)(1−φ22φ11)(1−φ22φ12)
}.

Note that, when φ11 = φ21 = φ1, φ12 = φ22 = φ2 and θ12 = θ22 = 0 in equations (10)

and (7), respectively, the corresponding expressions for the cross-covariances are equal.

Finally, we should mention that the techniques in this paper can be employed to

calculate the cross-correlations between the cross-products of the residuals in multivari-

ate nonlinear time series models. As economic and financial variables are inter-related,

generalization of univariate formulations to the multivariate set-up is quite natural, in

particular for the GARCH models. These nonlinear processes have been widely used

in empirical applications. More specifically, they have been used by: Bollerslev, Engle

and Wooldridge (1988) for their analysis of returns, bills, bonds and stocks; Baillie and

Bollerslev (1990) to model risk premia in forward foreign exchange rate markets; Bail-

lie and Myers (1991) to estimate optimal hedge ratios in commodity markets; Kroner

and Claessens (1991) to analyze the optimal currency composition of external debt; Ng

(1991) to test the CAPM; McCurby and Morgan (1991) to test the uncovered interest
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rate parity; Karolyi (1995) to analyze stock returns; Grier and Perry (2000) to examine

the effects of real and nominal uncertainty on inflation and output growth. The exten-

sive use of these processes in modelling conditional volatility in high frequency financial

assets demonstrates the popularity of the various multivariate GARCH models (see, for

example, the excellent surveys by Shephard, 1996, and Pagan, 1996).

3 Concluding Remarks

The purpose of this paper was to examine the correlation structure of mixed ARMA

models. In Section 2 we presented the acr function of the sum of n ARMA(pi, qi)

processes using the ima representation of an ARMA specification. The autocorrela-

tions were expressed in terms of the roots of the AR polynomials and the parameters

of the MA polynomials. In this paper we examined only the case of distinct roots of

the AR polynomials-the case of equal roots is left for future research. The ima repre-

sentation technique can also be applied to obtain the correlation structure of non linear

multivariate time series models, e.g. GARCH and Markov Switching modelios.

Appendix A

PROOF OF PROPOSITION 1

The impulse response function (irf) of the ARMA(p, q) process yt in equation (1) is

given by

yt = μ+
∞X
τ=0

eτ�t−τ , (A.1)

where

eτ =

pX
l=1

min(τ,q)X
κ=0

ζ̃ l,τ−κθκ,

and

ζ̃ lm =
φp−1+ml

pQ
r=1
r 6=l

(φl − φr)

,

(see Pandit, 1973 or Karanasos, 2001).

Multiplying (yt − μ) by (yt−m − μ) (m � N) and taking expected values gives the
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lag-m acv of yt :

Covm(yt) =
∞X
τ=0

eτeτ+mσ
2.

By direct computation, we have

Covm(yt) =
pX
l=1

ζ̃ lmsl0λlmBσ2, (A.2)

with

sl0 =

pX
r=1

ζ̃r0
(1− φlφr)

,

and

λlm =

qX
k=0

θ2k +
mBX
d=1

q−dX
κ=0

θκθκ+d(φ
d
l + φ−dl ) +

qX
d=mB+1

q−dX
κ=0

θκθκ+d(φ
d
l + φd−2ml ),

where mB = min(m, q) and ζ̃ lm is given by equation (A.1).

It is readily verified that

sl0 =
1

pQ
r=1

(1− φlφr)

.

Therefore, we may write

Covm(yt) =
pX
l=1

ζ lmλlmBσ2, (A.3)

with

ζ lm =
φp−1+ml

pQ
r=1

(1− φlφr)
pQ

r=1
r 6=l

(φl − φr)

,

where λlm is given by equation (A.2).

¥

PROOF OF PROPOSITION 2

From equation (3) and the results in Proposition 1, we have

Covm(yt) =
nX
i=1

Covm(yit) =
nX
i=1

pX
l=1

ζ lmλil,mB
i
σii,
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where

λil,m =

qiX
k=0

θ2ik +

mB
iX

d=1

qi−dX
κ=0

θiκθiκ+d(φ
d
l + φ−dl ) +

qiX
d=mB

i+1

qi−dX
κ=0

θiκθiκ+d(φ
d
l + φd−2ml ),

and ζ lm is given by equation (A.3).

¥

PROOF OF PROPOSITION 3

The irf of the ARMA(p, qi) process yit in equation (4) is given by

yit = μi +
∞X
τ=0

eiτ�it−τ ,

with

eiτ =

pX
l=1

min(τ,qi)X
κ=0

ζ̃ l,τ−κθiκ,

where ζ̃ lm is given by equation (A.1).

Multiplying (yit − μi) by (yj,t−m − μj) and taking expected values, under the as-

sumption that the elements of Σ on the off-diagonal positions are not zero, gives the

cross-covariances between yit and yjt, at lag m (m � N) :

Cov(yit, yjt−m) =
∞X
τ=0

ejτei,τ+mσij. (A.4)

Straightforward algebra establishes that

Cov(yit, yjt−m) =
pX
l=1

ζ̃ lmsl0λij,lmσij,

with

λij,lm =

qjX
c=0

q0iX
d=0

θidθj,d+cφ
c
l +

mB
iX

c=1

q0jX
d=0

θjdθi,d+cφ
−c
l +

qiX
c=mB

i+1

q0jX
d=0

θjdθi,d+cφ
c−2m
l ,

where sl0 is given by equation (A.2).
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Recall that sl0 = 1
p

r=1
(1−φlφr)

. Then we may write

Cov(yit, yjt−m) =
pX
l=1

ζ lmλij,lmσij,

where ζ lm is given by equation (A.3).

Using the preceding equation, equations (3) and (4), we obtain the lag-m acv of yt :

Covm(yt) =
nX

j=1

nX
i=1

Cov(yit, yjt−m) =
nX

j=1

nX
i=1

pX
l=1

ζ lmλij,lmσij.

¥

Appendix B

PROOF OF THEOREM 1

The irf of the ARMA(pi, qi) process yit in equation (8) is given by

yit = μi +
∞X
τ=0

eiτ�it−τ , (B.1)

where

eiτ =

piX
l=1

min(τ,qi)X
κ=0

ζil,τ−κθiκ, (B.1a)

and

ζil,m =
φpi−1+mil

piQ
r=1
r 6=l

(φil − φir)

.

The same argument leading to equation (A.4) can be used to establish that

Cov(yit, yj,t−m) =
∞X
τ=0

ejτei,τ+mσij.

Using equation (B.1a) this can be expressed as

Cov(yit, yj,t−m) = (
piX
l=1

ζ il,msj0,ilλij,lm +

pjX
r=1

ζjr,msi0,jrλrm,ij)σij, (B.2)
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with

sj0,il =

pjX
r=1

ζjr,0
(1− φilφjr)

,

and

λij,lm =

qjX
c=0

q0iX
d=0

θidθj,d+cφ
c
il +

mB
iX

c=1

q0jX
d=0

θjdθi,d+cφ
−c
il ,

λrm,ij =

qiX
c=mB

i+1

q0jX
d=0

θjdθid+cφ
c−2m
jr ,

where q0i = min(qi, qj − c), q0j = min(qj, qi − c), mB
i = min(m, qi) and ζil,m is given by

equation (B.1a). Further, it can be shown that

sj0,il =
1

pjQ
r=1

(1− φilφjr)

.

Therefore, equation (B.2) becomes

Cov(yit, yj,t−m) = (
piX
l=1

ζil,jmλij,lm +

pjX
r=1

ζjr,imλrm,ij)σij,

where

ζil,jm =
ζil,m

pjQ
r=1

(1− φilφjr)

.

Thus, the acv of yt, at lag m, is given by

Covm(yt) =
nX

j=1

nX
i=1

Cov(yit, yj,t−m) =
nX

j=1

nX
i=1

(

piX
l=1

ζil,jmλij,lm +

pjX
r=1

ζjr,imλrm,ij)σij.

¥
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