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Abstract. This paper derives the autocorrelation function of the squared values of
long-memory GARCH processes. Such processes are of much interest as they can produce
the long-memory conditional heteroskedasticity that many high-frequency financial time
series exhibit. An empirical application illustrating the practical use of our results is also
discussed.
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1. INTRODUCTION

A common finding in much of the empirical literature on the second-order
structure of high-frequency financial time series is that sample autocorrelations
for squared or absolute-valued observations tend to decay very slowly and remain
fairly large at long lags (e.g. Dacorogna et al., 1993; Ding et al., 1993; Bollerslev
and Mikkelsen, 1996; Ding and Granger, 1996; Breidt et al., 1998). As a
consequence, many researchers have proposed extensions of generalized
autoregressive conditionally heteroskedastic (GARCH) models which can
produce such long-memory behaviour; examples include the models discussed
in Robinson (1991), Ding and Granger (1996), Baillie et al. (1996), Bollerslev and
Mikkelsen (1996), Robinson and Zaffaroni (1997), and Robinson and Henry
(1999), inter alia.

In this paper, we focus on a class of long-memory GARCH (LMGARCH)
processes that belong to the family of conditionally heteroscedastic processes
introduced by Robinson (1991). These processes are very closely related to the
fractionally integrated GARCH (FIGARCH) processes proposed by Baillie et al.
(1996) and share some of the features of fractional ARIMA processes. In
particular, shocks to the conditional variance of an LMGARCH process
eventually die away to zero (in a forecasting sense), but shock dissipation
occurs at a slow hyperbolic rate rather than the faster geometric rate that is
characteristic of weakly stationary GARCH processes.

Although LMGARCH models have become increasingly popular in practice,
the statistical properties of time series whose behaviour is governed by such
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models remain largely unexplored. The present paper is intended as a first
step in closing this gap, its contribution being the derivation of convenient
representations for the autocorrelation function of the squared values of
LMGARCH processes. Such representations are not only of theoretical
interest; the practitioner could assess the adequacy of an empirical LMGARCH
model by examining whether the qualitatively important features of the
correlogram of the squared observations are captured by the autocorrelation
function implied by the fitted model.

The remainder of the paper proceeds as follows. Section 2 lays out the models
of interest, assumptions and notation. Section 3 presents the autocorrelation
functions for squared LMGARCH processes. Section 4 discusses an empirical
example. Section 5 concludes.

2. LONG-MEMORY GARCH PROCESSES

To establish terminology and notation, recall from Bollerslev (1986) that a
GARCH( p, q) process {et} is defined by the equations

e2t ¼ htn
2
t ; ð1Þ

B0ðLÞht ¼ x0 þ A0ðLÞe2t ; ð2Þ

where {nt, t ¼ 0, ±1, ±2,…} are independent and identically distributed random
variables with EðntÞ ¼ Eðn2t � 1Þ ¼ 0

A0ðLÞ,
Xq
j¼1

a0jL
j and B0ðLÞ, 1�

Xp
j¼1

b0jL
j:

L stands for the lag operator and the symbol ‘,’ is used to indicate equality by
definition. It follows that fe2t g admits the ARMA( p*, p) representation

A�ðLÞe2t ¼ x0 þ B0ðLÞvt; vt , e2t � ht; ð3Þ

where

A�ðLÞ, 1�
Xp�
j¼1

a�j L
j; p� ¼ maxfp; qg; a�j ¼ a0j þ b0j ðj ¼ 1; . . . ; p�Þ;

and {vt} is, by construction, a martingale-difference sequence relative to the r-field
generated by {es, s 6 t}.

The class of GARCH processes can be generalized by allowing fe2t g to satisfy
the equation (cf. Robinson, 1991)

e2t ¼ xþ XðLÞvt; ð4Þ

for some x 2 (0, 1) and
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XðLÞ,
X1
j¼0

xjLj; 0 <
X1
j¼0

x2
j < 1:

A strictly stationary GARCH( p, q) process is a special case of (4) with the
coefficients {xj, j P 0} declining towards zero geometrically fast so that
xj ¼ O(kj) as j fi 1 for some k 2 (0, 1). When Eðe4t Þ < 1, the geometric
decay of {xj, j P 0} implies that the autocorrelations fqnðe2t Þ,
Corrðe2tþn; e

2
t Þ; nP 1g are also geometrically decaying. Hence, fe2t g exhibits short

memory, in the sense that the series
P1

n¼0 qnðe2t Þ is absolutely convergent.
The specification in (4) also includes processes for which the autocorrelations

fqnðe2t Þ; nP 1g decay at a rate slower than geometric. One possibility is to allow
the coefficients {xj, j P 0} to decay hyperbolically so that xj � Cj)d as j fi 1
for some d 2 (1, 1). (Henceforth, C denotes a generic finite positive constant,
not necessarily the same throughout, and an � bn as n fi 1 signifies that
limn fi 1|an|/bn ¼ 1). An important finite parameterization of X(L) that allows for
such behaviour is

XðLÞ ¼ BðLÞ
AðLÞð1� LÞd

; ð5Þ

for some d 2 ð0; 1
2Þ, with the lag polynomials

AðLÞ, 1�
Xq
j¼1

ajLj ¼
Yq
j¼1

ð1� ajLÞ and BðLÞ, 1�
Xp
j¼1

bjL
j

being such that |A(z)| > 0 and |B(z)| > 0 for all complex-valued z on the closed
unit disk (see e.g. Robinson and Zaffaroni, 1997; Robinson and Henry, 1999). The
fractional-difference operator (1)L)d in (5) is defined as the series

ð1� LÞd , F ð�d; 1; 1; LÞ ¼
X1
j¼0

Cðj� dÞ
Cð�dÞCðjþ 1Þ L

j ¼
X1
j¼0

d
j

� �
ð�1ÞjLj;

where

F ða; b; c; zÞ,
X1
j¼0

ðaÞjðbÞj
ðcÞj

zj

j!

is the Gaussian hypergeometric series, ðbÞj ,
Qj�1

i¼0 ðb þ iÞ is Pochhammer’s
symbol for the shifted factorial function (with (b)0 , 1), and C(Æ) is the gamma
function.

It follows from (4) and (5) that the stochastic volatility ht obeys the equation

ht ¼ xWð1Þ þ ½1�WðLÞ�e2t ;

where

WðLÞ, 1�
X1
j¼1

wjL
j ¼ AðLÞð1� LÞd

BðLÞ ;
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with wj P 0 (j P 1). Furthermore, as

Varðe2t Þ ¼ Eðv2t Þ
X1
j¼0

x2
j and Eðv2t Þ ¼ f1� ½1=Eðn4t Þ�gEðe4t Þ

under (4), we have

Eðe4t Þ ¼
x2

1� f1� ½1=Eðn4t Þ�g
P1

j¼0 x
2
j

:

Hence, square integrability of fe2t g requires that 0 < Eðn4t Þ < 1 and

1� 1

Eðn4t Þ

( )X1
j¼0

x2
j < 1: ð6Þ

When, for example, nt is normally distributed, this condition becomes
0 <

P1
j¼0 x

2
j < 3=2 and we have

Eðe4t Þ ¼
x2

1� 2
3

P1
j¼0 x

2
j

< 1:

Under (4)–(5), the coefficients {xj, j P 0} decay at a slow hyperbolic rate so
that xj � Cj d)1 as j fi 1. This in turn implies that the autocorrelations
fqnðe2t Þ; nP 1g satisfy

qnðe2t Þ ¼
P1

j¼0 xjxjþnP1
j¼0 x

2
j

� Cn2d�1 as n ! 1; ð7Þ

provided Eðe4t Þ < 1. Hence, when the fourth moment of the et exists, fe2t g is a
weakly stationary process which exhibits long memory for all d 2 ð0; 1

2Þ, in the
sense that the series

P1
n¼0 jqnðe2t Þj is properly divergent. For this reason, we shall

refer to a process {et} satisfying (4) and (5) as an LMGARCH( p, d, q) process.
A model closely related to the LMGARCH( p, d, q) specification in (4)–(5) was

considered by Baillie et al. (1996), who defined a FIGARCH( p, d, q) process via
the equation

AðLÞð1� LÞde2t ¼ xþ BðLÞvt: ð8Þ

The FIGARCH( p, d, q) process is strictly stationary and ergodic but not square
integrable (see Zaffaroni, 2000). However, as the ‘autocorrelations’
ð
P1

j¼0 xjxjþnÞ=ð
P1

j¼0 x
2
j Þ in (7) are well defined even if Eðe4t Þ ¼ 1 (cf. Henry,

2001), it is not difficult to show that the FIGARCH( p, d, q) and
LMGARCH( p, d, q) processes have the same second-order structure when
condition (6) is satisfied.

Finally, it is worth mentioning that Giraitis et al. (2000) have recently studied
the properties of infinite-order ARCH processes. Their results, however, do not
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apply for the specification in (4)–(5) as it does not satisfy the condition
Eðn2t Þ½1 � Wð1Þ� < 1, which was shown to be sufficient for strict stationarity of
fe2t g. The exact properties of processes satisfying (4)–(5) thus remain an open
question.

3. AUTOCORRELATION STRUCTURE OF LMGARCH PROCESSES

In this section of the paper, we establish the autocorrelation properties of
LMGARCH processes. We begin by considering some low-order processes which
have proved to be useful in modelling a variety of financial time series and then
proceed to examine the general LMGARCH( p, d, q) case.

3.1. LMGARCH(1, d, 1) process

The LMGARCH(1, d, 1) process is defined via the fractional ARIMA(1, d, 1)
equation

e2t ¼ xþ ð1� b1LÞð1� a1LÞ�1ð1� LÞ�dvt: ð9Þ

We begin by giving the infinite moving-average representation of e2t .

Lemma 1. The process fe2t g admits the infinite moving-average representation

e2t ¼ xþ
X1
j¼0

xjvt�j; ð10Þ

where

xj ¼
�d
j

� �
ð�1Þj þ

Xj

k¼1

�d
j� k

� �
ð�1Þj�kðak1 � ak�1

1 b1Þ: ð11Þ

Proof. As

ð1� jLÞ�d ¼
X1
j¼0

�d
j

� �
ð�jÞjLj; ð12Þ

we have

1� b1L
1� a1L

¼
X1
j¼0

�1
j

� �
ð�a1LÞjð1� b1LÞ ¼ 1þ

X1
j¼1

ðaj1 � aj�1
1 b1ÞLj;

and hence (10) follows from (9). QED
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In the first proposition, we obtain the autocorrelation function of fe2t g.

Proposition 1. The autocorrelation function of fe2t g is given by

qnðe2t Þ ¼ cn=c0; nP1; ð13Þ
where

cn ¼
Cð1� 2dÞ

ð1� a21ÞCðdÞCð1� dÞ
Cðd þ nÞ

Cð1� d þ nÞ ½ð1þ b21 � b1a1Þ
�

� F ðd þ n; 1; 1� d þ n; a1Þ � a1b1F ðd � n; 1; 1� d � n; a1Þ�

þ Cðd þ n� 1Þ
Cðn� dÞ ½a1ð1þ b21Þ � b1�F ðd � nþ 1; 1; 2� d � n; a1Þ

�Cðd þ nþ 1Þ
Cð2� d þ nÞ b1F ðd þ nþ 1; 1; 2� d þ n; a1Þ

�
; nP0: ð14Þ

Proof. On account of (10) and (11), we have

qnðe2t Þ ¼

P1
k¼0

P1
j¼�1

�d
jn� jj þ k

� �
�d
k

� �
ð�1Þjn�jj P1

i¼0 pipiþjjj

P1
k¼0

P1
j¼�1

�d
j � jj þ k

� �
�d
k

� �
ð�1Þj�jj P1

i¼0 pipiþjjj

; ð15Þ

where p0 , 1 and pi ¼ ai1 � ai�1
1 b1 for i P 1. But as

X1
k¼0

�d
jn� jj þ k

� �
�d
k

� �
ð�1Þjn�jj ¼ Cð1� 2dÞCðd þ jn� jjÞ

CðdÞCð1� dÞCð1� d þ jn� jjÞ ;

it follows that

qnðe2t Þ ¼
P1

j¼�1
Cðdþjn�jjÞ

Cð1�dþjn�jjÞ fð1þ b21Þa
jjj
1 � b1ða

jjjj�1j
1 þ ajjjþ1

1 ÞgP1
j¼�1

Cðdþj�jjÞ
Cð1�dþj�jjÞ fð1þ b21Þa

jjj
1 � b1ða

jjjj�1j
1 þ ajjjþ1

1 Þg
:

Finally, from the fact that

X1
j¼0

Cðd þ jn� jjÞ
Cð1� d þ jn� jjÞ a

j
1 ¼

Cðd þ nÞ
Cð1� d þ nÞ F ðd � n; 1; 1� d � n; a1Þ;

we obtain (13)–(14) by straightforward manipulation. QED

In Figure 1, we plot the theoretical autocorrelation function of a squared
LMGARCH(1, d, 1) process with a1 ¼ 0.1, b1 ¼ 0.2 and d 2 {0.2, 0.3}.1 As
expected, the autocorrelations decay at a very slow rate, much slower than the
geometric rate that is characteristic of weakly stationary GARCH processes.
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3.2. LMGARCH( p, d, 0) process

Now consider the LMGARCH( p, d, 0) process defined via the fractional
ARIMA(0, d, p) equation

e2t ¼ xþ BðLÞð1� LÞ�dvt: ð16Þ

For the process in (16), we have the following result.

Lemma 2. The process fe2t g admits the infinite moving-average representation

e2t ¼ xþ
X1
j¼0

xjvt�j; ð17Þ

where

xj ¼
Xj

k¼0

�d
j� k

� �
ð�1Þj�kpk; ð18Þ

and

pk ,
Xminfk;pg

r¼0

ð�brÞ ðb0 , � 1Þ:
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d=0.3

Figure 1. Autocorrelation function of squared LMGARCH(1, d, 1) process.
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Proof. The desired result is obtained straightforwardly from (16) by using
(12). QED

The autocorrelations of the process defined by (16) are obtained next.

Proposition 2. The autocorrelation function of fe2t g is given by

qnðe2t Þ ¼ cn=c0; nP1; ð19Þ

where

cn ¼
Cð1� 2dÞ

CðdÞCð1� dÞ
Xp
l¼�p

Ujlj
Cðd þ nþ lÞ

Cð1� d þ nþ lÞ ; nP0; ð20Þ

with

Ujlj ,
Xp�jlj

k¼0

bkbkþjlj ðb0 , � 1Þ:

Proof. Using the fact that qnðe2t Þ ¼ ð
P1

j¼0 xjxjþnÞ=ð
P1

j¼0 x
2
j Þ, we have in view

of (18) that

qnðe2t Þ ¼Pp
l¼0UlHl

P1
j¼0

�d

j

� � �d

jþjn� lj

� �
ð�1Þ n�lj j þ

P1
j¼0

�d

j

� � �d

jþnþ l

� �
ð�1Þnþl

� �
Pp

l¼0UlHl
P1

j¼0

�d

j

� � �d

jþj� lj

� �
ð�1Þ �lj j þ

P1
j¼0

�d

j

� � �d

jþ l

� �
ð�1Þl

� � ;

where

Hl ,
1
2 ; if l ¼ 0;
1; if l 6¼ 0:

�

Hence, as

X1
k¼0

�d
jn� lj þ k

� �
�d
k

� �
ð�1Þjn�lj ¼ Cð1� 2dÞCðd þ jn� ljÞ

CðdÞCð1� dÞCð1� d þ jn� ljÞ ;

(19)–(20) follow. QED

Figure 2 shows the theoretical autocorrelation function of a squared
LMGARCH(1, d, 0) process with b1 ¼ 0.1 and d 2 {0.2, 0.3}. The shape of
the autocorrelation functions is very similar to those for the LMGARCH(1, d, 0)
process, exhibiting a rate of decay much slower than geometric.
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3.3. LMGARCH(0, d, q) process

Next consider the LMGARCH(0, d, q) process defined via the fractional
ARIMA(q, d, 0) equation

e2t ¼ xþ A�1ðLÞð1� LÞ�dvt; ð21Þ

where it is assumed that the roots of A(z) ¼ 0 are simple. The moving-average
representation of the process in (21) is as follows.

Lemma 3. The process fe2t g admits the infinite moving-average representation

e2t ¼ xþ
X1
j¼0

xjvt�j; ð22Þ

where

xj ¼
Xq
i¼1

aþi
Xj

k¼0

�d
j� k

� �
aki ð�1Þj�k; ð23Þ
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Figure 2. Autocorrelation function of squared LMGARCH(1, d, 0) process.
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and

aþi ,
aq�1
iQq

k¼1;k 6¼iðai � akÞ
:

Proof. From (21), we have that

e2t ¼ xþ ð1� LÞ�d
Yq
j¼1

ð1� ajLÞ
" #�1

vt:

Hence, in view of the fact that

Yq
j¼1

ð1� ajLÞ ¼
Xq
i¼1

aþi
1� aiL

;

ð1� LÞ�d ¼
X1
j¼0

�d
j

� �
ð�1ÞjLj and ð1� aiLÞ�1 ¼

X1
j¼0

�1
j

� �
ð�aiLÞj;

(22)–(23) follow. QED

The autocorrelation structure of the process defined by (21) is established next.

Proposition 3. The autocorrelation function of fe2t g is given by

qnðe2t Þ ¼ cn=c0; nP1; ð24Þ

where

cn ¼
Cð1� 2dÞ

CðdÞCð1� dÞ
Xq
i¼1

ai
Cðd þ nÞ

Cð1� d þ nÞ F ðd þ n; 1; 1� d þ n; aiÞ
�

þ ai
Cðd þ n� 1Þ
Cðn� dÞ F ðd � nþ 1; 1; 2� d � n; aiÞ

�
; nP0; ð25Þ

with

ai ,
aþiQq

k¼1ð1� aiakÞ
:

Proof. In view of (23), we have

qnðe2t Þ ¼
P1

j¼0 xjxjþnP1
j¼0 x

2
j

¼
P1

k¼0

P1
j¼�1 /k

n�jgjP1
k¼0

P1
j¼�1 /k

�jgj
;
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where

/k
n�j ,

�d
jn� jj þ k

� �
�d
k

� �
ð�1Þjn�jj and gj ,

Xq
i¼1

Xq
r¼1

X1
m¼0

aþi a
m
i a

þ
r a

mþjjj
r :

But as

X1
k¼0

/k
n�j ¼

Cð1� 2dÞCðd þ jn� jjÞ
CðdÞCð1� dÞCð1� d þ jn� jjÞ and

Xq
k¼1

aþi a
þ
k

1� aiak
¼ ai;

it follows that

qnðe2t Þ ¼
P1

j¼�1
Cðdþjn�jjÞ

Cð1�dþjn�jjÞ
Pq

i¼1 aia
jjj
iP1

j¼�1
Cðdþj�jjÞ

Cð1�dþj�jjÞ
Pq

i¼1 aia
jjj
i

¼
P1

j¼0

Pq
i¼1 aia

j
i

CðdþnþjÞ
Cð1�dþnþjÞ þ ai

Cðdþjn�1�jjÞ
Cð1�dþjn�1�jjÞ

h i
P1

j¼0

Pq
i¼1 aia

j
i

CðdþjÞ
Cð1�dþjÞ þ ai

Cðdþj�1�jjÞ
Cð1�dþj�1�jjÞ

h i :

Finally, using

X1
j¼0

Cðd þ nþ jÞ
Cð1� d þ nþ jÞ a

j
i ¼

Cðd þ nÞ
Cð1� d þ nÞ F ðd þ n; 1; 1� d þ n; aiÞ;

we obtain (24)–(25). QED

Remark. Our results are limited to LMGARCH(0, d, q) processes for which
ai „ ak for all i, k 2 {1,…,q} such that i „ k. However, as Sowell (1992)
remarked, this might not be an overly restrictive requirement as, in the space of
polynomials of a given order, the subset which has repeated zeros is a set with zero
Lebesgue measure.

Figure 3 shows a plot of the theoretical autocorrelation function of a squared
LMGARCH(0, d, 1) process with a1 ¼ 0.1 and d 2 {0.2, 0.3}. As before, the
autocorrelations decrease extremely slowly.

3.4. LMGARCH( p, d, q) process

We finally consider the general LMGARCH( p, d, q) process defined via (4)–(5)
with the added restriction that the roots of A(z) ¼ 0 are simple. The moving-
average representation of such a process is given in Lemma 4.

Lemma 4. The process fe2t g admits the infinite moving-average representation

e2t ¼ xþ
X1
j¼0

xjvt�j; ð26Þ
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where

xj ¼
Xq
i¼1

aþi
Xj

k¼0

�d
j� k

� �
pikð�1Þj�k; ð27Þ

pik ,
Xminfk;pg

r¼0

ak�r
i ð�brÞ ðb0 , � 1Þ; and aþi ,

aq�1
iQq

k¼1;k 6¼iðai � akÞ
:

Proof. From (4)–(5), we have that

e2t ¼ xþ ð1� LÞ�d
Yq
j¼1

ð1� ajLÞ
" #�1

BðLÞvt:

Hence, on account of

Yq
j¼1

ð1� ajLÞ ¼
Xq
i¼1

aþi
1� aiL

;

0.0
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Figure 3. Autocorrelation function of squared LMGARCH(0, d, 1) process.
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ð1� LÞ�d ¼
X1
j¼0

�d
j

� �
ð�1ÞjLj and ð1� aiLÞ�1BðLÞ ¼

X1
r¼0

pirLr;

(26)–(27) follow. QED

Next, we establish a representation for the autocorrelation function of the
squared values of the LMGARCH( p, d, q) process.

Theorem 1. The autocorrelation function of fe2t g is given by

qnðe2t Þ ¼ cn=c0; nP1; ð28Þ

where

cn ¼
Xq
i¼1

Xp
l¼0

UlaiHðd; n; l; aiÞ; nP0; ð29Þ

Ul ,
Xp�l

k¼0

bkbkþl ðb0 , � 1Þ; ai ,
aþiQq

k¼1ð1� aiakÞ
;

Hðd; n; l; aiÞ,
Cðd þ nþ lÞ

Cð1� d þ nþ lÞ F ðd þ nþ l; 1; 1� d þ nþ l; aiÞ

þ 1l
Cðd þ n� lÞ

Cð1� d þ n� lÞ F ðd � nþ l; 1; 1� d � nþ l; aiÞ

þ ai 1l
Cðd þ nþ 1� lÞ
Cð2� d þ n� lÞ F ðd þ nþ 1� l; 1; 2� d þ n� l; aiÞ

�

þ Cðd þ n� 1þ lÞ
Cðn� d þ lÞ F ðd � nþ 1� l; 1; 2� d � n� l; aiÞ

�
;

and

1l ,
0; if l ¼ 0;
1; if l 6¼ 0:

�

Proof. In view of (27), we have

qnðe2t Þ ¼
P1

j¼0 xjxjþnP1
j¼0 x

2
j

¼
P1

k¼0

P1
j¼�1 /k

n�jgjP1
k¼0

P1
j¼�1 /k

�jgj
;

where

/k
n�j ,

�d
jn� jj þ k

� �
�d
k

� �
ð�1Þjn�jj and gj ,

Xq
i¼1

Xq
s¼1

X1
m¼0

aþi aþs pimps;mþjjj:
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But as

X1
k¼0

/k
n�j ¼

Cð1� 2dÞCðd þ jn� jjÞ
CðdÞCð1� dÞCð1� d þ jn� jjÞ and

Xq
k¼1

aþi a
þ
k

1� aiak
¼ ai;

it follows that

qnðe2t Þ ¼
P1

j¼�1
Cðdþjn�jjÞ

Cð1�dþjn�jjÞ
Pq

i¼1

Pp
l¼0 Ulaið1lajjjj�lj

i þ ajjjþl
i ÞP1

j¼�1
Cðdþj�jjÞ

Cð1�dþj�jjÞ
Pq

i¼1

Pp
l¼0 Ulaið1lajjjj�lj

i þ ajjjþl
i Þ

¼
Xp
l¼0

X1
j¼0

Ul

Xq
i¼1

ai
1lCðd þ jn� l� jjÞ
Cð1� d þ jn� l� jjÞ þ

Cðd þ nþ lþ jÞ
Cð1� d þ nþ lþ jÞ

�(

þ Cðd þ jn� 1þ l� jjÞ
Cð1� d þ jn� 1þ l� jjÞ þ

1lCðd þ jnþ 1� lþ jjÞ
Cð1� d þ jnþ 1� lþ jjÞ

� �
ai

�
aji

�

�
Xp
l¼0

X1
j¼0

Ul

Xq
i¼1

ai
1lCðd þ j � l� jjÞ
Cð1� d þ j � l� jjÞ þ

Cðd þ lþ jÞ
Cð1� d þ lþ jÞ

�(

þ Cðd þ j � 1þ l� jjÞ
Cð1� d þ j � 1þ l� jjÞ þ

1lCðd þ j1� lþ jjÞ
Cð1� d þ j1þ j� ljÞ

� �
ai

�
aji

��1

:

Hence, upon observing that

X1
j¼0

Cðd þ nþ lþ jÞ
Cð1� d þ nþ lþ jÞ a

j
i ¼

Cðd þ nþ lÞ
Cð1� d þ nþ lÞ F ðd þ nþ l; 1; 1� d þ nþ l; aiÞ;

(28)–(29) are obtained. QED

4. AN EMPIRICAL ILLUSTRATION

As an empirical illustration, we examine the properties of continuously
compounded daily rates of return for the Deutschmark exchange rate vis-à-vis
the US Dollar over the period from 31/10/1983 to 31/12/1992 (2,394 observations
in total). To evaluate howwell the second-order properties of the squared exchange
rate returns are approximated by various models, we compared the sample auto-
correlation function of the squared returns with the theoretical autocorrelation
functions of LMGARCH(1, d, 0), LMGARCH(0, d, 1), LMGARCH(1, d, 1),
and IGARCH(1, 1) processes. The theoretical autocorrelations were evaluated
using the formulae given in Propositions 1–3 and the quasi-maximum likelihood
parameter estimates reported in Table I (obtained under the assumption of
conditional Gaussianity). In the IGARCH(1, 1) case, we used the formula for the
approximate autocorrelation function given in Ding and Granger (1996).

Figure 4 plots the theoretical and sample autocorrelations for lags up to 2392.2

Evidently, the LMGARCH(1, d, 0) and LMGARCH(0, d, 1) processes give the
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best approximation to the autocorrelations of the squared exchange rate returns.
The LMGARCH(1, d, 1) process has autocorrelations considerable larger than
the sample autocorrelations of the returns. The IGARCH(1, 1) process, on the
other hand, provides a very bad approximation to the first 295 sample
autocorrelations of the returns but is almost as good as the
LMGARCH(1, d, 0) and LMGARCH(0, d, 1) from then onwards.

5. CONCLUSION

In this paper, we have examined the dependence structure of long-memory
autoregressive conditionally heteroscedastic processes. More specifically, we have
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Figure 4. Sample autocorrelations of squared exchange-rate returns and theoretical LMGARCH
autocorrelation functions.

TABLE I

Quasi-Maximum Likelihood Estimates

(1, d, 0) (0, d, 1) (1, d, 1)

d 0.2326 (0.0365) 0.1847 (0.0237) 0.3805 (0.0680)
a1 – )0.1260 (0.0306) 0.2742 (0.0471)
b1 0.1973 (0.0460) – 0.6114 (0.0620)

Notes: Figures in parentheses are asymptotic standard error values.
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obtained characterizations of the theoretical autocorrelation function of the
squared values of LMGARCH processes. Such processes have been found to
describe well the observed autocorrelation structure of many real-life financial
time series and are thus of much interest. Using our results, one can establish what
a fitted model implies about the second-order structure of the squared
observations and the extent to which these characteristics are consistent with
the correlogram of the data. This is illustrated in an empirical application
involving foreign exchange rate data.
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NOTES

1. The Gaussian hypergeometric series was evaluated using Mathematica.
2. The quasi-maximum likelihood estimates in Table I are such that

0 <
P1

j¼0 x
2
j < 3

2 for all three LMGARCH models.
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