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Abstract. This paper considers forecasting the conditional mean and variance from
an ARMA model with GARCH in mean effects. Expressions for the optimal predictors
and their conditional and unconditional MSEs are presented. We also derive the
formula for the covariance structure of the process and its conditional variance.
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1. INTRODUCTION

The autoregressive conditional heteroscedasticity (ARCH) model introduced by
Engle (1982) and its generalization, the GARCH model introduced by Bollerslev
(1986) have become increasingly popular in modelling ®nancial and economic
variables; see, for example, the surveys of Bollerslev et al. (1992), Berra and
Higgins (1993), Bollerslev et al. (1994) and, for a more detailed description, the
book by Gourieroux (1997). Following Engle's pathbreaking idea, several
formulations of conditionally heteroscedastic models (e.g. exponential GARCH,
fractional integrated GARCH, switching ARCH, asymmetric power ARCH,
component GARCH) have been introduced in the literature, forming an immense
ARCH family.

Although the literature on GARCH-type models is quite extensive, relatively
few papers have examined the issue of forecasting in models where the
conditional volatility is time-dependent. Engle and Kraft (1983) consider
predictions from an ARMA process with ARCH errors, whereas Engle and
Bollerslev (1986) and Baillie and Bollerslev (1992) consider predictions from
an ARMA model with GARCH errors.

One important exclusion from this framework concerns the ARCH in mean
model, introduced by Engle et al. (1987). This model was used to investigate
the existence of time varying term premia in the term structure of interest
rates. Such time varying risk premia have been strongly supported by a huge
body of empirical research, in interest rates (Hurn et al. 1995), in forward and
future prices of commodities (Hall, 1991; Moosa and Al-Loughani, 1994), in
GDP (Price, 1994), in industrial production (Caporale and McKierman, 1996)
and, especially, in stock returns; see Campbell and Hentschel (1992), Glosten et
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al. (1993), Black and Fraser (1995), Fraser (1996), Hansson and Hordahl
(1997) and Elyasiani and Mansur (1998).

In this paper, we focus our attention on predictions from a general ARMA
model with GARCH-in-mean effects. In Section 2, we present a new method
for obtaining multi-period predictions from the ARMA(r, s)-GARCH( p, q)-in-
mean model. In particular, we derive the optimal multi-step predictor in terms
of past observations and past errors. The coef®cients in our formula are
expressed in terms of the roots of the autoregressive (AR) polynomials and the
parameters of the moving average (MA) ones. We should mention that we only
examine the case where the roots of the AR polynomial are distinct (the case
of equal roots is left for future research). To point out the importance of our
results, we quote Baillie and Bollerslev (1992): `Processes with feedback from
the conditional variance to the conditional mean will considerably complicate
the form of the predictor and its associated mean square error (MSE). Analysis
of such models is consequently left for future research.'

The goal of our method is theoretical purity rather than the production of
expressions intended for practical use. However, our method can be employed
in the derivation of multi-step predictions from a more complicated model with
simultaneous feedback between the conditional mean and variance, namely the
GARCH-M-L model1; see Fountas et al. (2000). Another value of our method
is that it can easily be generalized to multivariate GARCH and GARCH in-
mean models.

In addition to our method for obtaining a closed form expression for the
optimal predictor (and its associated MSE) of the conditional mean from the
ARMA-GARCH-M model, the following three substantive problems for which
solutions do not exist in the GARCH literature are solved in this paper:

1. We give the in®nite moving average (IMA) representations of the
conditional mean and variance. These formulae can be used to obtain
alternative expressions for the minimum MSE (MMSE) predictors of the
conditional mean and variance in terms of in®nite past observations and errors.

2. We give the canonical factorization (CF) of the autocovariance generating
function (AGF) of the process and its conditional variance, [Note 2] and the
autocovariances and cross covariances for the process and its conditional variance.

3. We give the MMSE predictor of future values of the squared conditional
variance. We subsequently use this predictor to obtain the conditional MSE
associated with the MMSE predictor of the futures values of the conditional
mean for the ARMA-GARCH-M model.

2. ARMA-GARCH-M MODEL

To our knowledge, the analysis of the covariance structure and the multi-step
predictions from a general ARMA model with GARCH errors and in-mean
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effects has not been considered yet. This paper attempts to ®ll this gap in the
literature.

In what follows, we will consider the ARMA-GARCH-M process:

Ö(L)yt � ö� äht �È(L)E t (2:1)

where

Ö(L) � ÿ
Xr

j�0

ö j L
j

�
Yr

j�1

(1ÿ ë j L)

È(L) � ÿ
Xs

j�0

è j L
j

ö0 � è0 � ÿ1

and

B(L)ht � ù� A(L)E2t (2:2)

where

B(L) � ÿ
Xp

i�0

âi L
i

A(L) �
Xq

i�1

aiL
i

â0 � ÿ1

COROLLARY 1. The univariate ARMA representations of ht and yt are given
by

B�(L)ht � ù� A(L)v t (2:3)

where

B�(L) � B(L)ÿ A(L) �
Yp�
i�1

(1ÿ f �i L)

p� � max( p, q)

v t � E2t ÿ ht

and
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B�(L)Ö(L)yt � ö8� äA(L)v t �È(L)B�(L)E t (2:4)

where

ö8 � öB�(1)� äù

The v t are uncorrelated but they are not independent and have a very
complicated distribution. It is not dif®cult to show (Karanasos, 1999a) that under
conditional normality we have that

var(v t) � 2
3
E(E4t )

The fourth moment of the errors is given in He and TeraÈsvirta (1999), Karanasos
(1999a) and Ling 2000. A general condition for the existence of the 2m-th
moment is given by Ling (2000); see also Ling and Li (1997).

PROOF. In (2.2) we add and subtract A(L)ht to give (2.3). Moreover,
multiplication of (2.1) by B�(L) and substitution of (2.3) into (2.1) gives
(2.4). j

ASSUMPTION 1. All the roots of the autoregressive polynomial [Ö(L)] and all
the roots of the moving average polynomial [È(L)] lie outside the unit circle
(stationarity and invertibility conditions for the ARMA model).

ASSUMPTION 2. The polynomials Ö(L) and È(L) have no common left
factors other than unimodular ones, i.e, if

Ö(L) � U (L)Ö1(L) and È(L) � U (L)È1(L)

then the common factor U (L) must be unimodular (irreducibility condition for
the ARMA model).

ASSUMPTION 3. All the roots of the autoregressive polynomial [B�(L)] and
all the roots of the MA polynomial [A(L)] lie outside the unit circle
(stationarity and invertibility conditions for the GARCH model).

ASSUMPTION 4. The polynomials B�(L) and A(L) are left coprime. In other
words, the representation B�(L)=A(L) is irreducible.

ASSUMPTION 5. The polynomials Ö(L) and A(L) are left coprime. In other
words, the representation A(L)=Ö(L) is irreducible.

In what follows, we only examine the case where the roots of the AR
polynomials [Ö(L), B�(L)] are distinct.

COROLLARY 2. Under Assumptions 1±5, the canonical factorization (CF) of
the autocovariance generating function (AGF) for yt is given by
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gz(y) � äA(z)A(zÿ1)ó 2
v

Ö(z)B�(z)Ö(zÿ1)B�(zÿ1)
�È(z)È(zÿ1)ó 2

E

Ö(z)Ö(zÿ1)
�
X1
j�0

f jã j(z
j � zÿ j) (2:5)

where

f j � 0:5 if j � 0

0 otherwise

�
and the ã j are given in Theorem 3.

Under Assumptions 1±5, the in®nite-order MA representation of yt�i is given
by

yt�i � ö8

B�(1)Ö(1)
�
X1
n�0

[ägnv t�iÿn � snE t�iÿn] (2:6)

where

gn �
Xr� p�

l�1

Xmin(n,q)

j�1

ul0
8lnÿ jaj

ult �

æ l, t� p�Yp�
j�1

(ë l ÿ f �j )

if l � 1, 2, . . ., r

( f �m) t�r� p�ÿ1

Yp�
j�1
j6�m

( f �m ÿ f �j )
Yr

j�1

( f �m ÿ ë j)

if l � r � m, 1 < m < p�

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
æ l, t � ë t�rÿ1

lYr

j�1
j6� l

(ë l ÿ ë j)

sn � ÿ
Xr

l�1

Xmin(n,s)

j�0

æ l0ë
nÿ j
l è j

ë 8l
�

ë l if l � 1, . . ., r

f �m if l � r � m, 1 < m < p�

(

PROOF. The proof of (2.5) follows immediately from the univariate ARMA
representation (2.4) and the CF of the AGF of an ARMA model given in
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Nerlove et al. (1979, pp. 70±8), and Sargent (1987, pp. 247±9). The proof of
(2.6) follows directly from the univariate ARMA representation (2.4) and the
Wold representation of an ARMA model given in Pandit (1973) and Pandit and
Wu (1983, p. 105).

In the following theorem, we present closed form algebraic expressions for the
optimal predictor (and its associated MSE) of future values for the conditional
mean from the above model. We obtain the expression for the optimal predictor
by using a new method3 for solving a linear homogeneous difference equation
together with a technique for the manipulation of lag polynomials used in
Sargent (1987). We believe that our method gives a useful insight into the
treatment of linear stochastic difference equations. Another advantage of our
method is that it can be used to derive formulae for the multi-period predictions
from the GARCH-M-L model4 (Fountas et al., 2000). In addition, our method
can be applied to even more complicated GARCH models like the component
GARCH, the asymmetric power ARCH and the switching ARCH.5 Finally, our
method can easily be generalized to multivariate GARCH and GARCH-in-mean
models.6

THEOREM 1. Under Assumptions 1±5, the i-step-ahead predictor of yt�i is
readily seen to be

Et(yt�i) � ö9� ä
Xqÿ1

n�0

z 8inv tÿn �
Xsÿ1

n�0

zinE tÿn �
Xr� p�ÿ1

n�0

x 8in ytÿn (2:7)

where

z�in �
Xr� p�

l�1

Xmin(i�n,q)

j�n�1

ul0(ë 8l
)i�nÿ jaj

x�in �
Xr� p�

l�1

uliã ln

ã l0 � 1

ã ln � (ÿ1)n
Yn

j�1

Xr� p�ÿ(nÿ j)

k j�k jÿ1�1

k j 6� l

2664
3775Yn

j�1

(ë 8k j
)

k0 � 0
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zin � ÿ
Xr

l�1

Xmin(i�n,s)

j�n�1

æ l0ë
i�nÿ j
l è j

ö9 � ö8
1

B�(1)Ö(1)
ÿ
Xr� p�

l�1

uli

24 35
uli � uli

1ÿ ë 8i

and where ult and ë 8l
are given in (2.6).

It is important to note that, in the presence of GARCH in mean effects, the
optimal predictor for the conditional mean is a function of past values, not only
of the observations and the errors (ytÿn, E tÿn) but of the conditional variances
and the squared errors (htÿn, E2tÿn) as well.

PROOF. The proof follows from the univariate ARMA representation (2.4)
and the methodology presented in Appendix A.

In many applications in ®nancial economics, the primary interest centres on the
forecast for the future conditional variance. Such instances include option
pricing as discussed by Lamourex and Lastrapes (1990) and Day and Lewis
(1992), the ef®cient determination of the market rate of return as examined in
Chou (1988), and the relationship between stock market volatility and the
business cycle as analysed by Schwert (1989). In these situations, it is therefore
of interest to be able to characterize the uncertainty associated with the forecasts
for the future conditional variances as well. Some potentially useful results for
this purpose are given in Lemma 1 and Theorem 2.

LEMMA 1. The forecast error for the above i-step-ahead predictor is given by

FEt(yt�i) � yt�i ÿ Et(yt�i) �
Xiÿ1

n�0

[ägnv t�iÿn � snE t�iÿn] (2:8)

with unconditional and conditional MSE given by

V [FEt(yt�i)] � ä2 2

3

� �
E(E4t )

Xiÿ1

n�1

g2
n � E(E2t )

Xiÿ1

n�0

s2
n (2:9)

Vt[FEt(yt�i)] � 2ä2
Xiÿ1

n�1

g2
n Et(h2

t�iÿn)�
Xiÿ1

n�0

s2
n Et(ht�iÿn) (2:10)

where sn and gn are as given in (2.6).
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Note that in the presence of GARCH in mean effects the conditional MSE is a
function of the forecasts of the future values not only of the conditional variance
but of the squared conditional variance as well.

Observe that the above formulae when Ö(L) � ä � 1 and È(L) � 0 give the
i period forecast error (and its conditional and unconditional variances) of the
conditional variance.

PROOF. The proof follows immediately from the in®nite-order MA repre-
sentation (2.6).

THEOREM 2. The i-period ahead forecast for the squared conditional
variance h2

t is given by

Et(h2
t�i) � ù�

Xqÿ1

j�0

øEj,iE
2
tÿ j �

Xpÿ1

j�0

øh
j,i htÿ j �

Xqÿ1

j�0

øå2

j,iE
4
tÿ j

�
Xqÿ2

k1�0

Xqÿ1

k2�k1�1

øE
2

k1 k2,iE
2
tÿk1

E2tÿk2
�
Xpÿ1

j�0

øh2

j,i h
2
tÿ j

�
Xqÿ1

l�0

Xpÿ1

j�0

øEhlj,iE
2
tÿ l htÿ j �

Xpÿ2

k1�0

Xpÿ1

k2�k1�1

øh2

k1 k2,i htÿk1
htÿk2

(2:11)

where the ù and all the ø are functions of the GARCH parameters which can be
obtained from a system of difference equations given in Appendix B.

The above expression is very useful because the optimal forecasts of the squared
conditional variance is needed to obtain the conditional variance of the forecast
error associated with the optimal forecast for the conditional mean from the
ARMA-GARCH-M model; see equation (2.10).

In Theorem 3, we give a formula for the covariance structure of the ARMA-
GARCH-M model which includes several simpler models as special cases.

THEOREM 3. Under Assumptions 1±5, the autocovariance function of yt is
given by

ã j � covj(yt) �
Xr

i�1

eijzi, j var(E t)�
Xr� p�

i�1

ðijd i, j var(v t) (2:12)

where
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eij � ë j�rÿ1
iYr

l�1

(1ÿ ë lëi)
Yr

k�1
k 6�i

(ëi ÿ ëk)

� æijYr

l�1

(1ÿ ë lëi)

ðij �

ë j�r� p�ÿ1
iYr

l�1

(1ÿ ëië l)
Yr

k�1
k 6�i

(ëi ÿ ëk)
Yp�
l�1

(1ÿ ëi f �l )
Yp�
k�1

(ëi ÿ f �k )

if i � 1, . . ., r

( f �n ) j�r� p�ÿ1

Yr

l�1

(1ÿ f �në l)
Yp�
l�1

(1ÿ f �n f �l )
Yr

k�1

( f �n ÿ ëk)
Yp�
k�1
k 6�n

( f �n ÿ f �k )

if i � r � n, 1 < n < p�

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
zi, j �

Xs

k�0

è2
k �

Xj

l�1

Xsÿ l

k�0

èkèk� l(ë
l
i � ëÿ l

i )�
Xs

l� j�1

Xsÿ l

k�0

èkèk� l(ë
l
i � ë lÿ2 j

i )

di, j �
Xq

k�1

a2
k �

Xj

l�1

Xqÿ l

k�1

akak� l[(ë 8i
) l � (ë 8i

)ÿ l]�
Xqÿ1

l� j�1

Xqÿ l

k�1

akak� l[(ë 8i
) l � (ë 8i

) lÿ2 j]

ë 8i
� ëi for i � 1, . . ., r

ë 8i
� f �n for i � r � n, 1 < n < p�

j > 0:

Observe that the above general formula incorporates the following results as
special cases:

1. The ACF for the white noise process with GARCH(1, 1) in mean effects
given in Hong (1991)

2. The ACF for the ARMA(r, s) model given in Zinde-Walsh (1988) and
Karanasos (1998, 1999b)

3. The ACF of the conditional variance for the GARCH( p, q) model

PROOF. The covariance structure can be derived by using the following three
alternative methods:

(i) the one used in Karanasos (1999a)
(ii) the one based on the CF of the AGF (2.5), and

(iii) the one based on the in®nite-order MA representation (2.6).7
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THEOREM 4. The CF of the cross covariance GF between yt and ht (gz(yh))
is given by

gz(yh) �
X1

m�ÿ1
ãmzm � A(z)A(zÿ1)

Ö(z)B�(z)B�(zÿ1)
äó 2

v (2:13)

Moreover, the cross covariances (ãm) are given by

ãm � cov(yt, htÿm) �

Xr� p�

i�1

eë8�
im zë8

i,m �
Xp�
i�1

e
f�
im z

f ,m
i if m > 0

Xp�
i�1

e
f�
ijmjz

f

i,jmj �
Xr� p�

i�1

eë8�
ijmjz

ë8,jmj
i if m , 0

8>>>>><>>>>>:
(2:14)

where

eë8�
im �

eë8
imYp�

k�1

(1ÿ ë 8i
f �k )

eë8
im �

(ë 8i
)r� p�ÿ1�m

Yr� p�

k�1
k 6�i

(ë 8i
ÿ ë 8k

)

e
f�
im �

e
f
imYr� p�

k�1

(1ÿ f �i ë 8k
)

e
f
im �

( f �i ) p�ÿ1�m

Yp�
k�1
k 6�i

( f �i ÿ f �k )

z
f ,m
i �

Xqÿ1

l�m�1

Xqÿ1

k�1

akak� l( f �i ) lÿ2m

zë8
im �

Xq

k�1

a2
k �

Xqÿ1

l�1

Xqÿ l

k�1

akak� l(ë 8i
) l �

Xm

l�1

Xqÿ l

k�1

akak� l(ë 8i
)ÿ l
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Observe that the above general formula when Ö(L) � ä � 1 gives the
autocovariance function of the conditional variance.

PROOF. The proof of (2.13) follows directly from the univariate ARMA
representations (2.3), (2.4) and the CF of the AGF of ARMA processes given
in Sargent (1987, pp. 247±9). The cross covariances (ãm) can be obtained by
using either the CF of the CGF (2.13) or the in®nite-order MA representations
of the process (2.6) and its conditional variance, together with the techniques
given in Karanasos (1999c). j

COROLLARY 3. The bivariate ARMA representation of the GARCH-in-mean
model8 is given by

Ö(L)yt � A0 �È(L)E t (2:15)

where

Ö(L) � ÿ
Xmax(r, p�)

l�0

Ö l L
l

È(L) �
Xmax(s,q)

l�0

È l L
l

Ö l �
ö9l 0

0 â
�9
l

" #

È l �
ÿè9l 0

0 a9l

� �

Ö0 � ÿ
1 ä

0 1

� �

È0 �
1 0

0 0

� �

E t �
E t

v t

� �

ö9l �
ö l if l < r

0 if l . r

�
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â
�9
l �

â�l if l < p�
0 if l . p�

�

è9l �
èl if l < s

0 if l . s

�

a9l �
al if l < q

0 if l . q

�

PROOF. The proof follows immediately from Corollary 1.

3. CONCLUDING REMARKS

Despite the extensive literature on GARCH and related models, relatively little
attention has been given to the issue of forecasting in models where time-
dependent conditional heteroscedasticity is present.

In this paper, we focused on the prediction from an ARMA model with
GARCH in mean effects. We showed that, for processes with feedback from
the conditional variance to the conditional mean, the forms of the optimal
predictor of the process and its MSE are considerably complicated. In addition,
we gave the Wold representations of the conditional mean and variance of the
process. These formulae can be used to obtain alternative expressions for the
MMSE predictors of the process and its conditional variance in terms of an
in®nite number of past observations and errors. Moreover, we gave the CF of
the AGF for the process and its conditional variance which we subsequently
used to obtain their autocovariances. We also obtained the covariances between
the process and its conditional variance.

Furthermore, we gave expressions for the MMSE predictors of future values
of both the conditional variance and the squared conditional variance. These
optimal predictors were subsequently used to obtain the conditional MSE
associated with the optimal predictor of the future values of the conditional
mean. Finally, we gave the bivariate ARMA representation of the process and
its conditional variance. This representation can be used in conjunction with the
methodology in Yamamoto (1981) to obtain expressions for the MMSE
predictors and their variances in computationally convenient algorithmic forms.

The potential generalizations of the simple ARMA-GARCH-M model are
numerous. To state a few:

(a) The ARMA-asymmetric power GARCH in mean model
(b) The ARMA-GARCH-M-L model
(c) The ARMA-component GARCH in mean model
(d) The multivariate GARCH in mean model9 (MGARCH-M)
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Note that this study only examined the case where the roots of the autoregressive
polynomials of the processes are distinct. Thus, one potentially important issue,
not addressed in this paper, relates to the effect of equal roots.

APPENDIX A. OPTIMAL PREDICTOR OF AN ARMA MODEL

Let yt follow an ARMA(r, s) process

yt�i � ö�
Xr

j�1

ö j yt�iÿ j ÿ
Xs

j�0

è jE t�iÿ j

è0 � ÿ1

(A:1)

We will ®rst give the de®nite solution of the homogeneous deterministic component
(yd

t,i) of the ARMA(r, s) process (yt�i) and we will subsequently use a technique
provided in Sargent (1987), together with the de®nite solution (yd

t,i), to derive the
optimal predictor10 and the associated MSE of yt�i.

The de®nite solution of the r-order deterministic difference equation

Ö(L)yt�i � 0

Ö(L) �
Yr

j�1

(1ÿ ë j L)

is

yt�i �
Xrÿ1

n�0

xinytÿn (A:2)

where

xin �
Xr

j�1

æ jiã jn

æ ji �
ëi�rÿ1

jYr

l�1
l 6� j

(ë j ÿ ë l)

ã jn � (ÿ1)n
Yn

l�1

Xrÿ(nÿ l)

k l�k lÿ1�1
k l 6� j

264
375Yn

l�1

(ëk l
)

ã j0 � 1

k0 � 0

We will prove the above by induction. If we assume that (A.2) holds for a (r ÿ 1)-
order difference equation, then it will be suf®cient to prove that it holds for an r-order
difference equation.

yt�i can be expressed as an AR(1) process with an error term which follows a
(r ÿ 1)-order difference equation
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yt�i � ë1 yt�iÿ1 � xt�iYr

j�2

(1ÿ ë j L)xt�i � 0 (A:3)

Using backward substitution in the above equation, gives

yt�i �
Xiÿ1

j�0

ë j
1xt�iÿ j � ëi

1 yt (A:4)

Since x follows a (r ÿ 1)-order difference equation:

xt�iÿ l �
Xrÿ2

n�0

Xr

j�2

xtÿnæ
rÿ1
j,iÿ lã

rÿ1
jn (A:5)

where

ærÿ1
j,iÿ l �

ëiÿ l�rÿ2
jYr

k�2
k 6� j

(ë j ÿ ëk)

ãrÿ1
jn � (ÿ1)n

Yn

l�1

X(rÿ1)ÿ(nÿ l)

k l�k lÿ1�1
k l 6� j

264
375Yn

l�1

(ëk l
)

k0 � 1

ãrÿ1
j0 � 1

Substituting (A.5) into (A.4), after some algebra, gives

yt�i �
Xrÿ2

n�0

Xr

j�2

xtÿn(ær
jiã

rÿ1
jn ÿ ëi

1æ
r
j0ã

rÿ1
jn )� ëi

1 yt (A:6)

where

ær
ji �

ëi�rÿ1
jYr

k�1
k 6� j

(ë j ÿ ëk)

Finally, substituting sequentially in the above equation gives

xtÿk � ytÿk ÿ ë1 ytÿkÿ1 k � 0, . . ., r ÿ 2 (A:7)

and using

1ÿ
Xr

j�2

ær
j0 � ær

10

where Xr

j�2

ær
j0ã

r
jkÿ1 � ær

10ã
r
1kÿ1 for k > 2 (A:8)

and where ãr
jn is given by (A.5) with k0 � 0, gives equation (A.2). j
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Using Sargent's (1987) technique and (A.2), we express yt�i as

yt�i � ö�
Xr

j�1

ö j yt�iÿ j ÿ
Xs

j�0

è jE t�iÿ j

� öYr

j�1

(1ÿ ë j)

ÿ

Xs

j�0

è jE t�iÿ j

Yr

j�1

(1ÿ ë j L)

� ö
Xr

j�1

æ
r

j0 ÿ
Xs

j�0

Xr

n�1

è jE t�iÿ jânæ
r
n0

� ö
Xr

n�1

ær
n0an,iÿ1 ÿ

Xs

j�0

Xr

n�1

è jE t�iÿ jân,iÿ1æ
r
n0 � yd

t,i (A:9)

where

ân � 1

1ÿ ën L

ær
n0 �

ërÿ1
nYr

j�1
j6�n

(ën ÿ ë j)

æ
r

n0 �
ær

n0

1ÿ ën

ân,iÿ1 � 1

1ÿ ën Liÿ1

�
Xiÿ1

j�0

(ën L) j

an,iÿ1 � 1

1ÿ ën, tÿ1

�
Xiÿ1

j�0

ë j
n

and yd
t,i is given by (A.2).

From (A.9), some algebra, gives

yt�i � ö
1

Ö(1)
ÿ
Xr

l�1

æ
r

li

" #
ÿ
Xr

l�1

Xiÿ1

n�0

Xmin(n,s)

j�0

ær
l0ë

nÿ j
l è jE t�iÿn

ÿ
Xr

l�1

Xsÿ1

n�0

Xmin(i�n,s)

j�n�1

ær
l0ë

i�nÿ j
l è jE tÿn � yd

t,i (A:10)

Taking the conditional expectation of (A.10), as of time t, gives the i-period optimal
predictor of yt�i. In addition, using (A.10), it gives the i period forecast error. j
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APPENDIX B. PROOF OF THEOREM 2

Let ht follow a GARCH( p, q) process (for simplicity, we will assume that p . q).

B(L)ht � ù� A(L)E2t (B:1)

From equation (B.1):

ù t� pÿi � ù̂ö t� pÿi �
Xq�
j�1

ajë j, t� pÿi �
Xp�
j�1

â jc j, t� pÿi (B:2)

where

ù̂ � ù�
Xi

j�0

â pÿi� j htÿ j �
Xiÿ( pÿq)

j�0

a pÿi� jE2tÿ j

24 35
ë j, t� pÿi � ù̂ö t� pÿiÿ j � (3aj � â j)ù t� pÿiÿ j �

Xjÿ1

k�1

(ak � âk)ë jÿk, t� pÿiÿk

�
Xp�ÿ j

k�1

(ak� jëk, t� pÿiÿ j � âk� jck, t� pÿiÿ j)

c j, t� pÿi � ù̂ö t� pÿiÿ j � (aj � â j)ù t� pÿiÿ j �
Xjÿ1

k�1

(ak � âk)c jÿk, t� pÿiÿk

�
Xp�ÿ j

k�1

(ak� jëk, t� pÿiÿ j � âk� jck, t� pÿiÿ j)

ù t� pÿi � Et(h2
t� pÿi)

ö t� pÿi � Et(ht� pÿi)

ë j, t� pÿi � Et(E2t� pÿiE
2
t� pÿiÿ j)

c j, t� pÿi � Et(ht� pÿi, ht� pÿiÿ j)

ak � 0 for k . q�

âk � 0 for k . p�

q� � qÿmax[0, iÿ ( pÿ q)� 1]

p� � pÿmax(0, i� 1)

and where i can be any negative number and a positive number less than pÿ 2.
The expressions of ë j, t� pÿi and c j, t� pÿi can be written in a VAR ( p� � q�, p� ÿ 1)

form
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ë�t� pÿi �
Xp�ÿ1

ä�1

AäLë�t� pÿiÿä � ù�t� pÿi ) A(L)ë�t� pÿi � ù�t� pÿi (B:3)

A(L) � I ÿ
Xp�ÿ1

ä�1

AäLä

0@ 1A
ë�t� pÿi is a (( p� � q�) 3 1) vector matrix; its j1-th element is

ë�j1 � ë j, t� pÿi for j < q� and ë�j1 � ck, t� pÿi for j > q� � k, (1 < k < p�)
ù�t� pÿi is a (( p� � q�) 3 1) vector matrix; its j1-th element is

ù�j1 � ù̂ö t� pÿiÿ j � (3aj � â j)ù t� pÿiÿ j for j < q�

and

ù�j1 � ù̂ö t� pÿiÿk � (ak � âk)ù t� pÿiÿk for j > q� � k, (1 < k < p�)
Aä is a (( p� � q�) 3 ( p� � q�)) matrix, consisting of four submatrices

Aä �
Aä
ëë Aä

ëc

Aä
cë Aä

cc

" #
(B:4)

Aä
ëë is a (q� 3 q�) matrix; its jm-th element is given by

aä,ëë
jm �

0 if j , ä
am�ä if j � ä
aä � âä if j . ä, m � jÿ ä
0 if j . ä, m 6� jÿ ä

8>><>>:
Aä
ëc is a (q� 3 p�) matrix; its jm-th element is given by

aä,ëc
jm � 0 if j _ ä

âm�ä if j � ä

�
Aä

cë is a ( p� 3 q�) matrix; its jm-th element is given by

aä,cë
jm � 0 if j _ ä

am�ä if j � ä

�
Aä

cc is a ( p� 3 p�) matrix; its jm-th element is given by

aä,cc
jm �

0 if j , ä
âm�ä if j � ä
aä � âä if j . ä, m � jÿ ä
0 if j . ä, m 6� jÿ ä

8>><>>:
Solving the above VAR( p� � q�, p� ÿ 1) model and substituting the solution into

(B.2) gives

ì(L)ù t� pÿi � î(L)ö t� pÿi (B:5)

where
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ì(L) �
X2 p�ÿ1

j�0

ì j L
j

�
Y2 p�ÿ1

j�1

(1ÿ ì�j L)

� ã(L)ÿ
Xp�
j�1

Xq�
k�1

[ajã jk(L)� â jãq�� j,k(L)](3ak � âk)

8<:
�
Xp�
k�1

[ajã j,q��k(L)� â jãq�� j,q��k(L)](ak � âk)

9=;Lk

and

î(L) �
X2 p�ÿ1

j�0

î j L
j

� ù̂ ã(L)�
Xp�
j�1

Xq�
k�1

[ajã jk(L)� â jãq�� j,k(L)]

8<:
8<:
�
Xp�
k�1

[ajã j,q��k(L)� â jãq�� j,q��k(L)]

9=;Lk

9=;
ãij(L) is the ij-th element of Ã(L). Ã(L) is the cofactor of A(L) and ã(L) is the

determinant of A(L). The solution of the above system of difference equations will be of
the form of expression (2.11). j
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NOTES

1. The GARCH-M-L model was introduced by Longstaff and Schwartz (1992) and includes the
GARCH-X model of Brenner et al. (1996) as a special case; see also Baillie et al. (1996) and
Grier and Perry (1998).

2. The autocovariance function of the squared errors for the GARCH( p, q) model is given in He
and TeraÈsvirta (1999) and Karanasos (1999a).

3. We express the r-th order difference equation as an AR(1) process with an error term which
follows a r ÿ 1 difference equation. We obtain yt as a function of r past values and the roots of
the associated auxiliary equation. For an excellent discussion on solutions of linear difference
equations see Brockwell and Davis (1987, Sect. 3.6) or Wei (1989, pp. 27±30).
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4. The GARCH-M-L model was introduced by Longstaff and Schwartz (1992) as a discretization of
their two-factor short-term interest rate model.

5. The component GARCH model was introduced by Ding and Granger (1996); the asymmetric
power ARCH was introduced by Ding, Granger and Engle (1993); the switching ARCH and
GARCH models were introduced by Hamilton and Susmel (1994) and Dueker (1997),
respectively.

6. The statistical properties of the multivariate GARCH (MGARCH) model have been recently
examined by researchers. For example, Lin (1997) analyses the impulse response function for
conditional volatility in various MGARCH models. For a theoretical and empirical analysis of
the multivariate GARCH-in-mean models, see Song (1996).

7. See Karanasos (1999c) for the use of methods (ii) and (iii) in the context of univariate and
multivariate GARCH models.

8. One can use this bivariate ARMA representation and the techniques in Yamamoto (1981) to
obtain expressions for the optimal predictors and their MSE in computationally convenient
algorithmic forms.
Yamamoto (1981) used the in®nite order autoregressive representation of the multivariate

ARMA model (which includes the univariate as a special case) to express the MMSE predictor
as a function of an in®nite number of past observations and he presented parametric expressions
for the prediction weights. His prediction formula is particularly convenient in obtaining the
asymptotic prediction MSE, when the prediction is formulated with estimated coef®cients.
Baillie (1980) obtained a formula for the MMSE predictor of an ARMAX model (which
includes the simple ARMA as a special case) in terms of an in®nite number of past observations
and he also gave parametric expressions for the prediction weights. Alternative prediction
formulae, such as those based upon the Markovian representations of the ARMA model (Akaike,
1974) contain error terms in their formulae. The relative literature includes, among others,
Davisson (1965), Bloom®eld (1972), Bhansali (1974), Scmidt (1974), Yamamoto (1976, 1978,
1980), and Baillie (1979).

9. The MGARCH in mean model as the univariate one has been widely used in the ®nance
literature; see, for example, Kroner and Lastrapes (1993), Lee and Koray (1994) and Grier and
Perry (1996).

10. Pandit and Wu (1983, pp. 179±98) uses the IMA representation of the ARMA(r, s) model to
obtain the optimal predictor and its associated prediction error as a function of an in®nite
number of past errors. The coef®cients in their formula (which they called Green's function) are
expressed in terms of the roots of the AR polynomial and the parameters of the MA. In the case
of distinct roots, these coef®cients are given in Pandit and Wu (1983, pp. 105±6) when s , r and
in Pandit (1973, p. 100) when s _ r. See also Pandit (1973, pp. 37±41) and Pandit and Wu
(1983, pp. 177±9) for an excellent brief historical review of the prediction theory.
Wei (1989, pp. 23±7, 86±8) uses the IMA representation to obtain MMSE forecasts, without
giving a speci®c form for the prediction weights, and he also gives a recursive form for
computing the optimal forecasts (pp. 91, 98). Brockwell and Davis (1987, Sect. 5.3, 5.5)
present recursive methods for computing the best linear predictor and discuss ways to obtain
the MMSE predictor based on the in®nite order AR and MA representations. Nerbn et al.
(1979, p. 93±4) provide a general scheme for computing least-squares forecasts which has been
called unscrambling; see also Nerlove and Wage (1964). Other conventional recursive
expressions to obtain the predictor can also be found in Box and Jenkins (1970, pp. 126±
32). Additional references on multi-step predictions include the textbooks by Anderson (1976,
Ch. 10), Granger and Newbold (1986, Ch. 4) and Hamilton (1994, Ch. 4).
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