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This paper introduces a simple first-difference-based approach to estimation and
inference for the AR~1! model+ The estimates have virtually no finite-sample
bias and are not sensitive to initial conditions, and the approach has the unusual
advantage that a Gaussian central limit theory applies and is continuous as the
autoregressive coefficient passes through unity with a uniform Mn rate of con-
vergence+ En route, a useful central limit theorem ~CLT! for sample covariances
of linear processes is given, following Phillips and Solo ~1992, Annals of Statis-
tics, 20, 971–1001!+ The approach also has useful extensions to dynamic panels+

1. MAIN RESULTS

We consider a simple AR~1! model in which yt � a� ut , ut � rut�1 � «t , with
r � ~�1,1# and «t ; iid~0,s 2!+ When 6r6 � 1, the process ut may be initial-
ized in the infinite past+When r� 1, we may initialize at t � �1, and u�1 may
be any random variable and may even depend on n, as it does in distant past
initializations where, e+g+, u�1 � �j�1

@nt# «�j � Op~Mn ! where @nt# is the integer
part of nt for some t � 0+ In both stationary and nonstationary cases, observa-
tions on yt satisfy

yt � ~1 � r!a� ryt�1 � «t , r � ~�1,1# + (1)
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Model ~1! is equivalent to the conventional formulation yt � a� ryt�1 � «t

for all 6r6 � 1+ At the boundary value r � 1, the intercept produces a time
trend in yt for the latter model, as is well known+ In contrast, under ~1!, the data
are either stationary about a fixed mean ~a! when 6r6 � 1 or form a simple
unit root process when r � 1+

The present paper provides an estimator of the autoregressive coefficient r
in ~1! that has a Gaussian limit distribution that is continuous as r passes through
unity+ We start by differencing ~1! to Dyt � rDyt�1 � D«t where D is the usual
difference operator+ Least squares on this differenced equation yields an incon-
sistent estimate because Dyt�1 and D«t are correlated+ Higher lags of Dyt�1 pro-
vide valid instruments if r � 1 but are uncorrelated with the regressor if r� 1+

Further transformation of the differenced equation produces the new regres-
sion equation

2Dyt � Dyt�1 � rDyt�1 � ht , ht � 2Dyt � ~1 � r!Dyt�1+ (2)

This transformation is justified by the fact that E @~Dyt�1!
2# � 2s 20~1 � r!

and EDyt�1Dyt � �~1 � r!s 20~1 � r!, implying that E @2Dyt�1Dyt �
~1 � r!~Dyt�1!

2#� EDyt�1ht � 0+ It is basically the same as the transformation
used by Paparoditis and Politis ~2000!1 but was derived independently+

Least squares on ~2! yields the following estimator of r:

[rn �
�
t�1

n

Dyt�1~2Dyt � Dyt�1!

�
t�1

n

~Dyt�1!
2

, (3)

where it is assumed that $ yt : t � �1,0, + + + , n% are observed+ The following limit
theory applies+2

THEOREM 1+ For all r � ~�1,1# , Mn ~ [rn � r! n N~0,2~1 � r!! as
n r `.3

The limit theory changes when r � 1, and the system becomes explosive+ In
fact, [rn is inconsistent, and the limit distribution is nonnormal, and no invari-
ance principle applies, as in the case of the conventional serial correlation
coefficient ~cf+ White, 1958!+ More particularly, because Dyt�1 � Op~r

t! when
r � 1, it is clear from ~2! that in this case [rn rp 1 � 2r+ However, when r is
in the local vicinity of unity and the system is only mildly explosive, the
limiting distribution is still Gaussian, as we now show+ So, the result in the
theorem does not have a hard boundary at unity+

Let r� rn and an � rn � 1 depend on the sample size n, so that an measures
local deviations from unity and anr 0 as nr `+ The system is now formally
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a triangular array, but it is convenient to omit the additional subscript in the
notation+ Because ut � rnut�1 � «t , we have

ut�2 � rn
t u�2 � �

j�1

t

rn
t�j«j�2 , (4)

and because yt � a � ut ,

Dyt�1 � an ut�2 � «t�1+ (5)

Using ~5!, we write

�
t�1

n

~Dyt�1!
2 � an

2 �
t�1

n

ut�2
2 � 2an �

t�1

n

ut�2«t�1 � �
t�1

n

«t�1
2 , (6)

and because ht � 2~D«t � Dyt�1! � anDyt�1 � 2~anut�2 � «t ! � anDyt�1 as a
result of ~5!, we have

�
t�1

n

Dyt�1ht � 2 �
t�1

n

~an ut�2 � «t�1!~an ut�2 � «t !� an �
t�1

n

~Dyt�1!
2+ (7)

So from ~6! and ~7!,

[rn � rn � ~an � dn !� jn , (8)

where

dn �

2an
2 �

t�1

n

ut�2
2

an
2 �

t�1

n

ut�2
2 � 2an �

t�1

n

ut�2«t�1 � �
t�1

n

«t�1
2

, (9)

jn �

2 �
t�1

n

@an ut�2~«t�1 � «t !� «t «t�1#

an
2 �

t�1

n

ut�2
2 � 2an �

t�1

n

ut�2«t�1 � �
t�1

n

«t�1
2

+ (10)

Here, an � dn explains the transition of the bias from zero to rn � 1 as rn

increases beyond unity, and the quantity jn is instrumental in determining the
asymptotic distribution+

In the unit root case where an � 0, the bias term an � dn is zero, and Mnjn �
2n�102 �t�1

n «t «t�1 0n�1 �t�1
n «t�1

2 n N~0,4!, giving the result of Theorem 1+ If
rn � r � 1, i+e+, if ut is explosive, then �t�1

n ut�2
2 dominates the other terms

related to «t , and so dn rp 2, and jn converges to zero at an exponential
rate, as can be shown using analytical tools similar to those in recent work by
Phillips and Magdalinos ~2005!+
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When rn f 1 at a rate such that neither an
2 �t�1

n ut�2
2 nor �t�1

n «t�1
2 dominates

the other, the asymptotics will be located somewhere in between those two
extreme cases+ The exact borderline rate of rn is determined by the condition
that

cn � rn
n0Mn r c � @0,`! as nr `, rn � 1+ (11)

One example that satisfies ~11! with c � 0 is rn � ~cMn !10n, in which case
cn[ c+ This rn converges to unity at a rate slower than n�1 and faster than n�b

for any b � 1 when n is large+
Now suppose that the ut series is initialized at t � �2 and the effect of the

initial status is negligible in the sense that

Iu�2 � an
102s�1u�2rp 0+ (12)

Let c* � limnr` rn
�n � @0,1# and c** � lim nan rn

�n+ If c � 0, then c* �
c** � 0, and if an � o~n�1!, then c* � 1 because log rn

�n � �n log rn �
�n log~1 � an! � �n@an � o~an!# r 0, and c** � 0+ Note that c** is not
always zero+ One example is rn � 1 � c0n, in which case nan � c and rn

nr ec;
therefore c** � c0ec + Using ~8!–~10! and Lemma 7 in Section 4, we have the
following result+

THEOREM 2+ When rn � 1, under (11) and (12),

[rn � rn � ~rn � 1!� dn � jn ,

where

(i) dn n
1
2
_ c2X 20~ 14_ c2X 2 � 1! ,

(ii) Mnjn n ~cXY � 2Z!0~ 14_ c2X 2 � 1! ,

with

�
X

Y

Z
� ; N �0, �

1 � c*
2 c** 0

c** 1 � c*
2 0

0 0 1
�� + (13)

Note that the covariance c** of X and Y is irrelevant for the limit distribution
of Mn ~ [rn � rn! because if c � 0 then the XY term disappears from Mnjn and if
c � 0 then c** � 0+

If c � `, then dn rp 2 and thus [rn � 2rn � 1 � op~1!, implying that

�
t�1

n

Dyt�1D«t

�
t�1

n

~Dyt�1!
2

� rn � op~1!+

634 PETER C.B. PHILLIPS AND CHIROK HAN



Furthermore, in this case the limit distribution of Mnjn is degenerate, and
when it is appropriately ~i+e+, exponentially! scaled, it can be shown that the
limit distribution is Cauchy-like+We do not pursue this case in the present paper+

On the other hand, if c � 0 and rn f 1 sufficiently fast, we still have a Gauss-
ian limit distribution, as follows+

THEOREM 3+ If rn
2n0Mn r 0, then under (12), Mn ~ [rn � rn � an! n

N~0,4! .

An obvious example satisfying the condition for Theorem 3 is the con-
ventional local to unity case, where rn � 1 � c0n, rn

n r ec , and hence
n�102rn

n r 0+ In this case Mnan r 0, and so the bias does not affect the limit
distribution, giving Mn ~ [rn � rn! n N~0,4!, as in Theorem 1 when r � 1+
Thus, Theorem 1 holds with the same Mn rate as r passes through unity to
locally explosive values+

The novelty in this result is that the limit distribution is clearly continuous as
r passes through unity+ So the Gaussian limit theory may be used to construct
confidence intervals for r that are valid across stationary, nonstationary, and
even locally explosive cases+ However, such confidence intervals are wide com-
pared with those that are based on the usual serial correlation coefficient, and
clearly the N~0,4! limit theory is insensitive to local departures from unity+

Differencing in the regression equation ~2! reduces the signaling information
carried by the regressor Dyt�1 in comparison to the usual levels-based approach+
The effects are most obvious when rn r 1, in which case the conventional
serial correlation coefficient has a higher rate of convergence ~cf+ Phillips and
Magdalinos, 2005!, so that [rn is infinitely deficient over this band of rn values+
On the other hand, the limit theory is not sensitive to initial conditions at all
when r � 1, as is the limit theory for the conventional serial correlation+

Because of the inefficiency, the practical usefulness of the proposed approach
may be limited+ However, as explained in Section 3, the differencing approach
eliminates the intercept term and is therefore particularly useful in dynamic
panel data models with fixed effects+4 Furthermore, because the regressor and
the error of ~2! are uncorrelated, there would be little bias even with a very
small time dimension+

Simulation results are provided in Table 1+ The limit theory is apparently
quite accurate even for small n+ Noticeably, there is virtually no bias in the
estimator, unlike conventional serial correlations, and the t-ratio is well approx-
imated by the standard normal+

2. MODELS WITH TREND

Next consider the corresponding model with a linear trend+ Define yt � a �
gt � ut , where ut � rut�1 � «t , «t ; iid~0,s 2!, and r � ~�1,1# , with the
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initial conditions at t � �2 and the same specifications as before+ The implied
model is

yt � ~1 � r!a� rg� ~1 � r!gt � ryt�1 � «t + (14)

For this model, we use double differencing to eliminate the intercept and the
trend, leading to

D2 yt � rD2 yt�1 � D2«t + (15)

By recursion, we have

D2 yt�1 � �
j�0

`

r jD2«t�j�1 � «t�1 � ~2 � r!«t�2 � ~1 � r!2 �
j�2

`

r j�2«t�j�1,

(16)

and then

E~D2 yt�1!
2 � �1 � ~2 � r!2 �

~1 � r!4

1 � r2 � s 2 �
2~3 � r!s 2

1 � r
+ (17)

Further, because D2«t � «t � 2«t�1 � «t�2, we have

ED2 yt�1D
2«t � @�2 � ~2 � r!#s 2 � �~4 � r!s 2+ (18)

Table 1. Simulation evidence from 50,000 replications

r � 0 r � 0+3 r � 0+5

n E~ [r! nv~ [r! v~t ! E~ [r! nv~ [r! v~t ! E~ [r! nv~ [r! v~t !

40 0+023 2+009 1+025 0+317 2+548 1+020 0+512 2+896 1+019
80 0+012 2+001 1+007 0+310 2+554 1+001 0+506 2+937 1+006

160 0+007 2+031 1+017 0+304 2+560 0+995 0+503 2+958 0+999
320 0+003 2+012 1+007 0+303 2+569 0+993 0+502 2+973 0+997

r � 0+9 r � 0+95 r � 1

n E~ [r! nv~ [r! v~t ! E~ [r! nv~ [r! v~t ! E~ [r! nv~ [r! v~t !

40 0+903 3+651 1+026 0+951 3+706 1+018 1+001 3+848 1+028
80 0+902 3+672 0+997 0+951 3+782 0+999 1+001 3+910 1+009

160 0+901 3+759 1+004 0+950 3+833 1+000 0+999 3+964 1+010
320 0+901 3+729 0+989 0+950 3+847 0+995 1+000 3+977 1+003

Note: The t-ratios are computed using Mn ~ [rn � r!��M2~1 � [rn !+ The simulated variances of the t-ratios are
given in the v~t ! columns+
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It follows from ~17! and ~18! that

ED2 yt�1 Iht � 0, where Iht � 2D2«t � fD2 yt�1, f�
~4 � r!~1 � r!

3 � r
+

(19)

The orthogonality condition ~19! leads to the regression model

Iht � 2~D2 yt � rD2 yt�1!� fD
2 yt�1 � ~2D2 yt � D2 yt�1!� uD

2 yt�1, (20)

where

u � 1 � 2r� f� �
~1 � r!2

3 � r
+ (21)

Least squares regression on ~20! produces the estimator

Zun �
�
t�1

n

D2 yt�1~2D
2 yt � D2 yt�1!

�
t�1

n

~D2 yt�1!
2

, (22)

where it is assumed that $ yt : t � �2,�1,0, + + + , n% are observed+ The estimate
Zun is consistent for u, and because D2yt is stationary for all r � ~�1,1# , it is

asymptotically normal, as shown in the following theorem+

THEOREM 4+ For all r � ~�1,1# , Mn ~ Zun � u! n N~0,Vr! with

Vr � � 1 � r

3 � r
	2

�
1

`

bk
2 ,

b1 � 2~3 � r!� ~1 � r!2 � $~2 � r!� 2~1 � r!20~1 � r!%f,

b2 � �~2 � r!@1 � ~1 � r!2 #� ~1 � r!3f0~1 � r!,

bk � rk�3~1 � r!3 @~1 � r!� rf0~1 � r!# , k � 3,

where f and u are defined in (19) and (21), respectively.

Some simulations are reported in Table 2, where the data for yt are generated
by ~14! with a � g � 1 and «t ; N~0,1!+ For small sample sizes, Zun seems to
be slightly biased upward+ Note that Zun needs to be transformed back to [r
to estimate Vr and compute the t-ratio+ The recovery of [r is conducted accord-
ing to r � 1

2
_ @2 � u � Mu~u� 8!# if u � 0 and r � 1 if u � 0+ This right

censoring seems to cause slightly large variations in the t-ratio for r 
 1 with
small sample sizes+
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Note that �k�3
` bk

2 � ~1 � r!6 @~1 � r! � rf0~1 � r!# 20~1 � r!, which is
continuous in r+ Thus Vr is continuous in r, and the asymptotic distribution is
again continuous as r passes through unity+ When r � 1, we have u � 0,
b1 � 1, b2 � �1, and bk � 0 for all k � 3, and the next result follows directly+

COROLLARY 5+ If r � 1, then Mn Zun n N~0,2! .

3. EXTENSIONS AND APPLICATIONS

The difference-based approach to estimation that is explored previously in this
paper can be particularly useful in dynamic panel data models with fixed effects+
For dynamic panels, the transformation ~2! effectively eliminates fixed effects,
and because information about the autoregressive coefficient accumulates as
the number of both individual and time series observations increases, the cost
of first differencing disappears rather quickly+Moreover, as the simulations indi-
cate, there is virtually no time series autoregressive bias in this approach, so
that the dynamic panel bias is correspondingly small+ Furthermore, there is
no weak instrument problem as r r 1 in this new approach, as there is with
conventional generalized method of moments ~GMM! approaches+ Moreover,
the Gaussian limit theory with estimable variances also holds with the time
span T fixed and large N, not just for large T+ Also, in view of Theorem 4,
incidental linear trends can be eliminated, while still retaining standard Gauss-

Table 2. Simulation evidence relating to Theorem 4 with 50,000 replications

r � 0
~u � �0+333, Vr � 1+210!

r � 0+3
~u � �0+181, Vr � 1+547!

r � 0+5
~u � �0+1, Vr � 1+751!

n E~ Zu! nv~ Zu! v~t ! E~ Zu! nv~ Zu! v~t ! E~ Zu! nv~ Zu! v~t !

40 �0+308 1+267 1+026 �0+159 1+594 1+119 �0+078 1+756 1+166
80 �0+321 1+240 0+993 �0+170 1+569 1+052 �0+089 1+746 1+092

160 �0+326 1+240 0+998 �0+176 1+554 1+015 �0+094 1+780 1+074
320 �0+330 1+224 1+000 �0+179 1+573 1+019 �0+097 1+764 1+034

r � 0+9
~u � �0+005, Vr � 1+990!

r � 0+95
~u � �0+001, Vr � 1+997!

r � 1
~u � 0, Vr � 2!

n E~ Zu! nv~ Zu! v~t ! E~ Zu! nv~ Zu! v~t ! E~ Zu! nv~ Zu! v~t !

40 0+019 1+973 1+228 0+023 2+013 1+253 0+024 2+002 1+244
80 0+007 2+001 1+175 0+010 2+005 1+177 0+013 1+994 1+170

160 0+001 1+985 1+114 0+005 1+988 1+115 0+005 1+997 1+120
320 �0+002 1+977 1+075 0+003 2+010 1+090 0+004 2+000 1+083
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ian asymptotics with estimable variances+ This last fact allows for the construc-
tion of valid panel unit root tests in the presence of incidental trends+ These
issues are being explored by the authors in other work+

Extension of the present approach to the AR~ p! model is challenging, and
the rest of the section will describe one possibility by considering the AR~2!
process+ Let the data generating process be yt � a � ut where ut � r1ut�1 �
r2ut�2 � «t with «t ; iid~0,s 2!+ We assume that there is at most one unit root
to ensure that the differenced series is stationary+

We first analyze the estimator ~3! fitted under the false assumption that the
series is AR~1! to examine how sensitive the proposed estimator is to the mis-
specification of the lag order+ For that purpose, let Zu1 denote the estimator of
~3!, where we use a notation different from [r to clarify that a misspecified
model is fitted+ Then we get

Zu1rp u1 :� r1 � r2 , (23)

which is proved in Section 4+
Next, consider estimation of r1 and r2 for this AR~2! model based on differ-

enced data+ Let u2 be the probability limit of the estimator Zu2 obtained by regress-
ing Dyt on Dyt�2, i+e+, u2 � E ~DytDyt�2!0E @~Dyt�2!

2 # + Then u2 � �u1 �
~1 � u1!r102, and therefore by combining it with ~23!, we have

r1 �
2~u1 � u2 !

1 � u1
and r2 � r1 � u1+ (24)

~Proofs are found in Sect+ 4+! The parameters r1 and r2 are now estimated by
replacing u1 and u2 by Zu1 and Zu2, respectively+ In principle, it is possible to
extend this method to more general general AR~ p! models, but the algebra
rapidly becomes involved as the order p increases+

4. PROOFS

Let Xt � C~L!«t � �0
` cj «t�j and Yt � D~L!«t � �0

` dj «t�j where «t ;
iid~0,s 2!+ Let �0

` cj dj � 0, so that Xt and Yt are uncorrelated+ Define
ck � �0

`~cj dk�j � ck�j dj !+ We first establish a useful central limit theorem
~CLT! for n�102 �t�1

n Xt Yt , in a manner similar to Phillips and Solo ~1992!+

THEOREM 6+ �1
`ck

2 � ` and n�102 �t�1
n Xt Yt n N~0,s 4 �1

`ck
2! if

�
1

`

s~cs
2 � ds

2! � `. (25)
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Proof+ Let aj � 6cj 6 � 6dj 6+ Then 6cj dk � ck dj 6 � 6cj dk6 � 6ck dj 6 � aj ak

for all j and k, and ~25! implies that

�
0

`

as
2 � `, �

1

`

sas
2 � ` (26)

because aj
2 � 2~cj

2 � dj
2!+ Thus

�
1

`

ck
2 � �

k�1

` ��
j�0

`

~cj dk�j � ck�j dj !�2

� �
k�1

` ��
j�0

`

aj ak�j	2

� �
k�1

` ��
j�0

`

aj
2	��

j�0

`

ak�j
2 	� ��

0

`

aj
2	��

1

`

sas
2	 � `

by ~26!, and so �1
`ck

2 � ` is proved+
For the CLT, write Xt Yt � �0

` cj dj «t�j
2 � �j�0

` �k�j�1
` ~cj dk � ck dj !

«t�j«t�k � Zat � Zbt + We will show that

n�102 �
t�1

n

Zat rp 0, (27)

n�102 �
t�1

n

Zbt n N�0,s 4 �
1

`

ck
2	+ (28)

For ~27!, let fj � cj dj and F~L!� fj L j + Then Zat � F~L!«t
2+ Apply the Phillips–

Solo device to F~L! to get F~L!� F~1!� EF~L!~L � 1!� EF~L!~L � 1! , where
EF~L!� �0

` Dfj L j , which simplifies because F~1!� �0
` cj dj � 0 by supposition+

Thus, we have

n�102 �
t�1

n

Zat � n�102~ EZa0 � EZan !, EZat � �
0

`

Dfj «t�j
2 + (29)

Now ~27! follows if supt E6 EZat 6 � `+ But

E6 EZat 6 � E �
0

`

6 Dfj 6«t�j
2 � s 2 �

0

`

6 Dfj 6� s 2 �
j�0

`

�
k�j�1

`

6 fj 6� s 2 �
1

`

s6 fs 6,

and furthermore

�
1

`

s6 fs 6 � �
1

`

s6cs ds 6� ��
0

`

scs
2	102��

0

`

sds
2	102

� `
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by ~26!+ So ~27! is proved+ For ~28!, let gk, j � cj dk�j � ck�j dj + Then

Zbt � �
j�0

`

�
k�j�1

`

~cj dk � ck dj !«t�j «t�k � �
j�0

`

�
r�1

`

~cj dr�j � cr�j dj !«t�j «t�r�j

� �
r�1

`

�
0

`

gr, j «t�j «t�r�j � �
r�1

`

Gr ~L!«t «t�r , Gr ~L!� �
0

`

gr, j L j+

Apply the Phillips–Solo device again to each Gr~L! to get Gr~L! � Gr~1! �
EGr~L!~L � 1!+ Thus

n�102 �
t�1

n

Zbt � n�102 �
t�1

n

�
r�1

`

Gr ~1!«t «t�r � n�102 �
r�1

`

~ Ivr 0 � Ivrn !, (30)

where Ivrt � EGr~L!«t«t�r � �0
` Igr, j «t�j «t�r�j with Igr, j � �s�j�1

` gr, s + But

�
r�1

`

Ivrt � �
r�1

`

�
j�0

`

Igr, j «t�j «t�r�j � �
j�0

`

«t�j��
r�1

`

Igr, j «t�r�j	+
Thus, we have

E��
r�1

`

Ivrt	2

� s 4 �
j�0

`

�
r�1

`

Igr, j
2 � s 4 �

j�0

`

�
r�1

` � �
k�j�1

`

gr, k	2

, (31)

and again because 6gk, j 6 � aj ak�j ,

�
j�0

`

�
r�1

` � �
k�j�1

`

gr, k	2

� �
j�0

`

�
r�1

` � �
k�j�1

`

ak ar�k	2

� �
j�0

`

�
r�1

` � �
k�j�1

`

ak
2	� �

k�j�1

`

ar�k
2 	� �

j�0

` � �
k�j�1

`

ak
2	��

r�1

`

�
k�j�1

`

ar�k
2 	

� �
j�0

` � �
k�j�1

`

ak
2	� �

s�j�1

`

~s � j !as�1
2 	 � �

j�0

` � �
k�j�1

`

ak
2	��

s�1

`

sas
2	

� ��
1

`

sas
2	2

� `, by ~26!+

Thus ~31! is finite uniformly in t, and so the second term of ~30! converges in
probability to zero+

The first term of ~30! is n�102 �t «t «t�1
g where «t�1

g � �r�1
` Gr ~1!«t�r with

Gr~1!� cr � �0
`~cj dr�j � cr�j dj !+ This term will be shown to follow the mar-

tingale CLT, which holds if ~i! a version of the Lindeberg condition holds and
~ii! n�1 �t�1

n ~«t «t�1
g !2 rp s

4 �1
`ck

2+ The Lindeberg condition follows directly
from stationarity and integrability+ The convergence in probability ~ii! holds if
n�1 �1

n~«t�1
g !2 rp s

2 �1
`ck

2 , which is satisfied by Lemma 5+11 of Phillips
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and Solo+ ~See Sect+ 5+10 of Phillips and Solo for details+! Now the stated CLT
follows by ~27! and ~28! because Xt Yt � Zat � Zbt + �

It is of some independent interest from a technical point of view that only a
finite second moment is assumed for «t in the preceding derivation+

Theorem 1 is now proved using Phillips and Solo ~1992, Thm+ 3+7! for the
denominator and our Theorem 6 for the numerator+ In what follows, the regu-
larity conditions are automatically satisfied because of the exponentially decay-
ing coefficients in the lag polynomials+

Proof of Theorem 1+ First note that

Mn ~ [rn � r! �

n�102 �
t�1

n

Dyt�1ht

n�1 �
t�1

n

~Dyt�1!
2

+ (32)

When r � 1, we have Dyt � «t and ht � 2D«t � 2Dyt�1 � 2«t , and so

Mn ~ [rt � r! �

2n�102 �
t

«t�1«t

n�1 �
t

«t�1
2

n
2N~0,s 4 !

s 2
�d N~0,4!,

as stated+ For 6r6 � 1, because

Dyt�1 � rDyt�2 � D«t�1 � �
0

`

r jD«t�j�1 � «t�1 � ~1 � r!�
1

`

r j�1«t�j�1,

(33)

we find E~Dyt�1!
2 � s 2 @1 � ~1 � r!2 �1

` r2~ j�1! # � 2s 20~1 � r!, and hence

1

n �
t�1

n

~Dyt�1!
2 ra+s+

2s 2

1 � r
(34)

by Theorem 3+7 of Phillips and Solo ~1992!+ We also have

ht � 2D«t � ~1 � r!Dyt�1 � 2«t � ~1 � r!«t�1 � ~1 � r2 !�
1

`

r j�1«t�j�1+

(35)
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Let Dyt�1 � �0
` cj «t�j and ht � �0

` dj «t�j , where

c0 � 0, d0 � 2,

c1 � 1, d1 � �~1 � r!,

ck � �rk�2~1 � r!, dk � �rk�2~1 � r2 !, k � 2,

because of ~33! and ~35!+ Clearly EDyt�1ht � �~1 � r! � ~1 � r!~1 � r2!
~1 � r2 � {{{! � 0, and by Theorem 6, we have

n�102 �
t�1

n

Dyt�1ht n N�0,s 4 �
1

`

ck
2	, ck � �

j�0

`

~cj dk�j � ck�j dj !, (36)

and so it only remains to calculate the ck’s+ After some algebra, we get

�
j�0

`

cj dk�j � �rk�1~1 � r!, k � 1,

and

�
j�0

`

c1�j dj � 3 � r, �
j�0

`

ck�j dj � �rk�2~1 � r!~2 � r!, k � 2,

implying that

c1 � 2, ck � �2rk�2~1 � r!, r � 2+

So the variance in ~36! is s 4 @4 � 4~1 � r!2 �2
` r2~k�2! # � 8s 40~1 � r!+

Finally, from ~32!, ~34!, and ~36! with the calculated variance, we have

Mn ~ [rn � r!n �1 � r

2s 2 	N�0,
8s 4

1 � r
	 �d N~0,2~1 � r!!,

as stated+ �

Theorem 4 will be proved next because it involves similar algebra+ Recall
that f � ~4 � r!~1 � r!0~3 � r! and u � �~1 � r!20~3 � r!+

Proof of Theorem 4+ Write

Mn ~ Zun � u! �

n�102 �
t

D2 yt�1 Iht

n�102 �
t

~D2 yt�1!
2
+ (37)

The denominator of ~37! converges almost surely to 2~3 � r!s 20~1 � r! by
~17! and Theorem 3+7 of Phillips and Solo ~1992!+ As for the numerator of
~37!, because of the exponential decay in the coefficients of the lag polynomi-
als we may invoke Theorem 6+ Let D2yt�1 � �0

` cj «t�j with
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c0 � 0, c1 � 1, c2 � �~2 � r!, ck � rk�3~1 � r!2, k � 3,

(38)

because of ~16!+ Because Iht � 2D2«t � fD2yt�1 � 2«t � 4«t�1 � 2«t�2 �
f�0

` cj «t�j , we also have Iht � �0
` dj «t�j with

d0 � 2 � fc0 , d1 � �4 � fc1, d2 � 2 � fc2 , dk � fck , k � 3+

(39)

Note that �0
` cj dj � 0+ We can show that �j�2

` cj ck�j � rk�1m where m �
�2~1 � r!20~1 � r! for k � 1+ ~First show the result for k � 1 and then use the
recursion cj�1 � rcj , j � 3+! Using this fact and ~38! and ~39!, we can show
that

�
j�0

`

cj dk�j � 2c1 $k � 1%� ~ck�1 � rk�1m!f,

�
j�0

`

ck�j dj � 2~ck � 2ck�1 � ck�2 !� ~ck�1 � rk�1m!f,

for k � 1+ Adding term by term, we get

ck � 2bk � 2@c1 $k � 1%� ~ck � 2ck�1 � ck�2 !� ~ck�1 � rk�1m!f# ,

and by Theorem 6, n�102 �t�1
n D2 yt�1 Iht n N~0,4s 4 �1

` bk
2!+ The result then

follows by combining the limits for the numerator and denominator+ �

Next we prove the theorem for the mildly explosive case ~11!+ Define

Xn, k � �2an

s 2 	102

�
t�1

n

rn
�t«t�k , Yn, k � �2an

s 2 	102

�
t�1

n

rn
�~n�t ! «t�k , (40)

Wn � n�1 �t�1
n «t�1

2 0s 2 , and Zn � n�102 �t�1
n «t «t�1 0s 2 +We will deal with the

individual terms of ~6! and ~7! one by one+ Note that «t ; iid~0,s 2!+

LEMMA 7+ The following result is true:

an
2

ns 2 �
t�1

n

ut�2
2 �

cn
2 Xn,2

2

2~rn � 1!
�
rn

2~cn
2 � n�1 ! Iu�2

2

rn � 1

�
M2cn Iu�2

rn � 1
~rn

2 cn Xn,2 � n�102Yn,2 !� n1n;

2an

n102s 2 �
t�1

n

ut�2«t�k � cn Xn,2Yn, k � M2cnYn, k Iu�2 � n2n, k , k � 0,1,
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where

n1n �
an

n~rn � 1! �t�1

n

«t�2
2 �

2an

n~rn � 1! �j�1

n

�
k�j�1

n

rn
k�j«j�2«k�2

� Op~an !� Op~n
�102cn ! ,

n2n, k �
an

Mn
�
t�1

n

�
j�t�1

n

rn
t�j«j�2«t�k � Op~an

102!, k � 0,1.

Proof of Lemma 7+ The expressions are worked out using the identi-
ties �t�1

n �j�1
t xtj � �j�1

n �t�j
n xtj , �t�2

n �j�1
t�1 xtj � �j�1

n�1 �t�j�1
n xtj , and

�t�j�1
n �k�j�1

n xtk � �k�j�1
n �t�k

n xtk + �

The next lemma provides a useful simplification+

LEMMA 8+ Xn,2 � Xn,0 � op~1! and Yn,1 � Yn,0 � op~1! .

Proof+ Let k1n � ~2an0s 2!102 ~only for notational simplicity!+ Then

Xn,2 � k1n �
t�1

n

rn
�t«t�2 � k1n �

t��1

n�2

rn
�~t�2! «t

� k1n�rn
�2 �

t�1

n

rn
�t«t � rn

�1«�1 � rn
�2«0 � rn

�~n�1! «n�1 � rn
�n«n	

� rn
�2 Xn,0 � k1n~rn

�1«�1 � rn
�2«0 � rn

�~n�1! «n�1 � rn
�n«n !

� rn
�2 Xn,0 � Op~kn !� Xn,0 � Op~an

102!,

under ~11!, because Xn, k � Op~1! and rn
�2 � 1 � an~rn � 1!0rn

2 � 1 � O~an!+
Similarly,

Yn,1 � k2n �
t�1

n

rn
t�n«t�1 � k2n �

t�0

n�1

rn
t�1�n«t , k2n � ~2an 0s 2 !102

� k2n�rn �
t�1

n

rn
t�n«t � rn

1�n«0 � rn«n	
� rnYn,0 � k2n~rn

1�n«0 � rn«n !� Yn,0 � Op~an
102!

under ~11!+ �

Now let Xn � Xn,0 � ~2an 0s 2 !102 �t�1
n rn

�t«t and Yn � Yn,0 �
~2an 0s 2 !102 �t�1

n rn
t�n«t for notational simplicity+We obtain the limit distribu-

tion of ~Xn,Yn, Zn!+ The following lemma will be useful in proving the CLT in
Lemma 10+
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LEMMA 9+ Under (11),

(i) max1�t�n an
102 rn

�t 6«t 6 rp 0;
(ii) max1�t�n an

102 rn
t�n 6«t 6 rp 0;

(iii) max1�t�n n�102 6«t«t�16 rp 0.

Proof+ We prove ~i!, and ~ii! and ~iii! follow similarly+ Let bnt �
an rn

�2 t+ Then ~i! states that max1�t�n bnt
102 6«t 6 rp 0 or equivalently that

max1�t�n bnt «t
2 rp 0+ So we shall show that

P� max
1�t�n

bnt «t
2 � d� r 0 for all d � 0+

Fix d � 0+ Because

P� max
1�t�n

bnt «t
2 � d� � 1 � �

t�1

n

~1 � P $bnt «t
2 � d%!,

this probability converges to zero if and only if �t�1
n P $bnt «t

2 � d% r 0+ But

�
t�1

n

P $bnt «t
2 � d% � �

t�1

n

~bnt 0d!{~d0bnt !P $«t
2 � d0bnt %

� �
t�1

n

~bnt 0d!E«t
21$«t

2 � d0bnt %

� �
t�1

n

~bnt 0d! max
1�j�n

E«j
21$«j

2 � d0bnt %

� d�1��
t�1

n

bnt	E«1
21$«1

2 � d0an %r 0,

because bnt � an, an r 0, E«1
2 � `, and �t�1

n bnt � an 0~rn
2 � 1! �

10~rn � 1! � O~1!+ This proves ~i!+ �

LEMMA 10+ Under (11), ~Xn,Yn, Zn!n ~X,Y, Z! with limit distribution (13).

Proof+ The limit variance matrix is straightforwardly obtained by calcula-
tion+ For the joint Gauss limit, we use the Cramér–Wold device and show that
for any constants l1

* , l2
* , and l3

* ,

Un � l1
* Xn � l2

* Yn � l3
* Zn

converges to a normal distribution+ Let l1 � M2s�1l1
* , l2 � M2s�1l2

* , and
l3 � s�2l3

* + Then by the definition of Xn, Yn, and Zn, we have

Un � �
t�1

n

znt , znt � an
102~l1rn

�t � l2 rn
t�n!«t � l3 n�102«t «t�1+
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Let Fnt be the s-field generated by «j , j � t+ Then znt is a martingale difference
array with respect to Fnt + We invoke the martingale difference CLT ~e+g+,
Phillips and Solo, 1992, Thm+ CLT!, which requires that

~i! �t�1
n znt

2 rp
1
2
_ @~l1

2 � l2
2 !~1 � c*

2! � 2l1l2 c**#s 2 � l3
2 s 4 ;

~ii! max1�t�n6znt 6 rp 0+

But ~ii! is already proved by Lemma 9 because

max
1�t�n

6znt 6 � l1 max
1�t�n

an
102 rn

�t 6«t 6� l2 max
1�t�n

an
102 rn

t�n 6«t 6

� l3 max
1�t�n

n�102 6«t «t�16,

and so it remains to prove ~i!+ Write

�
t�1

n

znt
2 � �

t�1

n

an~l1rn
�t � l2 rn

t�n!2«t
2 � l3

2 �
t�1

n

n�1«t
2«t�1

2

� 2l3 �
t�1

n

an
102 n�102~l1rn

�t � l2 rn
t�n!«t

2«t�1

� Q1n � l3
2 Q2n � 2l3 Q3n , say+

We show that Q1n rp
1
2
_ @~l1

2 � l2
2 !~1 � c*

2! � 2l1l2 c**#s 2 , Q2n rp s
4 , and

Q3n rp 0 by invoking Theorem 11 at the end of this section+ ~It is recom-
mended that readers refer to that theorem before proceeding+!

For Q1n, let bnt � an~l1rn
�t � l2 rn

t�n!2 and vnt � bnt ~«t
2 � s 2!+ Clearly, this

vnt is a row-wise martingale difference with respect to the natural s-field, and
condition ~i! of Theorem 11 is obviously satisfied because «t are independent
and identically distributed ~i+i+d+!+ It is just a matter of calculation that
�t�1

n bnt r
1
2
_ @~l1

2 � l2
2 !~1 � c*

2!� 2l1l2 c**# and �t�1
n bnt

2 r 0, and so by the
theorem, �t�1

n vnt rp 0+ Now because Q1n � �t�1
n vnt � s 2 �t�1

n bnt , we have
the desired convergence for Q1n+

For Q2n, let vnt � n�1~«t
2 � s 2 !~«t�1

2 � s 2! and bnt � n�1 + Then vnt consti-
tutes a martingale difference array, and by Theorem 11, �t�1

n vnt rp 0+ Now

1

n �
t�1

n

«t
2«t�1

2 � �
t�1

n

vnt �
s 2

n �
t�1

n

~«t
2 � s 2 !�

s 2

n �
t�1

n

~«t�1
2 � s 2 !� s 4 rp s

4+

Next, for Q3n, let bnt � ~an 0n!102~l1rn
�t � l2 rn

t�n! and vnt �
bnt ~«t

2 � s 2!«t�1+ Then condition ~i! of Theorem 11 is obvious, and condi-
tion ~iii! is also straightforwardly verified+ Condition ~ii! also holds: If
lim nan � 0, then �t�1

n bnt � ~nan!
�102~l1 � rnl2!, which is finite in the limit,
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and if nanr 0, then �t�1
n bnt � ~an0n!102n~l1 � l2!� ~nan!

102~l1 � l2!r 0+
And as a result �t�1

n vnt rp 0+ Now

Q3n � �
t�1

n

vnt � s 2 �
t�1

n

bnt «t�1rp 0,

because the second term converges to zero in L2+ Thus, the conditions for the
martingale CLT are all satisfied, and we have the stated result+ �

Proof of Theorem 2+ Combine ~8!–~10!, Lemma 7, Lemma 8, and Lemma 10+
�

Proof of Theorem 3+ If rn
20Mn � Mncn

2 r 0, then ~an
20Mn !�t�1

n ut�2
2 rp 0

by Lemma 7, and therefore Mndn rp 0+ Also, because c � 0 in this case,
Mnjn n 2Z ; N~0,4!+ So

Mn ~ [rn � rn � an ! � Mndn � Mnjnn N~0,4!,

as stated+ �

The following result is adapted from Theorem 19+7 of Davidson ~1994! and
is used in the proof of Lemma 10+ For a more general and detailed treatment,
see Davidson ~1994!+

THEOREM 11+ Let $vnt % be a row-wise martingale difference array and $bnt %
an array of positive constants. If

(i) $vnt 0bnt % is uniformly integrable,
(ii) lim supnr`�t�1

n bnt � `,
(iii) limnr` �t�1

n bnt
2 � 0,

then �t�1
n vnt rL1

0, and thus �t�1
n vnt rp 0.

Now we provide technical results for the AR~2! model+
Let ut � r1ut�1 � r2ut�2 � «t where «t ; iid~0,s 2!+ Let 1 � r1 L � r2 L2 �

~1 � f1 L!~1 � f2 L! where f1 � ~�1,1# and 6f26 � 1 so that Dut is stationary+
Define vk � EDutDut�k+ Note that Dyt � Dut + The following result is true+

LEMMA 12+ Let c � s 20@~1 � f1f2!~1 � f1!~1 � f2!# . Let u1 :� r1 � r2 .
Then v0 � 2c, v1 � �c~1 � u1! , and v2 � �c@2u1 � ~1 � u1!r1# .

Proof+ When 6fj 6 � 1, according to Karanasos ~1998!, the autocovariance
functions are

Eut ut�j �
s 2

~1 � f1f2 !~f1 � f2 !
� f1

j�1

1 � f1
2

�
f2

j�1

1 � f2
2	,
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implying that

v0 �
2s 2

~1 � f1f2 !~f1 � f2 !
� f1

1 � f1

�
f2

1 � f2
	,

v1 �
�s 2

~1 � f1f2 !~f1 � f2 !
�f1~1 � f1!

1 � f1

�
f2~1 � f2 !

1 � f2
� ,

v2 �
�s 2

~1 � f1f2 !~f1 � f2 !
�f1

2~1 � f1!

1 � f1

�
f2

2~1 � f2 !

1 � f2
� +

~If f1 � f2, then apply L’Hôpital’s rule+! Note that the preceding identities
hold when f1 � 1 also, where Dyt � f2Dyt�1 � «t + The results then follow
after some straightforward algebra+ �

Proof of ~23!+ The law of large numbers applies to the averages by Phillips
and Solo ~1992!+ Thus, the limit of Zu1 can be expressed as

Zu1rp

2v1 � v0

v0

� u1

by Lemma 12+ �

Proof of ~24!+ Noting that u2 � v20v0, we have u2 � �u1 � ~1 � u1!r102 as
a result of Lemma 12+ The rest is obvious+ �

NOTES

1+ We thank an anonymous referee for the reference to this paper+
2+ After a change of variable, this result corresponds to Theorem 2+1 in Paparoditis and Politis

~2000!+
3+ Though the parameter space in the theorem is stated with a hard boundary at unity, there is

no boundary parameter problem at unity+ In fact the limit theory extends in a local sense beyond
unity, as explained in the rest of Section 1+

4+ As a referee rightly pointed out, the Cauchy estimator based on the moment condition that
E sgn~ yt�1!«t � 0, which is r � �t sgn~ yt�1!«t 0�t 6yt�16 if no constant term is present, also has
an asymptotically normal t-ratio+ Although our method attains asymptotic normality by converting
a possibly integrated series into a stationary one by first differencing, the Cauchy estimator attains
the same goal by using the nonlinear transformation of yt�1 to sgn~ yt�1!+ Yet it is unclear how the
constant term may be treated in this approach when it is applied to short dynamic panels+
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