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SUMMARY
This paper examines the determinants of inflation forecast uncertainty using a panel of density forecasts
from the Survey of Professional Forecasters (SPF). Based on a dynamic heterogeneous panel data model, we
find that the persistence in forecast uncertainty is much less than what the aggregate time series data would
suggest. In addition, the strong link between past forecast errors and current forecast uncertainty, as often
noted in the ARCH literature, is largely lost in a multi-period context with varying forecast horizons. We
propose a novel way of estimating ‘news’ and its variance using the Kullback-Leibler information, and show
that the latter is an important determinant of forecast uncertainty. Our evidence suggests a strong relationship
of forecast uncertainty with level of inflation, but not with forecaster discord or with the volatility of a number
of other macroeconomic indicators. Copyright  2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Inflation uncertainty is central to modern macroeconomics. Following Milton Friedman’s (1977)
conjecture that an increase in inflation uncertainty reduces economic efficiency and possibly output
growth, effects of uncertainty have been studied extensively by economists. Although inflation
uncertainty is now accepted as a key economic variable, the causes of its variation are not well
understood. The related literature focuses mostly on the relationship between the inflation rate and
inflation forecast uncertainty, and a substantial body of evidence suggests a positive link between
them.1 Other studies, however, find little evidence of a relationship. For instance, Engle (1983)
and Bollerslev (1986) argued informally that inflation uncertainty was highest in the late 1940s
and early 1950s, when the inflation rate was not very high, and uncertainty was lower in the late
1970s and early 1980s, when inflation was quite high.

The celebrated ARCH model of Engle (1982, 1983) and its various extensions are now standard
methods for modelling forecast uncertainty based on aggregate data.2 This literature posits that
forecast uncertainty of a variable can be measured by the conditional variance of its forecast error
that, in turn, is assumed to depend on past forecast errors and lagged forecast uncertainty.3 For the
purpose of policy analysis and simulation, the estimated forecasts and the time-varying forecast

Ł Correspondence to: Kajal Lahiri, Department of Economics, University at Albany, SUNY Albany, NY 12222, USA.
E-mail: klahiri@albany.edu
1 See Zarnowitz and Lambros (1987), Ball and Cecchetti (1990), Evans (1991), Evans and Wachtel (1993), Grier and
Perry (1998) for some examples.
2 Engle and Kraft (1983) provided the details of multi-period forecasts and the associated variances based on ARCH
models.
3 See Grier and Perry (1998) and Baillie et al. (1996) for recent examples.
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uncertainties are then taken to be that of a representative agent of the economy. However, as
Pesaran and Smith (1995) point out, if economic agents are informationally heterogeneous, the
estimation of dynamic models based on aggregate data may be severely biased. Hsiao et al. (2005)
show how an analysis based on aggregate time series data can give completely misleading ideas
regarding the true underlying dynamics of the constituent micro units. Yet, this heterogeneity of
forecasts has been emphasized and heavily documented in the recent macro literature.4

An alternative approach to modelling aggregate forecast uncertainty and studying its dynamics
is to use individual data on the probability distribution of forecasts directly. The use of the Survey
of Professional Forecasters (SPF) data provided by the Federal Reserve Bank of Philadelphia
makes this approach possible. In this survey, forecasters report not only their expectations of
future price levels, but also their estimates of the probabilities of future inflation falling within
different intervals. These probability density forecasts can be used to generate inflation forecast
uncertainties for each forecaster with the aid of some minor assumptions.5 The use of the individual
forecast uncertainties allows us to investigate the appropriateness of the ARCH-type specifications
in modelling forecast uncertainty at the individual level, and the robustness of the ARCH model at
the aggregate macro level. This approach also enables us to examine directly the appropriateness
of various proxies (e.g., moving variances, rolling regressions, forecast disagreements, etc.) that
have been used extensively in the macro literature for the unobserved forecast uncertainty. In
addition, although the problem of aggregation bias has been recognized in the analysis of point
forecasts, we will take up the same issue in the analysis of density forecasts.

The rest of the paper proceeds as follows. In Section 2, we describe the model and the estimators
used in the examination of the determinants of inflation forecast uncertainty. In Section 3, we
briefly discuss the data used in the paper. In Section 4, we present the empirical results. Section
5 concludes the paper.

2. DESCRIPTION OF THE MODEL AND THE ESTIMATORS

Traditionally, most theories in macroeconomics assume that people share a common information
set and form expectations conditional on that information set. In recent years, the individual
heterogeneity in economic forecasts has been increasingly emphasized. For example, Lahiri and
Ivanova (1998) and Souleles (2004) use data from the Michigan Index of Consumer Sentiment, and
document differences across demographic and other groups in their inflation expectations. Mankiw
et al. (2003) also document substantial disagreement among economic agents about expected
future inflation using survey data from different sources. Moreover, they show that the variation
of disagreement over time is closely related to the movement of other variables. Mankiw and
Reis (2002) also propose a ‘sticky-information’ model to explain the variation of disagreement
over time. The key point of this model is that costs of acquiring and processing information, and
of re-optimizing, lead agents to update their information sets and expectations non-uniformly. A
similar model by Carroll (2003) emphasizes the differential effects of macroeconomic news on

4 See, for example, Souleles (2004), Mankiw et al. (2003), Carroll (2003).
5 Previous studies that have analysed this data for different purposes include Zarnowitz and Lambros (1987), Lahiri and
Teigland (1987), Lahiri et al. (1988), Batchelor and Dua (1993, 1996), Zarnowitz and Braun (1993), Rich and Tracy
(2003), Giordani and Soderlind (2003). Diebold et al. (1999) and Wallis (2003) discuss the usefulness and quality of the
aggregated forecast density data.
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household expectations. Disagreement results from the differences across demographic groups in
their propensity to pay attention to news reports.

Although the literature has focused mostly on the heterogeneity in point forecasts, some authors
have raised the issue of heterogeneity in forecast uncertainty also. For example, Davies and Lahiri
(1995, 1999) decompose the variance of forecast errors into variances of individual-specific forecast
errors and aggregate shocks. They find significant heterogeneity in the former. Rich and Tracy
(2003) also find evidence of statistically significant forecaster fixed effects in SPF density forecasts
data. They take this as evidence that forecasters who have access to superior information, or possess
a superior ability to process information, are more confident in their point forecasts. Ericsson
(2003) studies the determinants of forecast uncertainty systematically. He points out that forecast
uncertainty depends upon the variable being forecast, the type of model used for forecasting,
the economic process actually determining the variable being forecast, the information available
and the forecast horizon. If different forecasters have different information sets and use different
forecast models, the anticipated forecast uncertainties will be different across forecasters, even if
forecasters are forecasting the same variable at the same forecast horizon. Moreover, forecasters
will make use of the same information set in different ways if they use different models.6 The
above discussion implies that, in a panel regression of forecast uncertainty on other covariates,
the response coefficients should be different across forecasters. Thus, a natural way to study the
determinants of inflation forecast uncertainty is to use a heterogeneous panel data model. We
proceed with a conventional EGARCH framework to capture the heterogeneity and dynamics in
individual forecast uncertainty:

ln��2
ith� D ˛i0 C ˛i1D1 C ˛i2D2 C ˛i3D3 C ˇi ln��2

it,hC1� C �i
εi,t�1,h

�i,t�1,h
C �i

∣∣∣∣ εi,t�1,h

�i,t�1,h

∣∣∣∣ C υiXith C �ith

i D 1, 2, . . . , N; t D 1968, . . . , 2003; h D 1, 2, . . . , 8 �1�

where �2
ith is the inflation forecast uncertainty reported by forecaster i about the annual inflation

rate of year t made h quarters before the end of year t. Since �2
ith has to be non-negative, we adopt

the EGARCH model of Nelson (1991) such that we do not need to put any restrictions on the
parameters and on the error distribution.7 In SPF, respondents are asked to report their forecasts
of the year-over-year inflation rate of the current and next year in each quarter. As a result, for
each targeted annual inflation rate, respondents report eight forecasts with the forecast horizon
varying from one to eight quarters. In this study, we use forecasts with horizons from one to four
quarters for the dependent variable and match them with forecasts of horizons from two to five
quarters, respectively for the lagged dependent variable. Since forecast uncertainty is expected to
depend, ceteris paribus, on the forecast horizon we introduce three horizon dummies fD1, D2, D3g
for three-quarter, two-quarter and one-quarter ahead forecasts, respectively.

In equation (1), �2
it,hC1 is the forecast uncertainty reported in the previous quarter. The coefficient

of ln��2
it,hC1� captures the persistence of inflation forecast uncertainty over time, independent of

6 Bomberger (1996) points out that forecasts can differ dramatically across forecasters at any given time and it is hard
to account for this heterogeneity without assuming that forecasters use different models. Zarnowitz and Braun (1993)
reported the various models used by SPF forecasters in the early period of the survey. They found that forecasters use
various combinations of models to produce forecasts.
7 For the same reason, several recent studies use EGARCH rather than the GARCH model. See, for example, Fountas
et al. (2004) and Brunner and Hess (1993).
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target years and forecast horizons.8 With multi-period forecasts for a fixed target, the appropriate
definition of forecast error is not straightforward. Following Giordani and Söderlind (2003), Rich
et al. (1992) and others, we define it as the perceived error at the beginning of a particular quarter
of year t in predicting last year’s inflation rate made in that particular quarter of last year. Thus,
while forecasting in the different quarters of year t, the errors in forecasts made in year t � 1
will change from one quarter to the next because (i) the forecasts for year t � 1 were different
in different quarters of last year and (ii) due to data revisions, the actual inflation rate of year
t � 1 will change over the year t beginning with the initial 30-day announcement. Following the
EGARCH literature, �i,t�1,h, the square root of the reported forecast uncertainty in that quarter, is
used to normalize the forecast error. In equation (1), Xith is a vector of other variables affecting
inflation forecast uncertainty. It varies over t and h, but may or may not be the same for all
forecasters.

The key assumption of model (1) is that the coefficients of all variables vary across forecasters.
Let 	i D �˛i0, ˛i1, ˛i2, ˛i3, ˇi, �i, �i, υi�0 and assume it to be independently and normally distributed
with mean 	 and covariance matrix , i.e., 	i ¾ N�	, �. In addition, 	i is independent of the
regressors (except for the lagged dependent variable). The disturbances of model (1) are assumed
to be heteroscedastic and uncorrelated across different forecasters and different forecast horizons,
i.e., �ith ¾ i.i.d.�0, �2

i � and E��ith�i0t0h0� D 0 if i 6D i0, h 6D h0 or t 6D t0, see Hsiao et al. (1999). The
validity of some of these assumptions will be tested later in the paper.

The parameter of interest is the vector of mean coefficients, i.e., 	. Pesaran and Smith (1995)
discussed how to estimate the mean coefficients of dynamic heterogeneous panel data models.
After comparing four widely used procedures (pooling, aggregating, averaging group estimates and
cross-section regression), they show that the pooled and aggregate estimators are not consistent
in dynamic models even for large N (the number of units) and T (the number of time periods),
and the bias can be very substantial. This is because ignoring heterogeneity in coefficients creates
correlation between the regressors and the error terms as well as serial correlation in the residuals.
They suggest the use of a group mean estimator obtained by averaging the coefficients for
each individual—an estimator that is biased, but consistent over N and T. Hsiao et al. (1999)
have suggested a novel Bayesian approach using Markov chain Monte Carlo methods (called
Hierarchical Bayes) that has better sampling properties than other estimators for both small and
moderate sample sizes. In this study, we will report the mean group estimator, the Hierarchical
Bayes estimator and the Empirical Bayes estimator.9 Detailed descriptions of these estimators can
be found in the papers cited above. For the purpose of comparison, the aggregate time series and
the pooled OLS estimators are also reported. The latter is just the OLS estimator found by pooling
the data for all forecasters and assuming forecaster homogeneity. The aggregate estimator is the
OLS estimator based on the time series data averaged over respondents.

A conventional way to model individual heterogeneity is the random effects or the one-way error
component model. This model assumes slope homogeneity, but allows an individual effect to vary
across forecasters. Following the pioneering work of Balestra and Nerlove (1966), many papers
have discussed how to estimate this model; see Baltagi (2001) and Hsiao (2003) for further details.

8 Note that usual time series models do not control for the target year while estimating persistence. Certainly, events
scheduled for a future target year with uncertain outcomes (e.g., presidential election, scheduled change in taxes, etc.) can
vitiate the estimated coefficient of the lagged dependent variable if the target year changes between two forecasts.
9 The Empirical Bayes estimator in this case is just the Swamy estimator for pure random coefficients models. In this
context, it is expected to yield good results when the time dimension of the panel is sufficiently large.
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Although GMM estimators are popular for this model, we would not try to implement GMM here
because the unbalanced and multi-dimensional nature of our panel makes it very cumbersome
to match the instrumental variables with the lagged dependent variable for consistent estimation.
Instead, we will report a conditional maximum likelihood estimator with the first observation for
each forecaster treated as fixed constants. This estimator is consistent if the number of forecasters
is large. The fixed effects estimator is also reported. But it is well known that in dynamic models,
this estimator is inconsistent for finite T even when the number of forecasters tends to infinity. If,
however, the true model is a dynamic heterogeneous panel data model with varying slopes, the
random effects or fixed effects estimators will be biased even when both N and T tend to infinity.

3. THE DATA

Basically, two data sources are used in this paper. The main one is the Survey of Professional
Forecasters, which provides data on the inflation forecasts. The other is the real-time macro data,
which can be used to reconstruct the information set when forecasters make their forecasts in real
time. Both of them are available from the Federal Reserve Bank of Philadelphia.

SPF was started in the fourth quarter of 1968 by the American Statistical Association and
the National Bureau of Economic Research, and was taken over by the Federal Reserve Bank
of Philadelphia in June 1990. The respondents are professional forecasters from academia,
government and business. The survey is mailed four times a year, the day after the first release
of the NIPA (National Income and Product Accounts) data for the preceding quarter. Most of the
questions ask for point forecasts on a large number of variables for different forecast horizons. A
unique feature of the SPF data set is that respondents are also asked to provide density forecasts
for year-over-year growth rates in aggregate output and GDP deflator. In this paper, we will focus
on the latter.

To use this data set appropriately, several issues related to it should first be considered, including:

1. The number of respondents changed over time. It was about 60 at first and decreased in the
mid-1970s and mid-1980s. In recent years, the number of forecasters was around 30. So, we
have an unbalanced panel data.

2. The number of intervals or bins and their length has changed over time. During 1968Q4–1981Q2
there were 15 intervals, during 1981Q3–1991Q4 there were 6 intervals, and from 1992Q1
onwards there are 10 intervals. The length of each interval was 1 percentage point prior to
1981Q3, then 2 percentage points from 1981Q3 to 1991Q4, and subsequently 1 percentage
point again.

3. The definition of inflation in the survey has changed over time. It was defined as annual growth
rate in GNP implicit price deflator (IPD) from 1968Q4 to 1991Q4. From 1992Q1 to 1995Q4,
it was defined as annual growth rate in GDP IPD. Presently it is defined as annual growth rate
of chain-type GDP price index.

4. Following NIPA, the base year for price index has changed over our sample period. It was
1958 during 1968Q4–1975Q4, 1972 during 1976Q1–1985Q4, 1982 during 1986Q1–1991Q4,
1987 during 1992Q1–1995Q4, 1992 during 1996Q1–1999Q3, 1996 during 1999Q4–2003Q4,
and finally 2000 from 2004Q1 onwards.

5. The forecast horizons in SPF have changed over time. Prior to 1981Q3, the SPF asked about
the annual growth rate of IPD only in the current year. Subsequently it asked about the annual
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growth rate of IPD in both the current and following year. However, there are some exceptions.
In certain surveys before 1981Q3, the density forecast referred to the annual growth rate of IPD
in the following year, rather than the current year.10 Moreover, the Federal Reserve Bank of
Philadelphia is uncertain about the target years in the surveys of 1985Q1 and 1986Q1. Therefore,
even though for most target years we have eight forecasts with horizon varying from one to
eight quarters, for some target years the number of forecasts is less than eight.

To deal with the first problem, the observations for infrequent respondents are ignored. Following
Zarnowitz and Braun (1993) and others, we keep only the observations of forecasters who
participated in at least 20 surveys. The second problem can be handled by using appropriate
intervals, although it may cause the procedure of extracting forecast uncertainty from density
forecasts a little more complicated. Such a procedure is discussed in detail in the rest of this
section. The third and fourth problems cause no trouble in this study because we calculate the actual
inflation using real-time macro data, in which the price index and base years are synchronized with
the SPF data. Since we use forecasts with horizons from one to four quarters as the dependent
variable and match them with forecasts of horizons from two to five quarters for the lagged
dependent variable, the fifth problem implies that we will have even more missing observations.11

To estimate model (1), we need to calculate the mean and variance from individual density
forecasts. The standard approach in the literature is to calculate

E�F� D
J∑

jD1

Fj Pr�j� and Var�F� D
J∑

jD1

[Fj � E�F�]2 Pr�j� �2�

where Fj and Pr�j� are the midpoint and probability of interval j, respectively. The lowest and
highest intervals, which are open, are typically taken to be closed intervals of the same width as
the interior intervals (see Lahiri and Teigland, 1987; Lahiri et al., 1988).

This approach implicitly assumes that all probability mass is concentrated at the interval
midpoints. This will lead to the so-called ‘grouping data error’. Diebold et al. (1999) document
this problem very well in the SPF density data. To solve this problem, the Sheppard correction
may be used. An alternative approach proposed by Giordani and Söderlind (2003) is to fit a normal
distribution to each histogram, and then estimate the means and variances by minimizing the sum
of squared difference between the survey probabilities and the probabilities for the same intervals
implied by the normal distribution.12 We will follow their approach in this paper.13

To examine the sources of inflation forecast uncertainty, we need to know the information
used by the forecasters. Theoretically, we should not use the most recent data because that was
not available to forecasters when they made the forecasts. The real-time data set provided by the

10 The surveys for which this is true are 1968Q4, 1969Q4, 1970Q4, 1971Q4, 1972Q3 and Q4, 1973Q4, 1975Q4, 1976Q4,
1977Q4, 1978Q4 and 1979Q2–Q4.
11 The remaining panel after deleting observations for infrequent respondents and missing values is unbalanced, having
25 forecasters and 125 quarters with a total of 840 observations. The number of surveys each forecaster has participated
in ranges from 20 to 69.
12 If forecasters are 100% confident that future inflation will fall in a specific interval, this method will fail because we
have only one observation but two parameters to estimate—mean and variance of the normal distribution. In this case,
we will assume that inflation is uniformly distributed in that specific interval. Then the mean is estimated as the midpoint
of that specific interval and the variance is estimated as 1/12 of the squared interval width.
13 We are grateful to Paolo Giordani and Paul Söderlind for kindly providing their program.
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Federal Reserve Bank of Philadelphia can be used to reconstruct the information sets of forecasters
in real time, see Croushore and Stark (2001). This data set reports values of variables as they existed
in the middle of each quarter from November 1965 to the present. Thus, for each vintage date, the
observations are identical to those one would have observed at that time. Fortunately, this is also
approximately the date when forecasters of SPF are asked to submit their forecasts. The real-time
data set includes information on some key macroeconomic variables such as real GDP, GDP price
deflator, import price index, money supply, 3-month T-bill rate and 10-year T-bond rate.

However, the number of variables available in this data set is limited. In order to ensure that our
model specification does not omit important macroeconomic variables, we also use the currently
revised data of many other variables in our analysis. Descriptions of these variables can be found
in the Appendix.

4. EMPIRICAL RESULTS

Let us first look at the variability of variances (VoV )14 computed from the density forecasts across
respondents over our sample period. In Figure 1, the VoV s are presented separately for each
horizon as box-and-whisker plots.15 In this figure, the bottom and top of a box are the 25th and 75th
percentiles, the interior horizontal line is the median, and the bottom and top points of the vertical
line are the 10th and 90th percentiles. Several features of the graph are noteworthy. First, for any
particular quarter the distribution across respondents is often quite dispersed, conveying a strong
impression that the heterogeneity of forecast uncertainty is substantial. Second, the dispersion of
forecast uncertainty across forecasters varies considerably over time. Roughly, the higher is the
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Figure 1. Distribution of forecast uncertainty across forecasters

14 cf. Engle (2002).
15 In Figure 1, the observations of infrequent forecasters are also included.
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inflation rate, the more dispersed is the distribution. Finally, the positions of the medians roughly
confirm Friedman’s conjecture. From the middle 1970s to the early 1980s when inflation was
high, the median forecast uncertainty was also high. During the 1990s when inflation was low,
the median forecast uncertainty was also very low.

Next, we tested for random coefficients as assumed in model (1). If we are interested in whether
the slopes are the same across individuals, the usual F-test for the null hypothesis that the intercepts
are heterogeneous but the slopes are homogeneous against the alternative that all coefficients are
heterogeneous can be used, cf. Hsiao et al. (2005). The F-test rejected the null hypothesis strongly
at the 1% significance level for all specifications considered in this study. If we are interested in
estimating the mean effects, Hausman-type tests can be applied. Our Hausman test is based on
a comparison of the mean group estimator and the pooled OLS estimator, cf. Hsiao and Pesaran
(2004). The former is consistent under both the null and alternative hypotheses, while the latter
is efficient under the null hypothesis but inconsistent under the alternative hypothesis. The �2

statistic was statistically significant at the 5% level for all specifications estimated in this paper.
Following Pesaran et al. (1996), we also calculated the Hausman test statistic by comparing the
fixed effects estimate with the mean group estimate. Using this test, we rejected the null hypothesis
of slope homogeneity for our final specification in Table IV at the 5% level of significance. So,
these tests for slope homogeneity support the use of a random coefficients model. These findings
concur with previous evidence on heterogeneity of forecast uncertainty.

4.1. Do Past Forecast Errors Matter?

The ARCH literature assumes that forecast uncertainty can be proxied by the conditional variance
of the unpredictable shocks to the series, which depends on past forecast uncertainty and past
forecast errors. Table I shows the result of a regression of the natural logarithm of current forecast
uncertainty on horizon dummies, the natural logarithm of past forecast uncertainty, and the level
and absolute value of standardized forecast errors (to capture asymmetric effects). Several findings
are worth mentioning here.

First, the horizon effects are highly significant. The longer is the forecast horizon, the higher
is the forecast uncertainty. This is evident from the pattern of the estimated coefficients of the
horizon dummies, and is consistent with previous findings in the forecasting literature. See, for
example, the Bank of England’s fan chart in Wallis (2003).

Second, the forecast uncertainty shows some, but not a lot, of persistence. The estimated
coefficient on the natural logarithm of past forecast uncertainty is between 0.38 and 0.48 for those
estimators that are known to be consistent when both N and T are large, viz., the mean group
estimator, the Swamy estimator and the Hierarchical Bayes estimator.16 Moreover, a comparison
of different estimators reveals that the estimators that ignore the heterogeneity of coefficients
altogether yield significantly different estimates of the lagged dependent variable. For example,

16 To estimate the Hierarchical Bayes estimator, we make use of parts of the GAUSS programs provided by Kim and
Nelson (1998) and the BACC software described in Geweke (1999). To implement the Hierarchical Bayes analysis, we
followed Hsiao et al. (1999) and specified vague priors for all hyperparameters except for , whose prior distribution was
specified by the corresponding Swamy estimate. We checked for convergence of the Gibbs sampler by experimenting with
different numbers of iterations. More specifically, we tried 3500 and 10,000 iterations separately for the Gibbs sampler.
The values for the first 500 and 2000 iterations were discarded, respectively. The difference in the parameter estimates
for these two sets of iterations was negligible. This implies that convergence was achieved after 3500 iterations. The
estimates reported in the paper are based on 10,000 iterations.
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Table I. EGARCH model for inflation uncertainty, 1968Q4–2003Q4

Estimators Constant D1 D2 D3 ln��2
it,hC1�

εi,t�1,h
�i,t�1,h

∣∣∣ εi,t�1,h
�i,t�1,h

∣∣∣
Aggregate estimator �0.0927 �0.2661Ł �0.3265ŁŁ �0.5508ŁŁ 0.8140ŁŁ �0.0209 0.0014

(0.095) (0.104) (0.102) (0.112) (0.067) (0.027) (0.029)
Pooled OLS estimator �0.3934ŁŁ �0.2675ŁŁ �0.3448ŁŁ �0.4783ŁŁ 0.6604ŁŁ �0.0705ŁŁ �0.0815ŁŁ

(0.077) (0.092) (0.094) (0.096) (0.028) (0.02) (0.022)
Fixed effects estimator — �0.2833ŁŁ 0.4591ŁŁ �0.6570ŁŁ 0.4054ŁŁ �0.0555ŁŁ �0.0550Ł

(0.086) (0.088) (0.09) (0.034) (0.02) (0.021)
Conditional MLE �0.6313ŁŁ �0.2809ŁŁ �0.4387ŁŁ �0.6252ŁŁ 0.4512ŁŁ �0.0580ŁŁ �0.0597ŁŁ

(0.115) (0.085) (0.088) (0.09) (0.035) (0.02) (0.021)
Mean group estimator �0.7683ŁŁ �0.2464ŁŁ �0.4802ŁŁ �0.6430ŁŁ 0.3871ŁŁ �0.0705 �0.0972

(0.139) (0.067) (0.104) (0.15) (0.043) (0.167) (0.164)
Swamy estimator �0.7045ŁŁ �0.2479Ł �0.3935ŁŁ �0.6531ŁŁ 0.4380ŁŁ �0.0035 �0.0337

(0.16) (0.102) (0.134) (0.174) (0.055) (0.173) (0.172)
Hierarchical Bayes estimator −0.6485 −0.2504 −0.3419 −0.6157 0.4716 −0.0287 −0.0624

(−0.9065) (−0.4338) (−0.5553) (−0.9004) (0.3784) (−0.1034) (−0.141)
(−0.3948) (−0.0629) (−0.1369) (−0.3415) (0.5599) (0.0436) (0.0168)

Note: For the Hierarchical Bayes estimator, the first row shows the mean of the coefficient, the second and third rows
show the 2.5th and 97.5th percentiles of the posterior distribution, respectively. For other estimators, standard errors are
in parentheses. Ł indicates significance at the 5% level, ŁŁ indicates significance at the 1% level.

the estimated coefficient of lagged forecast uncertainty is 0.66 for the pooled OLS estimator and
0.81 for the aggregate estimator.17 Both significantly exceed 0.47 that we obtained using the
Hierarchical Bayesian estimator. This finding is robust for other specifications of model (1) as
well (see Tables III and IV). The result on the direction of bias is consistent with Hsiao et al.
(1999, 2005). They found that the pooled OLS estimator overestimates the coefficient of the lagged
dependent variable while the mean grouped estimator without correction for small sample bias
is slightly downward biased. Thus, our study casts doubt on the estimated dynamics in inflation
uncertainty based on aggregate data. For example, in a regression similar to ours, Giordani and
Söderlind (2003, table II) estimated the coefficient of the lagged inflation forecast uncertainty to
be 0.73, similar to the estimate of our aggregate estimator.18

Third, the biases of the pooled estimators that allow for varying intercepts only are not very large,
although the estimators are known to be inconsistent even when both N and T are large (cf. Pesaran
and Smith, 1995). Nevertheless, both the fixed effects and the MLE estimators tend to underesti-
mate the coefficient on the lagged dependent variable. But the bias is less than that of the pooled
OLS estimator and the aggregate estimator. It seems that, in the current context, the estimation
bias will not be too severe if at least the intercept heterogeneity is considered in estimation.

Finally, the estimated coefficients of the level and absolute value of standardized past forecast
error are insignificant and mostly of unexpected signs, which is contrary to the assumption of
the ARCH model.19 Thus, past forecast errors do not seem to matter when forecasters evaluate
their forecast uncertainties associated with their multi-period forecasts. One reason could be that

17 The dependent variable is the logarithm of the average forecast uncertainty over forecasters. The forecast error is defined
as the average standardized forecast error.
18 The result stayed the same when, following their specification, we estimated our model without taking the logarithm
of the forecast uncertainty.
19 For the Hierarchical Bayes estimator, we examine the estimated 95% posterior interval. If it covers zero, we interpret
it as evidence that the coefficient is zero.
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in simple ARCH models where the forecast horizon is the same as the sampling interval, past
forecast errors capture new information regarding forecast uncertainty. However, for the SPF
data, as forecasters go through the quarters making forecasts for the target year, new information
regarding uncertainty about the future inflation rate is gradually revealed, though not in the form
of past forecast errors because the actual inflation of the target year will not be available until the
year is over. Except for the data revisions, the forecast errors (as defined in model (1)) associated
with the last year’s forecasts at each quarter are known at the beginning of the current year. Thus,
the forecast errors will constitute fresh information only for the first quarter (i.e., four-quarters
ahead) forecasts. It is inconceivable that during the rest of the year forecasters will not seek out
other sources of information to update their current year forecasts and the associated uncertainties.
Our finding that past forecast error has very little influence on forecast uncertainty is consistent
with Rich and Tracy (2003) but contradicts Giordani and Söderlind (2003), though the latter two
estimates were based on aggregate data.

Indeed, we could exactly regenerate the results reported in Giordani and Söderlind’s (2003)
table II over their sample period 1969–2001. In Table II we have reported time series regression
results of average forecast uncertainty on its lagged value, and the absolute value of the consensus
forecast error for all four quarterly forecasts. Giordani and Söderlind (2003) reported estimates
only for the four-quarters ahead forecasts. As reported by them, the coefficient of the forecast
error is positive and statistically significant for the four-quarters ahead forecasts. However, for the
remaining horizons, we find that the coefficients for the absolute error are statistically insignificant.
It is also interesting to note that in their table II, the lagged inflation variable makes the absolute
error statistically insignificant even for the four-quarters ahead forecasts. In our replication (not
reported in this paper), the lagged inflation term was also significant at all horizons except for
the one-quarter ahead forecasts. Thus, we conclude that the apparent significance of the forecast
error term in Giordani and Söderlind (2003) was due to the absence of lagged inflation that picks
up the well-known Friedman effect of level on variability. Even without this level-of-inflation
effect, absolute forecast errors do not show any effect on uncertainties for any horizons except the
one-year ahead forecasts.20

Table II. Time series regression of uncertainty on forecast errors at various horizons

Dependent variable:
E��i�

1-year ahead
forecasts

3-quarters ahead
forecasts

2-quarters ahead
forecasts

1-quarter ahead
forecasts

Constant 0.1435 0.1842 0.2274Ł 0.1201
(0.095) (0.1) (0.093) (0.08)

Lag of E��i� 0.7356ŁŁ 0.7006ŁŁ 0.6325ŁŁ 0.7394ŁŁ
(0.126) (0.141) (0.151) (0.172)

Abs(forecast errort�1) 0.0830Ł 0.0290 �0.0359 0.0018
(0.031) (0.053) (0.084) (0.113)

R2 0.634 0.499 0.418 0.542

E��i� D average standard deviation of individual probability distributions. Abs�forecast errort�1� D absolute
value of (actual inflation in year t � 1 minus consensus point forecast for the same year). Ł indicates significance
at the 5% level, ŁŁ indicates significance at the 1% level. Sample period is 1969–2001, excluding 1985 and
1986.

20 Note that the lagged uncertainty term in table II of Giordani and Söderlind (2003) and, as a result, in our Table II is
also one year old. In our formulation (1), uncertainty is treated as a quarterly sequence with pure horizon effects absorbed
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4.2. Does Higher Inflation Lead to Higher Inflation Uncertainty?

In this section we ask if there is a positive link between inflation uncertainty and the level of
inflation as suggested by Friedman (1977). Table III shows the regression of the natural logarithm
of the inflation forecast uncertainty on the natural logarithm of the lagged inflation uncertainty,
lagged inflation rate and expected change in the inflation rate. The coefficient on the lagged
inflation rate is positive and significant for all estimators (with the exception of the aggregate
estimator). This result implies that higher inflation is associated with higher inflation uncertainty.
This is not surprising since most other studies with survey data also demonstrate similar results.
The positive link between inflation forecast uncertainty and the level of inflation rate still holds if
we replace the lagged inflation with current expected inflation. Diebold et al. (1999) also found a
similar relationship using aggregate SPF data.

Table III also reveals that there is asymmetry in the effect of the expected change in inflation
on current inflation uncertainty. The estimated coefficient on the expected fall in inflation is
insignificant for the mean group, Empirical Bayes and Hierarchical Bayes estimators, while the
estimated coefficient on the expected rise in inflation rate is positive and significant for all
estimators except the aggregate estimator. The implication of this finding is that, if people expect
inflation in the current year to rise, they will raise the uncertainty associated with this forecast,
but if forecasters expect inflation in the current year to fall, they will not reduce the uncertainty
associated with this forecast immediately. Instead, they will wait to see if the expectation bears out.

Ball (1992) provides an explanation why there is a positive link between inflation uncertainty
and the level of inflation. According to him, there are two types of policymaker, and they alternate
in power stochastically. The public knows that only one type of policymaker is willing to bear

Table III. EGARCH model for forecast uncertainty with lagged inflation rate and expected change in inflation
rate

Estimators Constant D1 D2 D3 ln��2
it,hC1� Lagged

annual
inflation

Expected
fall in

inflation

Expected
rise in

inflation

Aggregate estimator �0.3380Ł �0.3299ŁŁ �0.3511ŁŁ �0.5308ŁŁ 0.7126ŁŁ 0.0482 0.0593 0.0675
(0.148) (0.109) (0.108) (0.114) (0.075) (0.026) (0.081) (0.112)

Pooled OLS estimator �1.0914ŁŁ �0.3272ŁŁ �0.3788ŁŁ �0.5354ŁŁ 0.5604ŁŁ 0.1787ŁŁ 0.2461ŁŁ 0.2014ŁŁ
(0.104) (0.089) (0.089) (0.091) (0.027) (0.026) (0.078) (0.072)

Fixed effects estimator — �0.3246ŁŁ �0.4785ŁŁ �0.7152ŁŁ 0.2975ŁŁ 0.1922ŁŁ 0.2261ŁŁ 0.1874ŁŁ
(0.081) (0.082) (0.085) (0.032) (0.029) (0.073) (0.068)

Conditional MLE �1.3890ŁŁ �0.3252ŁŁ �0.4637ŁŁ �0.6880ŁŁ 0.3345ŁŁ 0.1930ŁŁ 0.2304ŁŁ 0.1937ŁŁ
(0.142) (0.08) (0.082) (0.085) (0.032) (0.028) (0.073) (0.068)

Mean group estimator �1.6244ŁŁ �0.3203ŁŁ �0.5228ŁŁ �0.8082ŁŁ 0.2216ŁŁ 0.2040ŁŁ 0.1195 0.3387ŁŁ
(0.208) (0.056) (0.087) (0.147) (0.045) (0.047) (0.104) (0.126)

Swamy estimator �1.5584ŁŁ �0.3119ŁŁ �0.4526ŁŁ �0.7350ŁŁ 0.2888ŁŁ 0.2024ŁŁ 0.1265 0.3193Ł
(0.244) (0.092) (0.118) (0.17) (0.057) (0.061) (0.134) (0.152)

Hierarchical Bayes −1.4794 −0.3134 −0.4219 −0.6999 0.3441 0.2007 0.1277 0.2642
estimator (−1.8762) (−0.4822) (−0.6297) (−1.0081) (0.2499) (0.1181) (−0.0775) (0.0592)

(−1.1151) (−0.1163) (−0.2232) (−0.3934) (0.4359) (0.2925) (0.3172) (0.4802)

See notes at end of Table I. Ł indicates significance at the 5% level, ŁŁ indicates significance at the 1% level.

by the horizon dummies. We should also point out that the interaction of these dummies with the explanatory variables
of our model, including the lagged uncertainty term, was statistically insignificant.
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the economic costs of a recession to deflate. When inflation is low, both types of policymaker
try to keep it low. As a result, the uncertainty about future inflation will also be low. However,
when inflation is high, the public is uncertain about how the monetary authority will respond. Our
findings not only support the Friedman–Ball view that people will increase inflation uncertainty
when inflation is high, but also reveal the speed of their response when facing a possible increase
or decrease in inflation. People will respond quickly in the former situation, but slowly in the
latter situation.

4.3. Variance of ‘News’ Based on Kullback–Leibler Information

In Section 4.1 we found that past forecast errors are not necessarily the most recent and relevant
information for forecast uncertainty updates in a multi-period context. One way to capture quarterly
new information about inflation uncertainty is to use data on fixed-target forecast revisions. As
we know, SPF respondents forecast the same annual inflation rate in each quarter of the previous
two years with forecast horizon varying from one to eight quarters. So, for the same target,
there are eight forecasts. The forecast revision in each quarter from the previous quarter reflects
perceived news about inflation that fell in that quarter; see Davies and Lahiri (1995, 1999).
Although forecasters revise their forecasts based on this news, they may not be sure about the
effect of this news on annual inflation. Therefore, the perceived uncertainty in the news should be
an important and logical determinant of inflation forecast uncertainty.

The problem, however, is that we do not observe forecasters’ uncertainty of news directly. One
tempting approach will be to use forecasters’ disagreement on news as a proxy, which is defined as
the standard error of the revision of point forecasts across forecasters. The underlying assumption
is that with higher uncertainty about the effect of news in the current quarter, the disagreement
among the respondents will be greater. This follows the same logic as the use of the forecast
disagreement as a proxy for forecast uncertainty, a common practice in applied research.

The drawbacks in using forecasters’ disagreement as a proxy of forecasters’ uncertainty of news
are many. First, it is an indirect measure whose effectiveness depends on the relative importance
of the volatility of aggregate shocks compared with that of idiosyncratic market shocks at a
particular point of time, see Pagan et al. (1983). Second, the use of disagreement presumes that all
forecasters have the same uncertainty of news at each point in time, which contradicts the observed
heterogeneity of forecasts. Due to differences in information sets, differential ability to process
information and heterogeneous loss functions, the perceived news and uncertainty regarding news
should differ across forecasters. Finally, only the revision of point forecast is used when computing
disagreement on news. However, for the SPF density data, forecasters revise the whole distribution
of forecasts, not just point forecasts. Thus, disagreement on news does not make full use of the
information available in the data.21

An alternative approach to measuring the uncertainty of news is based on the concept of
Kullback–Leibler information. This method measures the uncertainty of news directly using the
whole distribution. It also avoids the problems associated with the use of disagreement on news
as mentioned above. The logic of this approach is as follows.

21 The simple correlation between disagreement and uncertainty with aggregate data is high in our sample (0.46). However,
in the presence of lagged inflation and an expected change in inflation, disagreement loses its statistical significance in
the context of the aggregate estimator and the panel data regressions reported in Table III.
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Suppose in one quarter the density forecast of the annual inflation rate is f���. In the following
quarter the density forecast for the same target is revised to g���. Then, a measure of information
gain from one quarter to the next can be defined as log�g���/f����. This information gain actually
measures the perceived effect of news occurring between two quarters on the annual inflation rate.
Since � is a random variable, so is the information gain. The Kullback–Leibler information,
defined as


� D
∫ 1

�1
log�g���/f����g���d� �3�

is the expected information gain with respect to g���. It is the posterior expectation of the effect of
news between two quarters. Taking this concept one step forward, the variance of this information
gain can measure naturally the uncertainty of news, which is

�2
� D

∫ 1

�1
�log�g���/f���� � 
��2 g���d� �4�

Table IV shows that the estimated coefficient of the variance of news22,23 is highly significant
and is of expected sign for all consistent estimators used in the paper.24 Only the aggregate time
series estimator fails to pick up its effect. Thus, the uncertainty in the latest news based on the
Kullback–Leibler information measure replaces the past forecast error as an important determinant
of inflation forecast uncertainty. The incorporation of the variance of news may be taken as an
extension of ARCH models in the context of multi-period forecasts with varying forecast horizons.
We should point out that when we replaced the variance of news by the disagreement on news in
the specification, the estimated coefficient of the latter was statistically insignificant. This simply
implies that disagreement on news is not a good proxy of variance of news. Also, the news
calculated from equation (3) was insignificant in all our regressions. This means that news per se
does not affect people’s uncertainty about future inflation. Only when people are uncertain about
the effect of today’s news on future inflation, will they change their uncertainty associated with
inflation forecasts.

Table IV reports the results of the full regression including all variables found statistically
significant so far. Based on the Hierarchical Bayes estimates, we can calculate the horizon
effects after controlling for other variables. We find that three-, two- and one-quarter ahead
forecast uncertainties are on average 78.45%, 69.59% and 55.36% of four-quarter ahead forecast

22 We calculated the variance of news for each forecaster. One practical issue is that f��� or g��� may be equal to zero
for some intervals so that their natural logarithms are not defined. To circumvent this problem, we assign a small positive
probability (0.001) to those intervals subject to the constraint that probabilities over all bins add up to one.
23 To calculate the news and variance of news, the prior density forecast and the posterior density forecast should have the
same target. In the first quarter of each year, the posterior density forecast is the reported density forecast for the current
year, thus the prior density forecast should be the reported density forecast for next year made in the fourth quarter of
last year. So, to keep the targets the same, we make use of density forecasts for both the current and next year.
24 People may worry about the problem of endogeneity since the calculation of current forecast uncertainty and variance
of news both make use of the reported density forecast of the current quarter. To test for the endogeneity of the variance
of news, we first projected this variable on a set of instrument variables including lagged news, disagreement on news and
individual dummies. Then the predicted value was added in model (1) as an additional explanatory variable in different
specifications. The estimated coefficient of the instrumental variable was never significant in our estimations, suggesting
that the variance of news is exogenous. The reason could be that the variance of news is calculated as a nonlinear function
of two densities in equation (4). In addition, although the variance of news is based on the revision of density forecasts
from previous to current quarter, they describe what has already occurred and hence should be in the information set of
forecasters. Thus, logically it should be independent of the unexplained part of the forecast uncertainty equation.
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Table IV. EGARCH model for inflation forecast uncertainty: final model specification

Estimators Constant D1 D2 D3 ln��2
it,hC1� Lagged

annual
inflation

Variance
of news

Expected
rise in

inflation

Aggregate estimator �0.3449Ł �0.2749Ł �0.3121ŁŁ �0.4464ŁŁ 0.7559ŁŁ 0.0185 0.0861 0.0837
(0.145) (0.112) (0.109) (0.123) (0.077) (0.024) (0.049) (0.106)

Pooled OLS estimator �1.0321ŁŁ �0.2745ŁŁ �0.3439ŁŁ �0.4814ŁŁ 0.5942ŁŁ 0.1082ŁŁ 0.0784ŁŁ 0.2505ŁŁ
(0.101) (0.089) (0.089) (0.092) (0.028) (0.02) (0.018) (0.068)

Fixed effects estimator — �0.2895ŁŁ �0.457ŁŁ �0.6846ŁŁ 0.3272ŁŁ 0.1232ŁŁ 0.0533ŁŁ 0.2285ŁŁ
(0.082) (0.082) (0.086) (0.033) (0.022) (0.017) (0.066)

Conditional MLE �1.2988ŁŁ �0.2878ŁŁ �0.4399ŁŁ �0.6533ŁŁ 0.3668ŁŁ 0.1232ŁŁ 0.0567ŁŁ 0.2365ŁŁ
(0.138) (0.081) (0.082) (0.086) (0.034) (0.022) (0.016) (0.066)

Mean group estimator �1.5747ŁŁ �0.2405ŁŁ �0.4685ŁŁ �0.6548ŁŁ 0.3249ŁŁ 0.1568ŁŁ 0.1683ŁŁ 0.4380ŁŁ
(0.225) (0.061) (0.09) (0.123) (0.045) (0.053) (0.036) (0.118)

Swamy estimator �1.5288ŁŁ �0.243ŁŁ �0.4048ŁŁ �0.6112ŁŁ 0.3612ŁŁ 0.1597Ł 0.1307ŁŁ 0.3625Ł
(0.255) (0.094) (0.118) (0.147) (0.056) (0.063) (0.042) (0.142)

Hierarchical Bayes −1.4579 −0.2427 −0.3626 −0.5914 0.4085 0.1587 0.1091 0.3047
estimator (−1.879) (−0.4171) (−0.5525) (−0.8816) (0.3154) (0.0701) (0.0446) (0.1055)

(−1.0486) (−0.069) (−0.1696) (−0.3269) (0.5068) (0.2514) (0.1747) (0.5196)

Notes: The value of the F-test for slope homogeneity is 1.77; with (168,640) degrees of freedom the p-value for the test
is 0.000. The Hausman �2 test statistic for slope homogeneity based on a comparison between the fixed effects and the
mean group estimator is 17.96; with 7 degrees of freedom the p-value is 0.012. The same test based on the pooled OLS
estimator and mean group estimator is 82.85; with 8 degrees of freedom the p-value is 0.000.
For the CD test for cross-sectional dependence that has a limiting standard normal distribution, the value of the test
statistic is 1.53 with the p-value equal to 0.127. For the LM test for cross-sectional dependence the value of the �2

test statistic is 277.01; with 241 degrees of freedom the p-value is 0.055. Both tests cannot reject the null hypothesis
of cross-section independence at the significance level of 5%. The value of the likelihood ratio test statistic for the null
of one common factor against no common factor in residuals is 2343.96; the degrees of freedom for the test is 275
(D 0.5Ł��25 � 1�2 � 25 � 1�) and the p-value is 0.000. So we reject H0 and accept the alternative hypothesis that there
is no common factor. Ł indicates significance at the 5% level, ŁŁ indicates significance at the 1% level.

uncertainty, respectively.25 Table IV also reveals that a 1% change in lagged forecast uncertainty
is associated with a 0.41% change in current forecast uncertainty, while a one percentage point
change in lagged inflation rate will change current forecast uncertainty by 15.87%, indicating
that lagged inflation has a strong effect on current forecast uncertainty. Variance of news and the
expected rise in inflation are also significant determinants of current forecast uncertainty. A one
unit change of the former is associated with a 10.91% change in the current forecast uncertainty,
while a one percentage point increase of the latter is associated with an increase in the current
forecast uncertainty of 30.47%. Note that the aggregate estimator produced insignificant coefficient
estimates for the lagged inflation, variance of news and the expected rise in inflation variables,
while giving a highly inflated mean value of the persistence parameter.

4.4. Other Macroeconomic Determinants of Uncertainty

We are also interested in whether other macroeconomic variables have information for forecast
uncertainty, above and beyond that contained in variables in Table IV. Stock and Watson (1999,
2003) examined the value of a large number of prospective predictors of inflation. Based on

25 Based on the estimates of Hierarchical Bayesian estimator, ln��2
it3/�2

it4� D �0.2427, which implies that �2
it3/�2

it4 D
78.45%. Other numbers are calculated similarly.
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macroeconomic theories, four broad categories of variables are often considered as potentially
useful predictors. First, according to the Phillips curve or its generalizations, some measures of
real economic activity such as real GDP, or the unemployment rate, should help predict future
inflation. Second, the expectations hypothesis of the term structure of interest rates suggests that
spreads between interest rates of different maturities incorporate market expectations of future
inflation. Third, the quantity theory of money suggests that the growth rate of the money supply
should be positively related to the inflation rate. Finally, the change in prices of important inputs,
such as oil prices, commodity prices and nominal wages, predicts future inflation. If forecasters
do use these variables to predict future inflation rate, we expect that volatility of these variables
may help explain the uncertainty associated with the point forecasts.

We examined the effect of volatility in the growth rates of many variables including real GDP,
M1 and M2, crude oil prices, nominal wages, commodity prices, stock prices and the volatility
in the total civilian unemployment rate and the spread between the 10-year T-bond and 3-month
T-bill rates.26 Regressions of current forecast uncertainty on all the variables in Table IV, and
the logarithm of each of the above volatility variables one at a time, revealed that none of the
time series volatility variables is statistically significant.27 One possible explanation may be the
instability of the underlying indicators in predicting inflation. As found in Stock and Watson
(2003), an indicator that predicts inflation well in one period is no guarantee that it will predict
similarly in another period. They found hardly any single variable that is a reliable (potent and
stable) predictor of inflation over multiple time periods. This implies that forecasters often need
to select a subset of predictors from a large number of candidate predictors. If forecasters have
many predictors to choose from, very possibly they may choose different sets of variables at
different times. As a result, when we estimate a panel data model with inflation forecasts, any
single variable may become statistically insignificant. Of course, the possibility remains that our
inability to find significant macro variables may be because we did not consider other relevant
time series variables.

We adopted a different strategy to check for possible omission of macro variables from our
specification. If there are any relevant macroeconomic variables that we failed to include, the
error term of model (1) may exhibit a common factor structure. More specifically, we will have

�ith D �iFth C eith �5�

in which Fth are the common macroeconomic variables that forecasters consider when evaluating
the uncertainty associated with their point forecasts, but which we failed to include in our model,
�i are the factor loadings and eith are the individual idiosyncratic errors. To find the number of
factors, the usual likelihood ratio (LR) test can be used if the error follows the classical factor
model, which means that, for N − T, the factors are independent of the individual idiosyncratic
errors eith, and the covariance matrix of eith is diagonal. Based on the OLS residuals from the
specification in Table IV, the LR test of the null hypothesis that there is one common factor against
the alternative that there is no common factor strongly rejected the null.28

26 See the Appendix for a detailed description of these variables.
27 Schwert (1989) also finds that inflation volatility cannot be explained by stock or bond return volatility and interest rate
volatility. His result is based on aggregate time series data. Here we consider volatilities of many other macroeconomic
variables, and our results are based on individual data.
28 We first get OLS residuals for the specification in Table IV individual by individual. The OLS residuals should provide
consistent estimates of �ith and could be used as ‘observed data’ to test for the number of factors. Under the null hypothesis
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In our model, we rule out cross-section dependence between individual forecasters due to the
spread of panic or confidence among our panel for two reasons. First, unlike point forecasts, data on
forecast uncertainty is rarely collected and released publicly. Thus, it is hard for forecasters to know
the forecast uncertainty of others, and adjust their forecast uncertainty accordingly. Furthermore,
even if we observe a widespread panic of high inflation or confidence of low inflation in a particular
quarter, it will be more likely due to some commonly observed indicators of the economy than
the interaction between forecasters. Second, respondents in the SPF are less likely to be affected
by others because they are professional forecasters. Thus, we believe that the covariance matrix
of eith can safely be assumed to be diagonal. If, however, for some unknown reasons the error
follows the ‘approximate factor model’ of Chamberlain and Rothschild (1983) that allows for a
non-diagonal covariance matrix for eith, the likelihood ratio test will be inappropriate and other
methods have to be used.29

An alternative strategy is to allow the cross-section dependence to be more general than
the common factor structure, so that cross-section dependence due to other reasons can be
accommodated. To test for cross-section dependence directly, the Lagrange multiplier (LM) test
proposed by Breusch and Pagan (1980) can be used. However, this test works well only when
N is relatively small and T sufficiently large. The test over-rejects the null when N ! 1.
Recently, Pesaran (2004) proposed a test criterion that is applicable to a variety of panel data
models, including stationary and unit root dynamic heterogeneous panels with short T and
large N. This test is based on the average of pairwise correlation coefficients of the OLS
residuals from the individual regressions in the panel and has a standard normal distribution
as N ! 1. Pesaran also compares this test (called the CD test) with the LM test and shows
that the CD test has the correct size in small samples and satisfactory power, while the LM
test tends to over-reject the null hypothesis of cross-section independence when T is small
and N is large. Since N and T in our sample are of moderate sizes, both the CD and the
LM tests may be appropriate.30 Applying the CD test to the specification in Table IV, we get
the value of test statistic equal to 1.53 with p-value equal to 0.127. For the LM test, the
value of test statistic is equal to 277.01, which has �2 distribution with degree of freedom
of 241. The p-value of this test is 0.055. So both tests fail to reject the null hypothesis
of cross-section independence at the significance level of 5%.31 Thus, the absence of cross-
sectional correlation rules out the possibility of inconsistency in our preferred Hierarchical Bayes
estimator.32

of one common factor, we could estimate the factor and factor loading by maximum likelihood estimation in principle.
Since we have a lot of missing values, it is more convenient to use the principal component estimator that is asymptotically
equivalent to MLE. Stock and Watson (2002) discuss how to estimate the principal component estimator using an EM
algorithm to deal with the problem of missing values. We follow the procedure outlined in that paper.
29 See Stock and Watson (2002) and Bai and Ng (2002) for some alternative approaches.
30 We have an unbalanced panel data with N D 25 and T varying from 20 to 69, whereas the number of common
observations between each pair of forecasters varies from 1 to 39. We drop those pairs for which the number of common
observations is less than 4.
31 Since the LM test is known to over-reject with large N, we interpret a p-value of 0.055 as very little evidence in favour
of cross-sectional dependence.
32 As a robustness check of model (1), we also investigated if the error term in model (1) is serially correlated.
We calculated the modified Breusch–Godfrey test (see Greene, 2003) for each forecaster. The null hypothesis of no
autocorrelation was accepted for all forecasters except one at the significance level of 1%. At the significance level of
5%, only two forecasters showed evidence of autocorrelation in residuals.
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5. CONCLUDING REMARKS

A number of previous studies have explored the closeness of the uncertainty measures obtained
from the SPF density forecasts with those generated by ARCH-type models based on aggregate
time series data. Given the popularity of the ARCH models and the fact that these density
forecasts data are unique, a careful comparison of the two can help unravel the real process
of forecast uncertainty dynamics, well beyond whether these two approaches match well or not.
There are two distinct issues when one attempts to compare the results from analysis of survey
data on forecast uncertainty with results from the ARCH approach. (i) How good are the ARCH-
type model specifications in explaining the individual subjective forecast uncertainties? (ii) At the
aggregate time series level, how good is the maintained hypothesis that the objective conditional
variance of inflation forecast errors from the time series model can be taken as the true subjective
forecast uncertainty? The true subjective uncertainty in prediction is likely to be determined also
by economic and non-economic factors outside the model. Whereas many papers have looked at
the second question using aggregate time series data,33 our aim in this paper was to study the first
question with individual density data in a multi-period context. Thus, we examined the adequacy
of the EGARCH framework to explain forecast uncertainty at the micro level and possible pitfalls
in aggregate estimation.

Because of heterogeneity in individual information sets, and forecasters’ differential capabilities
and willingness to process information, we estimate a dynamic panel data model that accommodates
random parameter variation, and the multi-dimensional nature of the panel. Our preferred
Hierarchical Bayes estimator was compared with a number of other less appropriate estimators to
emphasize the importance of using the right estimator in such models. The conventional time series
estimator showed severe aggregation bias. We found that the persistence in forecast uncertainty is
much less than what the aggregate time series data would suggest. Our study clearly shows that
ignoring the heterogeneity of forecasters will lead to misleading inference regarding the model
specification and the nature of the uncertainty dynamics, underscoring the results obtained in
Pesaran and Smith (1995) and Hsiao et al. (1999).

Surprisingly, we found that the conventionally defined past forecast errors have no significant
effect on forecast uncertainty in a multi-period context. When the forecasting horizon exceeds
the sampling interval, and consequently a number of predictions have to be made before the
target variable is known, the information contained in past forecast errors is often outdated, and
uncertain due to data revisions. Forecasters would rather pay more attention to recent news obtained
from forecast revisions that do not depend on the actual values of the variable. In a fixed-target
forecasts scheme like the SPF, recent revisions in density forecasts will encompass the relevant
new information for future forecasts and their associated uncertainties. We estimated the variance
of news using the concept of Kullback–Leibler information, and this variable came out highly
significant and with expected sign in the regression.

Many other macroeconomic factors that may contain information about inflation forecast
uncertainty were examined. Our empirical results confirmed the Friedman–Ball view that there is
a positive relationship between the level of inflation and inflation forecast uncertainty. The effect
is very strong. We also found that the expected change in inflation affects forecast uncertainty
asymmetrically—positive expected change affects positively whereas negative change has no
significant effect. It seems that people are more sensitive to the pressure of inflation than deflation.

33 See Lahiri and Liu (2005).
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Unlike many previous studies we found strong evidence that disagreement is not a dependable
proxy for uncertainty. In our panel data regression, disagreement becomes statistically insignificant
when lagged inflation, expected change in inflation and variance of news are included in the model
specification.

We found no effect of the volatility of a number of macroeconomic inflation predictors that have
appeared earlier in the literature on forecast uncertainty. The reason may be that forecasters have
numerous predictors to choose from whose usefulness changes from period to period, and hence
any single predictor may be statistically insignificant over a long sample period. In order to make
sure that we are not omitting any relevant macroeconomic factors from our specification, we tested
for the presence of a common factor in the residuals. This test, and also other statistics directly
testing the presence of cross-sectional dependence in the residuals of individual forecasters, found
no evidence of omitted macroeconomic factors from our model.

The lack of explanatory power of the macroeconomic variables implies that the parsimonious
EGARCH framework is quite versatile in modelling subjective uncertainty of individual forecasts.
The lagged uncertainty, the Kullback–Leibler measure of volatility of the latest news, and the level
and expected change of inflation act as ‘catch all’ for numerous other macroeconomic variables.
The explanatory power of the estimated EGARCH model is around 45%. This is quite satisfactory
in a panel data regression, particularly in view of the fact that the elicited density forecasts are sure
to be affected by psychological and judgmental factors as well. Our study, however, brings out the
importance of individual heterogeneity when ARCH-type models are estimated using aggregate
time series data. As Hsiao et al. (2005) have shown, policy evaluation based on the aggregate data
ignoring the heterogeneity of the constituent micro units can be grossly misleading, particularly
in dynamic nonlinear models. Recent research exploring conditions under which correct inference
can be made about the behaviour of microeconomic agents from aggregate nonlinear dynamic
models can potentially help researchers to generate efficient forecasts and conduct meaningful
policy analysis when only aggregate data are available.34

APPENDIX: DEFINITIONS AND SOURCES OF THE MACROECONOMIC VARIABLES

The specific definitions of the variables tested in the regressions are given below.

ž Rolling variance of (annualized) quarterly growth rates of real GDP during the last four quarters
calculated with data available in the current quarter (real-time data).

ž Rolling variance of monthly total civilian unemployment rates during the last six months
calculated with data available in the current month (real-time data).

ž Rolling variance of (annualized) monthly growth rates of M1 during the last six months calculated
with data in the current month (real-time data).

ž Rolling variance of (annualized) monthly growth rates of M2 during the last six months calculated
with revised data available in 2003Q4. Because the real-time data was incomplete, we chose to
use the revised data.

ž Rolling variance of (annualized) monthly growth rates in the crude oil price during the last six
months calculated with revised data available in June 2004.

34 See, for instance, the advances made in Lewbel (1992, 1994), van Garderen et al. (2000) and Abadir and Talmain
(2002).
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ž Rolling variance of (annualized) monthly growth rates in the nominal wage during the last six
months calculated with revised data available in December 2003.

ž Rolling variance of (annualized) monthly growth rates in the commodity prices during the last
six months calculated with revised data available in June 2004.

ž Rolling variance of (annualized) monthly growth rates in the stock prices during the last six
months calculated with data available in June 2004.

ž Rolling variance of monthly spread between the 10-year T-bond and 3-month T-bill rates during
the last six months.

Rolling variances were calculated with monthly observations when available, and were matched
with quarterly forecast data as a skip sample. Real GDP, total civilian unemployment rate, M1
and M2, 10-year T-bond and 3-month T-bill rates are from the real-time data set provided by the
Federal Reserve Bank of Philadelphia. Data on real GDP is quarterly, others are monthly. Crude
oil prices are from the Bureau of Labor Statistics (series ID: wpu0561); it is monthly and not
seasonally adjusted (1982 D 100). Nominal wages are the average hourly earnings of production
workers: total private sector from the Bureau of Labor Statistics (series ID: CES0500000006,
seasonally adjusted), monthly. Commodity prices are from the Bureau of Labor Statistics (series ID:
wpu000 000, not seasonally adjusted, 1982 D 100), monthly. Stock price is the S&P 500 common
stock price index: composite (1941–1943 D 10), monthly. The growth rate of all variables is
calculated as log difference.
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