
More questions and answers:

Consider the classical linear regression model Y
(n�1)

= X
(n�k)

�
(k�1)

+ u
(n�1)

. Prove that the

least-squares b
(k�1)

vector is b = (X 0X)�1X 0Y .

If the unknown vector � is replaced by some guess or estimate b, this de�nes a vector
of residuals e,

e
(n�1)

= Y
(n�1)

� X
(n�k)

b
(k�1)

;

The least-squares principle is to choose b to minimize the residual sum of squares,
Xn

i=1
e2i =

e0e; e0 = [e1 e2 � � � en]:

e0e = (Y �Xb)0(Y �Xb)
= (Y 0 � b0X 0)(Y �Xb)
= Y 0Y � b0X 0Y � Y 0Xb+ b0X 0Xb:

Next, note that Y 0
(1�n)

X
(n�k)

b
(k�1)

is a scalar and hence its transpose (Y 0Xb)0 = b0X 0Y is the

same scalar (Y 0Xb). Thus, b0X 0Y = Y 0Xb.

From the above analysis it follows that

e0e = Y 0Y � 2b0X 0Y + b0X 0Xb:

The �rst order conditions are
@(e0e)

@b
= �2X 0Y + 2X 0Xb = 0;

giving the least-squares b vector as a function of the data:

X 0Xb = X 0Y; or

b = (X 0X)�1X 0Y .

(b) Let x1; x2; : : : ; xn be a random sample from the Bernoulli distribution: f(x; �) =
�x(1� �)1�x, x = 0; 1, 0 � � � 1. Derive the maximum likelihood estimator of �.

The likelihood function is given by

L(�;x) =
Yn

i=1
f(xi) =

=
Yn

i=1
�xi(1� �)1�xi

= �

Xn

i
xi
(1� �)

n�
Xn

i=1
xi:

Therefore, the log-likelihood function is

l = lnL =
Xn

i
xiln� + (n�

Xn

i=1
xi)ln(1� �):

The �rst order condition is

@l

@�
=

Xn

i
xi

�
�
(n�

Xn

i=1
xi)

(1� �) = 0;

which gives the MLE

b� =
Xn

i
xi

n
= x:

1


