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 Tse (1998) proposes amodel which combines the fractionally integrated GARCH formulation of
Baillie, Bollerslev and Mikkelsen (1996) with the asymmetric power ARCH specification of
Ding, Granger and Engle (1993). This paper analyzes the applicability of a multivariate constant
conditional correlation version of the model to national stock market returns for eight
countries. We find this multivariate specification to be generally applicable once power,
leverage and long-memory effects are taken into consideration. In addition, we find that both
the optimal fractional differencing parameter and power transformation are remarkably
similar across countries. Out-of-sample evidence for the superior forecasting ability of the
multivariate FIAPARCH framework is provided in terms of forecast error statistics and tests for
equal forecast accuracy of the various models.
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1. Introduction

A common finding in much of the empirical finance literature is that although the returns on speculative assets contain little
serial correlation, the absolute returns and their power transformations are highly correlated. In particular, Ding et al. (1993)
investigate the autocorrelation structure of |rt|δ, where rt is the daily S&P 500 stock market return, and δ is a positive number. They
find that |rt| has significant positive autocorrelations for long lags. Motivated by this empirical result they propose a new general
class of ARCH models, which they call the Asymmetric Power ARCH (APARCH). In addition, they show that this formulation
comprises seven other specifications in the literature.2 For an in depth discussion of the theoretical properties of the APARCH
model see Karanasos and Kim (2006). McCurdy andMichaud (1996) and Tse (1998) extend the asymmetric power formulation of
the variance to incorporate fractional integration, as defined by Baillie et al. (1996).3 The new specification is termed fractionally
integrated APARCH (FIAPARCH).
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The FIAPARCHmodel increases the flexibility of the conditional variance specification by allowing (a) an asymmetric response
of volatility to positive and negative shocks, (b) the data to determine the power of returns for which the predictable structure in
the volatility pattern is the strongest, and (c) long-range volatility dependence. These three features in the volatility processes of
asset returns have major implications for many paradigms in modern financial economics. For example, the pricing of long-term
options and optimal portfolio allocations must take into account all of these three properties.

At the same time, the FIAPARCH specification possesses the useful property that it nests the formulation without power effects
and the stable one as special cases. This provides an encompassing framework for these two broad classes of specifications and
facilitates comparison between them. Themain contribution of this paper is to enhance our understanding of whether and towhat
extent this type of model improves upon its simpler counterparts.

Brooks et al. (2000) provide evidence for the applicability of the univariate APARCHmodel to national stock market returns for
ten countries plus a world index. The results by Tse (1998) suggest that the FIAPARCH model is applicable to the yen–dollar
exchange rate. More recently, Degiannakis (2004) and Ñíguez (2007) have applied univariate FIAPARCH specifications to stock
return data. So far, multivariate versions of the framework have rarely been used in the literature. Only Dark (2004) applies a
bivariate error correction FIAPARCH model to examine the relationship between stock and future markets, and Kim et al. (2005)
use a bivariate FIAPARCH-in-mean process to model the volume–volatility relationship. Therefore, an interesting research issue
is to explore how generally applicable this formulation is to a wide range of financial data and whether multivariate speci-
fications can outperform their univariate counterparts. In this paper we address this issue by estimating both univariate and
multivariate versions of this framework for eight series of national stockmarket index returns. These countries are Canada, France,
Germany, Hong Kong, Japan, Singapore, the United Kingdom and the United States. As the general multivariate specification
adopted in this paper nests the various univariate formulations, the relative ranking of each of these models can be considered
using the Wald testing procedures and standard information criteria. Furthermore, the ability of the FIAPARCH formulation to
forecast stock volatility out-of-sample is assessed by a variety of forecast error statistics. In order to verify whether the difference
between the statistics from the various models is statistically significant we employ the tests of Diebold and Mariano (1995) and
Harvey et al. (1997).

The remainder of this article is structured as follows. In Section 2 we detail the univariate and multivariate FIAPARCH
models and discuss the various nested ARCH specifications. Section 3 discusses the data and presents the empirical results. In
Section 4 we evaluate the different specifications in terms of their out-of-sample forecast ability. Finally, Section 5 concludes
the analysis.

2. FIAPARCH model

2.1. Univariate process

One of the most common models in finance and economics to describe a time series rt of stock returns is the AR(1)
process
with

where
positiv
1−ζLð Þrt = c + εt ; t∈N; ð2:1Þ

εt = et
ffiffiffiffiffi
ht

q
;

|c|∈ [0,∞), |ζ|b1 and {et} are independently and identically distributed (i.i.d.) random variableswith E(et)=E(et2−1)=0. ht is
e with probability one and is a measurable function of ∑t−1, which in turn is the sigma-algebra generated by {rt−1, rt−2,…}.
ht denotes the conditional variance of the returns {rt}, i.e. E[rt|∑t−1]=c+ζrt−1 and Var[rt|∑t−1]=ht.
That is

Tse (1998) examines the conditional heteroskedasticity of the yen–dollar exchange rate by employing the FIAPARCH (1, d, 1)
model. Accordingly, we utilize the following process
1−βLð Þ ht
δ=2

−ω

� �
= 1−βLð Þ− 1−ϕLð Þ 1−Lð Þd

h i
1 + γstð Þjεt jδ; ð2:2Þ

ω∈(0, ∞), |β|b1, |ϕ|b1, 0≤d≤1, st=1 if ɛtb0 and 0 otherwise, γ is the leverage coefficient, and δ is the parameter for the
where
power term that takes (finite) positive values. A sufficient condition for the conditional variance ht to be positive almost surely for
all t is that γN−1 and the parameter combination (ϕ, d, β) satisfies the inequality constraints provided in Conrad and Haag (2006)
and Conrad (forthcoming).

When d=0, the process in Eq. (2.2) reduces to the APARCH(1,1) one, which nests two major classes of ARCH models.
Specifically, a Taylor/Schwert type of formulation is specified when δ=1, and a Bollerslev type is specified when δ=2. There
seems to be no obvious reason why one should assume that the conditional standard deviation is a linear function of lagged
absolute returns or the conditional variance a linear function of lagged squared returns. As Brooks et al. (2000, p. 378) point out
“the common use of a squared term in this role (δ=2) is most likely to be a reflection of the normality assumption traditionally
invoked regarding financial data. However, if we accept that (high frequency) data are very likely to have a non-normal error
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distribution, then the superiority of a squared term is lost and other power transformations may be more appropriate. Indeed, for
non-normal data, by squaring the returns one effectively imposes a structure on the data which may potentially furnish sub-
optimal modeling and forecasting performance relative to other power terms”.4

When γ=0 and δ=2 the process in Eq. (2.2) reduces to the FIGARCH(1, d, 1) specification which includes Bollerslev's (1986)
model (when d=0) and the integrated specification (when d=1) as special cases. Baillie et al. (1996) point out that a striking
empirical regularity that emerges from numerous studies of high-frequency, say daily, asset pricing data with ARCH-type models
concerns the apparent widespread finding of integrated behavior. This property has been found in stock returns, exchange rates,
commodity prices and interest rates (see Bollerslev et al., 1992). Yet unlike I(1) processes for the mean, there is less theoretical
motivation for truly integrated behavior in the conditional variance. As noted by Baillie et al. (1996), for the variance being
confined to only considering the extreme cases of stable and integrated specifications can be very misleading when long-memory
(but eventually mean-reverting) processes are generating the observed data. They show that data generated from a process
exhibiting long-memory volatility may be easily mistaken for integrated behavior.5

2.2. Multivariate formulation

Next, we introduce the multivariate version of the FIAPARCH specification. Let us define the N-dimensional column vector of
the returns rt as rt=[rit]i=1,…,N and the corresponding residual vector εt as εt=[ɛit]i=1,…,N. Next, the structure of the multivariate
AR(1) mean equation is given by
where
and th
varian

diag{h

4 For
5 An

applicat
Karanas

6 By d
Z Lð Þrt = c + εt ; ð2:3Þ

c=[ci]i=1,…,N with |ci|∈ [0, ∞) and Z(L)=diag{ζ(L)} is an N×N diagonal matrix with ζ(L)=[1−ζiL]i=1,…,N, |ζi|b1.6 We
where
assume that the noise vector εt is characterized by the relation
εt = et⊙ ht
∧1=2

; ð2:4Þ

⊙ and ∧ denote the Hadamard product and elementwise exponentiation respectively, ht=[hit]i=1,…,N is ∑t−1 measurable
e stochastic vector et=[eit]i=1,…,N is independent and identically distributed with mean zero and positive definite co-
ce matrix ρ=[ρij]i,j=1,…,N with ρij=1 for i= j. From the above equation it follows that E(εt|F t�1)=0 andHt=E(εtεt′|F t�1)=
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Further, the multivariate FIAPARCH (M-FIAPARCH) process of order (1, d, 1) is defined by
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|ɛt| is the vector ɛtwith elements stripped of negative values. Moreover, B(L)=diag {β(L)} with β(L)=[1−βiL]i=1,…,N, |βi|b
where
1, and Φ(L)=diag {ϕ(L)} with ϕ(L)=[1−ϕiL]i=1,…,N, |ϕi|b1. In addition, ω=[ωi]i=1,…,N with ωi∈(0, ∞) and Δ(L)=diag {d(L)}
with d Lð Þ = 1−Lð Þdi

h i
i=1;…N

, 0≤di≤1. Finally, Γt=diag {γ⊙st} with γ=[γi]i=1,…,N, and st=[sit]i=1,…,N where sit=1 if ɛitb0 and
0 otherwise.

Note, that in our specification we do not allow for residual or volatility spillovers between the conditional variances. Because of
this assumption, when γiN−1, i=1,…,N, the non-negativity conditions derived in Conrad (forthcoming) can be applied to each
equation individually, whichwill ensure the positive definiteness of the conditional covariancematrixHt for all t almost surely. For
results on the more general (short-memory) case which includes volatility spillovers, see Conrad and Karanasos (2010).

3. Empirical analysis

3.1. Data

Daily stock price index data for eight countries were sourced from the Datastream database for the period 1st January 1988 to
22nd April 2004, giving a total of 4,255 observations. We will use the period 1st January 1988 to 16th July 2003 for the estimation,
while we produce 200 out-of-sample forecasts for the period 17th July 2003 to 22nd April 2004. The eight countries and their
respective price indices are: UK: FTSE 100 (F), US: S&P 500 (SP), Germany: DAX 30 (D), France: CAC 40 (C), Japan: Nikkei 225 (N),
Singapore: Straits Times (S), Hong Kong: Hang Seng (H) and Canada: TSE 300 (T). For each national index, the continuously
applications of the APARCH model in economics see Campos and Karanasos (2008) and Karanasos and Schurer (2008).
excellent survey of major econometric work on long-memory processes and their applications in economics and finance is given by Baillie (1996). For
ions of the FIGARCH model to stock returns, interest rates, exchange rates and turnover volume see, (among others), Bollerslev and Mikkelsen (1996),
os et al. (2006), Conrad and Lamla (2010) and Karanasos and Kartsaklas (2009), respectively.
iag{x} we denote a diagonal matrix with entries given by the elements of the vector x=[xi]i=1,…,N.
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compounded return was estimated as rt=100[log(pt)− log(pt−1)] where pt is the price on day t. A preliminary analysis of the
squared return series based on 12th order Ljung–Box Q-statistics revealed high serial correlation in the second conditional
moment of all indices. Furthermore, for all indices the Jarque–Bera statistic rejected the normality hypothesis at the 1% level.
Finally, the estimated kurtosis coefficient is significantly above three for all indices but FTSE 100 and Nikkei 225. In order to
accommodate the presence of such leptokurtosis, following Beine et al. (2002) and Ñíguez (2007)we assume student-t distributed
innovations et (et) and estimate the various specifications using the maximum likelihood estimation (MLE) method as
implemented by Davidson (2008) in Time Series Modelling (TSM). For details on the likelihood function for the univariate and
multivariate models see Davidson (2008). In addition, in order to check for the robustness of our results with respect to potential
misspecification of the density, in Section 3.5 we apply a Gaussian density and quasi-maximum-likelihood estimation (QMLE).
Because the student-t distribution nests the normal distribution, this approach in turn facilitates the statistical comparison
needed to discriminate between the two distributions.

3.2. Univariate models

We proceed with the estimation of the AR(1)-FIAPARCH(1, d, 1) model in Eqs. (2.1) and (2.2) in order to take into account the
serial correlation and the GARCH effects observed in our time series data, and to capture the possible long-memory in volatility.
The only exceptions are the Canadian and Singaporean indices, where an AR(1)-FIAPARCH(0, d, 1) model is used. For these two
indices the AR(1)-FIAPARCH(1, d, 1) estimates for β were insignificant and the Akaike and Schwarz information criteria (AIC
and SIC) came out in favor of the (0, d, 1) specification. In addition, for the Hang Seng index the criteria favor the (1, d, 0)
formulation.

Table 1 reports the estimation results. For reasons of brevity, we do not present the estimates of the constants in the mean
and the variance, which were significant in all cases but one. In all countries the AR coefficient (ζ) is highly significant. As
mentioned above, the estimate for the ϕ(β) parameter is insignificant only in one (two) out of the eight cases. In three countries
the estimates of the leverage term (γ) are statistically significant, confirming the hypothesis that there is negative correlation
between returns and volatility. For the other countries we reestimated the models without an asymmetry term. For all indices the
estimates of the power term (δ) and the fractional differencing parameter (d) are highly significant. Interestingly, the highest
power terms are obtained for the two American indices, while the European ones are characterized by the highest degree of
persistence. In all cases, the estimated degrees of freedom parameter (υ) is highly significant and leads to an estimate of the
kurtosis which is different from three.7

In all cases, the ARCH parameters satisfy the set of conditions which guarantee the non-negativity of the conditional variance
(see Conrad (forthcoming)). According to the values of the Ljung–Box tests for serial correlation in the standardized and squared
standardized residuals there is no statistically significant evidence of misspecification in almost all cases.

3.2.1. Tests of fractional differencing and power term parameters
A large number of studies have documented the persistence of volatility in stock returns; see, e.g., Ding et al. (1993) and Ding

and Granger (1996). Using daily data many of these studies have concluded that the volatility process is well approximated by an
IGARCH specification. However, from the FI(A)PARCH estimates reported in Table 1, it appears that the long-run dynamics are
better modeled by the fractional differencing parameter. To test for the persistence of the conditional heteroskedasticity models,
we examine the Wald statistics for the linear constraints d=0 (stable APARCH) and d=1 (IAPARCH).8 For reasons of brevity we
omit the table with the test results, which are available from the authors upon request. In summary, the Wald tests clearly reject
both the stable and integrated null hypotheses against the FIAPARCH one for all indices. Thus, purely from the perspective of
searching for a model that best describes the volatility in the stock return series, the fractionally integrated one appears to be the
most satisfactory representation.9

This result is an important finding because the time series behavior of volatility affects asset prices through the risk premium.
Christensen and Nielsen (2007) establish theoretically and empirically the consequences of long-memory in volatility for asset
prices. Using a model for expected returns to discount streams of expected future cash flows, they calculate asset prices. Within
this context the risk-return trade-off and the serial correlation in volatility are the two most important determinants of asset
values. Christensen and Nielsen (2007) derive the way in which these two ingredients jointly determine the level of stock prices.
They also investigate the quantitative economic consequences of long-memory in volatility on asset price elasticities and show
that the elasticity is smaller in magnitude than earlier estimates, and much more stable under variations in the long-memory
parameter than in the short-memory case. Thus, they point out that the high elasticities reported earlier should be interpreted
with considerable caution. They also highlight the fact that the way in which volatility enters in the asset evaluation model is
crucial and should be considered carefully. This is due to the fact that the memory properties of the volatility process carry over to
the stock return process through the risk premium link (see also Christensen et al., 2010 and Conrad et al., 2010).
7 The kurtosis of a student-t distributed random variable with υ degrees of freedom is 3(υ−2)/(υ−4).
8 Restricting d to be zero in Eq. (2.2) leads to an APARCH(1,1) model with parameters β and ϕ−β. Similarly, restricting d to be one that leads to an IAPARCH(1,2)

model with parameters β, 1+ϕ−β and −ϕ.
9 It is worth mentioning the empirical results in Granger and Hyung (2004). They suggest that there is a possibility that at least part of the long-memory may

be caused by the presence of neglected breaks in the series. We look forward to clarifying this in future work.

http://www.timeseriesmodelling.com
http://www.timeseriesmodelling.com


10 Caporin (2003) performs a Monte Carlo simulation study and verifies that information criteria clearly detect the presence of long-memory in volatility.

Table 1
Univariate AR-FI(A)PARCH models (MLE).

SP T C D F H N S

ζ −0.05 a

(−3.28)
0.17
(10.94)

0.04
(2.34)

0.03 a

(2.31)
0.04
(2.38)

0.06
(3.71)

−0.02
(−1.63)

0.15
(9.20)

β 0.54
(5.81)

– 0.66
(6.94)

0.56
(5.65)

0.59
(5.32)

0.08
(2.01)

0.51
(4.83)

–

ϕ 0.27
(4.11)

−0.11
(−2.95)

0.20
(3.84)

0.21
(4.82)

0.19
(3.77)

– 0.14
(2.03)

−0.07
(−2.23)

γ – – – 0.46
(3.73)

– 0.69
(3.65)

– 0.76
(3.90)

δ 2.35
(23.50)

2.42
(17.28)

1.77
(12.64)

1.24
(11.46)

1.86
(14.31)

1.28
(12.80)

2.07
(18.81)

1.40
(12.73)

d 0.30
(6.00)

0.19
(6.33)

0.52
(4.33)

0.40
(4.34)

0.46
(4.60)

0.18
(4.50)

0.42
(6.00)

0.21
(5.25)

υ 5.60
(10.77)

5.38
(10.76)

8.53
(6.56)

6.83
(6.90)

10.70
(6.04)

4.56
(11.12)

5.80
(10.54)

4.86
(11.04)

Q12 18.45
[0.10]

9.52
[0.66]

10.00
[0.61]

13.18
[0.36]

12.86
[0.38]

22.85
[0.03]

10.59
[0.56]

18.50
[0.10]

Q12
2 5.12

[0.95]
19.47
[0.08]

11.74
[0.47]

8.13
[0.77]

18.00
[0.12]

33.24
[0.00]

20.90
[0.05]

2.20
[1.00]

Notes: For each of the eight indices, Table 1 reports MLE results for the AR(1)-FI(A)PARCH model. The numbers in parentheses are t-statistics. Q12 and Q12
2 are the

12th order Ljung–Box tests for serial correlation in the standardized and squared standardized residuals respectively. The numbers in brackets are p-values.
a For the S&P 500 and Dax 30 indices we estimate AR(3) and AR(4) models respectively.
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In order to check for the robustness of the Wald testing results discussed above, we apply the Akaike, Schwarz, Hannan–Quinn
or Shibata information criteria (AIC, SIC, HQIC, and SHIC respectively) to rank the various ARCH type models. Specifically,
according to the AIC, HQIC and SHIC, the optimal specification (i.e., FIAPARCH, APARCH or IAPARCH) for all indices was the
FIAPARCH one (values not reported).10 The SIC results are largely in line with the AIC, HQIC or SHIC results.

Next, recall that the two common values of the power term imposed throughout much of the GARCH literature are the values
of two (Bollerslev's model) and unity (the Taylor/Schwert specification). The invalid imposition of a particular value for the
power term may lead to sub-optimal modeling and forecasting performance (Brooks et al., 2000). Accordingly, we test
whether the estimated power terms are significantly different from unity or two using Wald tests (results not reported). We find
that all eight estimated power coefficients are significantly different from unity. Further, with the exception of the CAC 40, FTSE
100 and Nikkei 225 indices, each of the power terms is significantly different from two. Hence, on the basis of these results, in the
majority of cases support is found for the (asymmetric) power fractionally integrated model, which allows an optimal power
transformation term to be estimated. The evidence obtained from the Wald tests is reinforced by the model ranking provided
by the four model selection criteria (values not reported). This is a noteworthy result since He and Teräsvirta (1999) emphasized
that if the standard Bollerlsev type of model is augmented by the ‘heteroskedasticity’ parameter, the estimates of the ARCH
and GARCH coefficients almost certainly change. More importantly, Karanasos and Schurer (2008) show that in the univariate
GARCH-in-mean level formulation the significance of the in-mean effect is sensitive to the choice of the power term.

3.3. Multivariate models

The analysis above suggests that the FIAPARCH formulation describes the conditional variances of the eight stock indices
well. However, financial volatilities move together over time across assets and markets. Recognizing this commonality through a
multivariate modeling framework can lead to obvious gains in efficiency compared to working with separate univariate
specifications (Bauwens and Laurent, 2005). Therefore, multivariate GARCHmodels are essential for enhancing our understanding
of the relationships between the (co)volatilities of economic and financial time series. For recent surveys on multivariate
specifications and their practical importance in various areas such as asset pricing, portfolio selection and risk management see
e.g., Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2007). Thus in this section, within the framework of the multi-
variate CCC model, we will analyze the dynamic adjustments of the variances for the various indices. Overall we estimate seven
bivariate specifications; three for the European countries: CAC 40–DAX 30 (C–D), CAC 40–FTSE 100 (C–F) and DAX 30–FTSE 100
(D–F); three for the Asian countries: Hang Seng–Nikkei 225 (H–N), Hang Seng–Straits Times (H–S) and Nikkei 225–Straits Times
(N–S); one for the S&P 500 and TSE 300 indices (SP–T). Moreover, we estimate two trivariate models: one for the three European
countries (C–D–F) and one for the three Asian countries (H–N–S).

3.3.1. Bivariate processes
The best fitting bivariate specification is chosen according to likelihood ratio results and the minimum value of the information

criteria (not reported). In themajority of themodels the AR coefficients are significant at the 5% level or better. In almost all cases a
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(1, d, 1) order is chosen for the FIAPARCH formulation. Only for the H–S and N–Smodels do we choose (0, d, 1) order for the Straits
Times index, and (1, d, 0) order for the Hang Seng index. Note that this is in line with our findings for the univariate models, where
the β parameter was insignificant for Straits Times, while the ϕ parameter was insignificant for Hang Seng. In six out of the
fourteenmodels the leverage term (γ) is significant. As in the univariate case, it is significant in both indices for the H–S case and in
the DAX 30 index for the D–F case. In addition, in the bivariate case it is also significant in the TSE 300 index for the SP–Tmodel and
in the Nikkei 225 for the N–S one. In almost all cases the power term (δ) and the fractional differencing parameter (d) are highly
significant. In the D–F, H–S and N–S models the two countries generated very similar power terms: (1.28, 1.36), (1.42, 1.47) and
(1.70, 1.62) respectively. In four out of the seven bivariate formulations the two countries generated very similar fractional
parameters. These are the SP–T, the C–F, the H–N and the H–S models. The corresponding pairs of values are: (0.22, 0.21), (0.24,
0.29), (0.36, 0.35) and (0.16, 0.13). Interestingly, in the majority of the cases the estimated power and fractional differencing
parameters of the bivariate models take lower values than those of the corresponding univariate models. In all cases the estimated
CCC (ρ) is highly significant. Interestingly, it is rather high among the American and European indices, and rather low among the
Asian indices. Finally, the degrees of freedom parameters (υ) are highly significant and the ARCH parameters satisfy the Conrad
(forthcoming) conditions. In the majority of the cases the hypothesis of uncorrelated standardized and squared standardized
residuals is well supported (see the last two rows of Table 2).

Next, for each pair of indices from Table 2, we examine theWald statistics for the linear constraints di=dj=0 (stable APARCH)
and di=dj=1 (IAPARCH). For all indices the Wald tests clearly reject both the stable and integrated null hypotheses against the
FIAPARCH one (results not reported).We also test whether the estimated power terms are significantly different from unity or two
using Wald tests. The eight estimated power coefficients are significantly different from either unity or two (again the results are
not reported).

3.3.2. Trivariate specifications
Table 3 reports the parameters of interest for the two trivariate FI(A)PARCH(1,d,1) models.11 In two out of the three Asian

countries the leverage term (γ) is weakly significant. In all cases the power term (δ) and the fractional differencing parameter
(d) are highly significant. Similarly, in all cases the estimated CCC (ρ) and degrees of freedom parameters (υ) are highly significant
and the ARCH parameters satisfy the conditions provided in Conrad (forthcoming). In particular, the estimates of ρ confirm
the results from the bivariate models, i.e. the conditional correlation between the European indices is considerably stronger than
between the Asian indices.

3.4. On the similarity of the fractional/power parameters

Next, we test for the apparent similarity of the optimal fractional differencing and power term parameters for each of the
eight country indices using pairwise Wald tests:
11 The
12 For
values f
Wd =
d1−d2ð Þ2

Var d1ð Þ + Var d2ð Þ−2Cov d1;d2ð Þ and Wδ =
δ1−δ2ð Þ2

Var δ1ð Þ + Var δ2ð Þ−2Cov δ1;δ2ð Þ ;

di (δi), i=1, 2, is the fractional differencing (power term) parameter from the bivariate FIAPARCH model estimated for
where
the national stockmarket index for country i, Var(di), and Var(δi) are the corresponding variances, and Cov(d1, d2), and Cov(δ1, δ2)
are the corresponding covariances. The above Wald statistics test whether the fractional differencing (power term) parameters
of the two countries are equal d1=d2 (δ1=δ2), and are distributed as χ(1)

2 .
The following table presents the results of this pairwise testing procedure for the various bivariate models.12 Several findings

emerge from this table. The estimated long-memory parameters for the various (a)symmetric specifications are in the range 0.20
(0.13)≤d≤0.48(0.36) while the estimated power terms are in the range 1.19(1.18)≤δ≤2.00(1.86). In all cases for the American
and Asian indices (and in the majority of the cases for the European countries) the values of the two coefficients (di, δi) for the
asymmetric models are lower than the corresponding values for the symmetric formulations. The values of the Wald tests in the
table support the null hypothesis that the two estimated fractional parameters and the two power term coefficients are not
significantly different from one another.

All specifications generated very similar long-memory coefficients between countries. For example, in the asymmetric SP–T
and H–Nmodels, which generated very similar fractional parameters (0.22, 0.23 and 0.36, 0.35 respectively), the two coefficients
were, as expected, not significantly different (W=0.04, 0.02 respectively). The null hypothesis of equal long-memory coefficients
is rejected at the 5% level only for the symmetric C–D and the asymmetric D–F models. Both include the DAX 30 index with a
relatively high persistence parameter. As regards the power term, the two models for CAC 40 and DAX 30 indices are those with
the highest differences: 1.59−1.18=0.41 and 1.55−1.19=0.36 respectively. For these two cases the values of the Wald tests
(W=6.57, 3.85 respectively) are significant at the 5% level. For all other models but one, the equality of the power terms cannot
be rejected. For example, in models which generated very similar power terms, such as the symmetric D–F one (1.35, 1.40) or the
asymmetric H–S (1.42, 1.47), the two coefficients were, as expected, not significantly different (W=0.10 in both cases). Finally, it
complete results are of course available upon request.
reasons of comparability, in all the various bivariate models for both indices we estimated AR(1)-FI(A)PARCH(1, d, 1) processes. That is, the parameter
or d and δ presented in Table 4 are not necessarily the same as the ones in Table 2.



Table 2
Bivariate AR-FI(A)PARCH models (MLE).

SP–T C–D C–F D–F H–N H–S N–S

SP T C D C F D F H N H S N S

ζi −0.05 a

(−4.51)
0.17
(13.86)

−0.03
(−2.63)

0.02 a

(1.53)
0.05
(3.88)

0.04
(2.70)

0.01 a

(0.37)
−0.03
(−2.14)

0.05
(3.44)

−0.02
(−1.07)

0.03
(1.79)

0.14
(9.16)

−0.03
(−2.08)

0.15
(9.33)

βi 0.46
(4.78)

0.33
(2.27)

0.50
(3.94)

0.62
(9.00)

0.35
(1.55)

0.45
(1.48)

0.55
(5.51)

0.42
(1.93)

0.57
(3.70)

0.46
(3.82)

0.08
(2.85)

– 0.43
(3.41)

–

ϕi 0.26
(3.73)

0.18
(1.52)

0.26
(4.30)

0.24
(5.60)

0.16
(1.24)

0.20
(1.48)

0.20
(4.96)

0.17
(1.74)

0.33
(3.94)

0.15
(2.11)

– −0.02
(0.87)

0.14
(1.76)

−0.07
(1.78)

γi – 0.34
(2.46)

– – – – 0.14
(1.68)

– – 0.10
(1.74)

0.11
(1.73)

0.47
(3.16)

0.11
(2.02)

–

δi 1.85
(8.81)

1.59
(8.37)

1.55
(9.12)

1.23
(9.84)

1.76
(7.65)

1.55
(5.54)

1.28
(11.64)

1.36
(8.00)

1.49
(17.71)

1.69
(13.75)

1.42
(12.07)

1.47
(12.01)

1.70
(13.75)

1.62
(15.71)

di 0.22
(5.50)

0.21
(5.25)

0.30
(3.00)

0.44
(6.28)

0.24
(2.18)

0.29
(1.61)

0.40
(4.44)

0.28
(2.15)

0.36
(3.18)

0.35
(5.04)

0.16
(7.58)

0.13
(5.79)

0.33
(5.15)

0.23
(6.64)

ρ 0.65
(21.33)

0.65
(20.54)

0.67
(20.90)

0.54
(19.48)

0.33
(11.03)

0.43
(17.02)

0.26
(12.32)

υ 13.69
(9.85)

16.69
(6.76)

18.96
(6.94)

18.13
(6.06)

12.62
(11.03)

11.31
(11.44)

12.42
(10.47)

Q12 18.08
[0.11]

10.74
[0.55]

34.92
[0.00]

10.17
[0.60]

10.33
[0.59]

15.80
[0.20]

12.48
[0.41]

36.27
[0.00]

22.30
[0.03]

9.78
[0.63]

39.18
[0.00]

20.69
[0.06]

12.93
[0.37]

16.36
[0.17]

Q12
2 2.77

[0.99]
2.81
[0.99]

20.28
[0.06]

5.17
[0.95]

24.51
[0.02]

40.18
[0.00]

3.31
[0.99]

17.44
[0.13]

35.79
[0.00]

54.52
[0.00]

108.29
[0.00]

5.03
[0.96]

58.83
[0.00]

1.50
[1.00]

Notes: For each of the seven pairs of indices, Table 2 reports MLE results for the bivariate AR-FI(A)PARCHmodel. SP–T denotes the bivariate process for the S&P 500
and TSE 300 indices. C–D, C–F and D–F indicate the three bivariate models for the European indices. H–N, H–S and N–S stand for the three bivariate specifications
for the Asian indices. The numbers in parentheses are t-statistics. Q12 and Q12

2 are the 12th order Ljung–Box tests for serial correlation in the standardized and
squared standardized residuals respectively. The numbers in brackets are p-values.

a For the S&P 500 and DAX 30 indices we estimate AR models of orders 3 and 4 respectively.
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is noteworthy that in the majority of cases the values of the coefficients di and δi for the univariate (a)symmetric formulations
are higher than the corresponding values for the (a)symmetric bivariate and trivariate models (not reported).

3.5. Robustness

In order to check whether our findings are robust to the choice of the error distribution, we reestimate all specifications using
a Gaussian density and QMLE. The results are presented in Tables 7–9 in the Appendix. The univariate, bivariate and trivariate
QMLE results are very similar to the ones based on student-t distributed innovations. Most importantly, the estimated fractional
differencing parameters and power terms are close to the corresponding values estimated under the student-t distribution
and MLE. In particular, the hypotheses that d=0, d=1 as well as the one that δ=1 are clearly rejected for all specifications and
all indices with only one exception. In contrast to the results under the student-t distribution, in the case of QMLE the hypothesis
that δ=2 cannot be rejected in most of the cases. Also the evidence for asymmetries becomes slightly weaker. However, the
Table 3
Trivariate AR-FI(A)PARCH(1, d, 1) models (MLE).

C–D–F H–N–S

C D F H N S

βi 0.19
(1.40)

0.43
(4.61)

0.22
(1.15)

0.39
(1.92)

0.38
(2.50)

0.78
(18.85)

ϕi 0.11
(0.90)

0.22
(3.35)

0.09
(0.61)

0.28
(1.56)

0.15
(1.53)

0.81
(22.08)

γi – – – 0.02
(1.46)

0.07
(1.60)

–

δi 1.83
(10.95)

1.25
(9.52)

1.56
(7.12)

1.47
(13.36)

1.53
(10.20)

1.88
(11.75)

di 0.11
(4.16)

0.25
(5.43)

0.15
(3.27)

0.18
(4.50)

0.26
(0.07)

0.08
(4.39)

C–D D–F C–F H–N N–S H–S

ρ 0.66
(21.07)

0.56
(19.86)

0.68
(21.70)

0.32
(14.84)

0.25
(12.19)

0.43
(16.92)

υ 9.60
(17.36)

8.42
(20.54)

Notes: Table 3 reports MLE results for the two trivariate FI(A)PARCH(1, d, 1) models. C–D–F and H–N–S denote the models for the European and Asian countries
respectively. The numbers in parentheses are t-statistics.



Table 4
Tests for similarity of fractional and power terms (Bivariate Models).

Symmetric Models Asymmetric models

SP–T C–D C–F D–F H–N H–S N–S SP–T C–D C–F D–F H–N H–S N–S

d
d1 0.24 0.30 0.24 0.48 0.38 0.26 0.34 0.22 0.19 0.26 0.36 0.36 0.16 0.32
d2 0.27 0.45 0.29 0.41 0.36 0.20 0.24 0.23 0.29 0.33 0.23 0.35 0.13 0.22
W 0.25 4.16 0.26 0.75 0.04 0.85 1.46 0.04 1.24 0.05 6.00 0.02 1.61 1.62

δ
δ1 2.00 1.55 1.76 1.35 1.50 1.49 1.80 1.86 1.59 1.74 1.27 1.49 1.42 1.66
δ2 1.68 1.19 1.55 1.40 1.79 1.68 1.68 1.51 1.18 1.51 1.39 1.70 1.47 1.58
W 2.38 3.85 1.08 0.10 4.43 1.59 0.60 2.59 6.57 1.55 0.24 1.66 0.10 0.19

Notes: SP–T denotes the bivariate model for the S&P 500 and TSE 300 indices respectively. C–D, C–F and D–F indicate the three bivariate models for the European
indices. H–N, H–S and N–S stand for the three bivariate models for the Asian indices. The W rows report the corresponding Wald statistics. The 5% and 1% critical
values are 3.84 and 6.63 respectively.
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information criteria again clearly favor the most general FIAPARCH specification (not reported). Hence, the results from the
QMLE reinforce our previous findings and highlight the importance of allowing for flexible fractional differencing parameters and
power terms. Nevertheless, the information criteria and likelihood ratio tests almost unambiguously favor the models estimated
under the student-t distribution and MLE over the ones under normality and QMLE (results are not reported).
4. Forecasting methodology

4.1. Evaluation criteria

In Section 3 we showed that on the basis of several model selection techniques the superior in-sample fitting specification was
the FIAPARCH one. However, for practical forecasting purposes, the predictive ability of thesemodels needs to be examined out-of-
sample. The aim of this section is to examine the relative ability of the various univariate andmultivariate long-memory and power
formulations to forecast daily stock return volatility.

Several empirical studies examine the forecast performance of various GARCH models (see, e.g., Hansen and Lunde, 2005).
The survey by Poon and Granger (2003) provides, among other things, an interesting and extensive synopsis of them. Since
the publication of Ding et al. (1993) there has been a great deal of research investigating if the fractional integrated models could
help to make better volatility forecasts.13 Hyung et al. (2008) compare the out-of-sample forecasting performance of various
short and long-memory volatility models. They find that for forecast horizons of 10 days and beyond, the FIGARCH specification
is the dominant one. The long-memory characteristic has important implications for volatility forecasting and option pricing.
Option pricing in a stochastic volatility setting requires a risk premium for the unhedgeable volatility risk. The fractionally
integrated series lead to volatility forecasts larger than those from short-memorymodels, which immediately translate into higher
option prices. This could be an explanation for the better pricing performance of the FIGARCH model in this case (Hyung et al.,
2008).

Our full sample consists of 4255 trading days and eachmodel is estimated over the first 4055 observations of the full sample, i.e.
over the period 1st January 1988 to 16th July 2003. As a result the out-of-sample period is from 17th July 2003 to 22nd April 2004,
providing 200 daily observations. The parameter estimates obtained with the data from the in-sample period are inserted in the
relevant forecasting formulas and volatility forecasts ĥt+1 calculated given the information available at time t=T(=4055),…,T+
199(=4254), i.e. 200 one-step ahead forecasts are calculated.

In order to evaluate the forecast performance of the different model specifications we need (a) to obtain a valid proxy for
the true but unobservable underlying volatility and (b) to specify certain loss functions. A natural candidate for the proxy are the
squared returns, which are an unbiased estimator for the unobserved conditional variance. However, compared to realized
volatility the squared returns are a noisy proxy and, as shown in Patton (forthcoming), distortions in the rankings of competing
forecasts can arise when using noisy proxies. Whether such distortions arise depends on the choice of the loss function. Patton
(forthcoming) provides necessary and sufficient conditions on the functional form of the loss function to ensure that the ranking is
the same whether it is based on the true conditional variance or some conditionally unbiased volatility proxy. Two loss functions
which satisfy these conditions are the mean square error (MSE) statistic and the QLIKE statistic. Consequently, we will employ the
MSE and the QLIKE statistic, where the latter corresponds to the loss implied by a Gaussian likelihood. Finally, in addition to those
robust loss functions we make use of the adjusted mean absolute percentage error (AMAPE) statistic (see Table 5 below). In
contrast to the simple mean absolute percentage error the AMAPE corrects for the problem of asymmetry between the actual
and forecast values.
13 For the literature on the forecasting performance of univariate fractionally integrated and power ARCH models see, among others, Degiannakis (2004),
Hansen and Lunde (2006) and Ñíguez (2007).



Table 5
Forecast evaluation criteria.

MSE
k−1 ∑

T+k

t=T+1
ðĥt−r2t Þ2

QLIKE

k−1 ∑
T+k

t=T+1
½lnðĥtÞ + r2t = ĥt �

AMAPE
k−1∑T+k

t=T+1 jðĥt−r2t Þ= ðĥt + r2t Þj
Notes: k is the number of one-step ahead forecasts, T is the sample size, ĥt is the forecasted variance and rt

2 are the squared returns.

Table 6
Best versus worst ranked models.

MSE QLIKE AMAPE

S&P 500 B-FIAP vs. U-FIAP
[0.00]

B-IAP vs. U-FIAP
[0.03]

B-AP vs. U-FIAP
[0.02]

TSE 300 B-FIAP vs. U-IAP
[0.14]

U-FIP vs. U-IAP
[0.00]

B-AP vs. U-IAP
[0.00]

CAC 40 T-P vs. BF-FIA(δ=2)
[0.00]

T-IP vs. BF-FIA(δ=2)
[0.15]

T-IP vs. BF-FIA(δ=2)
[0.00]

DAX 30 BF-AP vs. U-FIAP
[0.00]

U-FIA(δ=1) vs. BC-FIA(δ=2)
[0.08]

BF-AP vs. BF-FIA(δ=2)
[0.17]

FTSE 100 T-P vs. BC-FIA(δ=2)
[0.00]

T-P vs. BC-FIA( δ=2)
[0.01]

BD-AP vs. BC-FIA(δ=2)
[0.00]

Hang Seng BS-FIA vs. U-AP
[0.00]

BN-AP vs. T-FIAP
[0.02]

T-FIA(δ=2) vs. U-FIA(δ=2)
[0.26]

Nikkei 225 BS-FIA(δ=1) vs. U-FIAP
[0.12]

U-FI(δ=1) vs. T-AP
[0.03]

T-FIA(δ=2) vs. U-AP
[0.67]

Straits Times BH-FIAP vs. BN-IAP
[0.00]

BH -FIA(δ=2) vs. U-AP
[0.01]

T-FIAP vs. U-AP
[0.00]

Notes: U, B and T stand for univariate, bivariate and trivariate specifications respectively. (F)I, A and P indicate (fractionally) integrated, asymmetric and power
models respectively. The subscripts refer to the jointly estimated index of the bivariate model, e.g., the subscript F indicates that the bivariate model is estimated
with the FTSE 100 index. The numbers in brackets are the p-values from the Diebold and Mariano (1995) test.
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For each index we calculated the three forecast error statistics for the specifications APARCH, IAPARCH, FIAPARCH(δ=1),
FIAPARCH(δ=2) and FIAPARCH in the univariate, bivariate and (where possible) trivariate versions. Hence, overall, fifteen
values of each forecast error statistic are available for each index. Instead of presenting all the figures, we decided to present in
Table 6 only the best and the worst specifications for each index as identified by the forecast error statistics. In addition, we
test whether the values of the forecast error statistics from the best and the worst model are statistically significant using the
Diebold and Mariano (1995) test. Table 6 contains the corresponding p-values (see the next section).

An examination of Table 6 reveals that either a multivariate or a fractionally integrated (FI) or a power (P) or an asymmetric
(A) process is clearly superior. That is, there is strong evidence that the restrictive univariate (U), stable, symmetric Bollerlsev's
type of process is inferior to one of themore flexible specifications. The results can be summarized as follows. Only in three cases is
the best ranked model, as assessed by the forecasting criteria, the univariate one. Both MSE and AMAPE loss functions uniformly
favor either bivariate or trivariate specifications (see the second and fourth columns of Table 6). For the two American indices in
five out of the six cases a bivariate model is selected as being best (see the first two rows of Table 6). Similarly, the results for the
European countries show the close connection between the three volatilities. In five cases a trivariate specification is the best
performing model and in three cases a bivariate one. For the Asian indices in only one case do the statistics rank the univariate
formulation first (see the last three rows of Table 6). Overall, themultivariate formulation has the best statistics for twenty one out
of the twenty four cases.

Moreover, in the Asian countries the (fractionally) integratedmodel is favored in all but one case. Similarly, for the S&P 500 and
the TSE 300 indices the statistics indicate the superiority of the fractionally integrated specification. The power formulation is the
dominant one in the European and American countries. In particular, for the European indices the restriction that δ=2
characterizes, with one exception, the worst performing specification. In summary, the best formulations as ranked by the forecast
error statistics aremultivariate models. For the American and Asian indices the long-memory property appears to be important for
the forecast performance, while for the European and American indices power specifications are dominant.

4.2. Tests of equal forecast accuracy

In some cases the error statistics do not allow for a clear distinction between the ranked models, which is evidenced by the
marginal difference in relative accuracy which separates the models (results are not reported). Thus next wemove to the pairwise
comparison of the best and the worst specifications.
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We utilize the tests proposed by Diebold and Mariano (1995) and Harvey et al. (1997). Before moving to the two tests
somenotation isneeded. First,wedenote the one-stepahead loss functions for the best andworstmodels as Lbt

(i)(rt2, ĥbt) and Lwt
(i)(rt2, ĥwt)

(t=T+1,…,T+k), where i∈{MSE, QLIKE, AMAPE}, respectively. Forecasts of the squared returns are generated using the fixed
forecasting scheme (described in West and McCracken, 1998, p. 819). Next, let Δt=Lbt

(i)−Lwt
(i) and ―Δ denote its sample mean,

i.e. ―Δ = k−1 ∑
T+k

t=T+1
Δt . The test proposed by Diebold and Mariano (1995) is formed as
14 Har
k–1 de
15 We
that for
specific
S = V̂ar
―
Δ

� �h i−1=2 ―Δ; with V̂ar
―
Δ

� �
=

2π f̂ Δ 0ð Þ
k

;

f̂ Δð0Þ is a consistent estimate of the spectral density function of Δ at frequency zero. Under the null hypothesis S has an
where
asymptotic standard normal distribution.14

As seen in Table 6 the evidence obtained from the loss functions is reinforced by the Diebold–Mariano test. Clearly the test
discriminates between the best and the worst model. That is, in the majority of the cases (eighteen out of twenty four) the test
indicates the superiority of the best formulation over the worst one. In particular, for the USA and Canada, in four out of the five
cases the worst model (univariate) is rejected in favor of the best (multivariate) one. For the Asian indices, the Diebold–Mariano
test indicates the superiority of the best (fractionally integrated) specification over the worst (stable) one in four out of the five
cases. Further, for the European countries, in five out of the seven cases the power (best) formulation outperforms the Bollerslev
(worst) one.15
5. Conclusion

In this paper strong evidence has been put forward suggesting that the conditional volatility of eight national stock indices is best
modeled as a FIAPARCH process. On the basis of Wald tests and information criteria the fractionally integrated model provides a
statistically significant improvement over its integrated counterpart. One can also reject the more restrictive stable process, and
consequently all the existing specifications (see Ding et al. 1993) nested by it in favor of the fractionally integrated parameterization.
Hence, our analysis has shown that the FIAPARCH formulation is preferred to both the stable and the integrated ones.

Additionally, according to our analysis, all eight countries show strong evidence of power effects when long-memory
persistence in the conditional volatility has been taken into account, as both the Bollerslev and Taylor/Schwert specifications were
rejected in favor of the power formulation. Further, comparing the pairwise testing results of the log-likelihood procedures to the
relative model rankings provided by the four alternative criteria we observed that the findings were generally robust. That is,
where the log-likelihood results provided unanimous support for the FIAPARCH specification over either the Bollerslev or Taylor/
Schwert (asymmetric) FIGARCH formulations, themodel selection criteria were compatible without exception. Thus, the inclusion
of a power term and a fractional unit root in the conditional variance equation appear to augment the model in a worthwhile
fashion.

Wewould also like to emphasize that the above results were robust to the dimension of the process. That is, the evidence on the
superiority of the FIAPARCH specification obtained from the univariate models was reinforced by the multivariate processes.
Moreover, the apparent similarity of the fractional differencing and power terms suggests that the M-FIAPARCHmodel has a quite
general empirical validity across many different markets. Finally, our in-sample results are reinforced by a comparison of the out-
of-sample forecast performance of the various models, which shows that the M-FIAPARCH specification is generally preferred to
its nested competitors.

Finally, we would like to point to two potentially interesting extensions of the multivariate models studied in this article,
namely specificationswith slowly time-varying intercepts as suggested in Baillie andMorana (2009) orwith volatility spillovers as
considered in Conrad and Karanasos (2010).
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Appendix. QMLE results

Table 7
Univariate AR-FI(A)PARCH models (QMLE).
SP
 T
 C
 D
 F
 H
 N
(continued on n
S

ζ
 −0.04 a

(−2.64)

0.18
(10.44)
0.04
(2.69)
0.02 a

(1.04)

0.05
(2.89)
0.10
(4.90)
−0.01
(−0.11)
0.16
(8.97)
β
 0.49
(1.81)
–
 0.48
(3.03)
0.59
(4.96)
0.47
(1.84)
0.24
(1.44)
0.38
(2.27)
0.12
(1.09)
ϕ
 0.23
(1.44)
−0.18
(−2.32)
0.18
(2.57)
0.13
(2.44)
0.18
(1.45)
–
 0.10
(0.86)
–

γ
 –
 –
 –
 –
 –
 –
 –
 –
δ
 2.18
(4.95)
2.20
(13.75)
1.89
(10.50)
1.59
(7.23)
1.89
(9.95)
1.80
(12.00)
2.07
(15.92)
1.85
(11.56)
d
 0.30
(2.00)
0.24
(3.00)
0.36
(2.57)
0.53
(3.53)
0.37
(2.31)
0.38
(2.71)
0.37
(4.62)
0.30
(2.73)
Q12
 18.11
[0.11]
8.02
[0.78]
10.24
[0.59]
11.55
[0.48]
12.26
[0.42]
15.57
[0.21]
8.10
[0.78]
12.70
[0.39]
Q12
2
 4.01

[0.98]

14.28
[0.28]
10.30
[0.59]
2.68
[1.00]
13.53
[0.33]
36.16
[0.00]
7.76
[0.80]
0.64
[1.00]
Notes: For each of the eight indices, Table 7 reports QMLE results for the AR(1)-FI(A)PARCHmodel. The numbers in parentheses are t-statistics. Q12 and Q12
2 are the

12th order Ljung–Box tests for serial correlation in the standardized and squared standardized residuals respectively. The numbers in brackets are p-values.
a For the S&P 500 and Dax 30 indices we estimate AR(3) and AR(4) models respectively.

Table 8
Bivariate AR-FI(A)PARCH models (QMLE).
SP–T
 C–D
 C–F
 D–F
 H–N
 H–S
 N–S
SP
 T
 C
 D
 C
 F
 D
 F
 H
 N
 H
 S
 N
 S
ζi
 −0.06 a

(−4.74)

0.17
(13.33)
−0.03
(−2.67)
0.01 a

(0.84)

0.06
(4.10)
0.05
(3.23)
−0.003 a

(−0.17)

−0.02
(−1.63)
0.02
(1.11)
−0.01
(−0.63)
0.03
(1.71)
0.13
(7.77)
−0.02
(−1.28)
0.15
(8.33)
βi
 0.37
(2.70)
0.26
(1.30)
0.48
(3.65)
0.57
(5.45)
0.12
(2.11)
0.12
(1.81)
0.50
(3.13)
0.38
(0.93)
0.79
(8.67)
0.24
(3.53)
–
 –
 0.23
(3.48)
−0.84
(−8.74)
ϕi
 0.17
(1.61)
0.08
(0.47)
0.22
(2.87)
0.19
(3.70)
–
 –
 0.18
(3.44)
0.16
(0.69)
0.25
(1.64)
–
 −0.13
(−2.32)
–
 –
 −0.87
(−10.26)
γi
 –
 0.33
(1.52)
–
 –
 –
 –
 0.16
(1.38)
–
 –
 0.12
(1.58)
–
 –
 0.16
(1.86)
–

δi
 1.99
(6.22)
1.77
(6.55)
1.61
(10.06)
1.35
(7.94)
2.04
(9.71)
1.91
(7.96)
1.37
(8.06)
1.47
(5.25)
1.69
(11.27)
2.09
(16.08)
1.84
(12.27)
2.03
(11.94)
1.97
(14.07)
1.84
(10.22)
di
 0.23
(4.60)
0.25
(4.17)
0.34
(3.40)
0.47
(3.61)
0.17
(3.40)
0.19
(3.17)
0.40
(2.5)
0.29
(1.53)
0.72
(3.27)
0.31
(5.17)
0.25
(6.25)
0.16
(5.33)
0.30
(5.00)
0.22
(4.40)
ρ
 0.67
(15.42)
0.65
(13.60)
0.67
(19.43)
0.54
(17.51)
0.35
(12.99)
0.49
(11.28)
0.30
(11.04)
Q12
 18.39
[0.10]
10.28
[0.59]
36.62
[0.00]
11.38
[0.50]
11.34
[0.50]
15.39
[0.22]
14.37
[0.28]
31.78
[0.00]
46.36
[0.00]
10.26
[0.59]
34.93
[0.00]
18.09
[0.11]
10.90
[0.54]
13.73
[0.32]
Q12
2
 2.60

[1.00]

2.71
[1.00]
14.62
[0.26]
2.94
[1.00]
36.32
[0.00]
50.13
[0.00]
2.39
[1.00]
15.58
[0.21]
16.17
[0.18]
6.89
[0.86]
59.92
[0.00]
3.08
[0.99]
8.41
[0.75]
1.68
[1.00]
Notes: For each of the seven pairs of indices, Table 8 reports QMLE results for the bivariate AR-FI(A)PARCH model. SP–T denotes the bivariate process for the S&P
500 and TSE 300 indices. C–D, C–F and D–F indicate the three bivariate models for the European indices. H–N, H–S and N–S stands for the three bivariate
specifications for the Asian indices. The numbers in parentheses are t-statistics. Q12 and Q12

2 are the 12th order Ljung–Box tests for serial correlation in the
standardized and squared standardized residuals respectively. The numbers in brackets are p-values.

a For the S&P 500 and DAX 30 indices we estimate AR models of order 3 and 4 respectively.
Table 9
Trivariate AR-FI(A)PARCH(1, d, 1) models (QMLE).
C–D–F
 H–N–S
C
 D
 F
 H
 N
 S
βi
 0.34
(1.99)
0.54
(4.60)
0.55
(3.18)
0.74
(4.93)
0.33
(1.74)
0.82
(15.59)
ϕi
 0.16
(1.53)
0.20
(3.74)
0.23
(3.06)
0.30
(0.72)
0.08
(0.54)
0.89
(21.78)
γi
 –
 –
 –
 0.02
(1.46)
0.10
(1.60)
–

δi
 1.70
(8.10)
1.36
(7.56)
1.39
(8.69)
1.57
(14.27)
1.98
(12.38)
2.26
(7.06)
di
 0.24
(2.66)
0.43
(3.07)
0.40
(2.86)
0.60
(1.86)
0.32
(4.57)
0.06
(3.00)
ext page)
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(continued)able 9 (continued)
C–D–F
 H–N–S
C
 D
 F
 H
 N
 S
C–D
 D–F
 C–F
 H–N
 N–S
 H–S
ρ
 0.66
(13.84)
0.55
(17.61)
0.67
(19.85)
0.35
(13.00)
0.30
(10.96)
0.50
(11.22)
Notes: Table 9 reports QMLE results for the two trivariate FI(A)PARCH(1,d,1) models. C–D–F and H–N–S denote the models for the European and Asian countries
respectively. The numbers in parentheses are t-statistics.
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