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Abstract

The purpose of this paper is to provide a comprehensive methodology for the analysis of the

Asymmetric Power ARCH model. First, it gives the ARMA representations of a power transformation of

the conditional variance and the absolute returns. Second, it derives a certain fractional moment of the

absolute observations. Third, it obtains the autocorrelation function of the power-transformed absolute

returns. Finally, the practical implications of the results are illustrated empirically using daily data on five

East Asia stock indices.
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1. Introduction

A common finding in much of the empirical finance literature is that although the returns on

speculative assets contain little serial correlation, the absolute returns and their power

transformations are highly correlated (see, for example, Taylor, 1986; Ding et al., 1993;

Granger and Ding, 1995; Ding and Granger, 1996). In particular, Ding et al. (1993) investigate

the autocorrelation structure of |rt|
d, where rt is the daily S&P 500 stock market returns, and d is

a positive number. They found that |rt| has significant positive autocorrelations for long lags.

Motivated by this empirical result they propose a new general class of ARCH models, which
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they call the Asymmetric Power ARCH (A-PARCH) model. In addition, they show that the A-

PARCH model comprises seven other models in the literature. He and Teräsvirta (1999b)

illustrate how the A-PARCH model may also be viewed as a standard GARCH model for

observations that have been transformed by a sign-preserving power transformation implied by a

(modified) A-PARCH parameterization.

The purpose of this paper is to study the autocorrelation structure of the general A-

PARCH( p,q) model. The moment structure of the GARCH family of models is a topic that has

recently attracted a great deal of attention. Karanasos (1999) and He and Teräsvirta (1999a)

derived the autocorrelations of the squared errors for the GARCH model.1 In addition, He and

Teräsvirta (1999b), using the above sign-preserving transformation, obtained the autocorrelation

function of the power-transformed absolute errors for the first-order A-PARCH model. Despite

this progress, the moment structure of the A-PARCH( p,q) model has not been fully worked out

yet.

In this paper we view the A-PARCH model from a different angle, and provide a

comprehensive methodology for the analysis of the general A-PARCH( p,q) process. First, we

give the ARMA representations of the power transformations of the conditional variance and the

absolute returns. Next, we derive an existence condition for a certain fractional moment of the

absolute observations. The practical significance of the existence condition for a fractional

moment is that when it is satisfied, then all lower-order moments exist as well. In contrast,

violation of the above condition implies that no higher-order moments exist.2 Further, we obtain

the autocorrelation function of the power-transformed absolute returns. Our results on the

moment structure of the general A-PARCH( p,q) model extend the results in He and Teräsvirta

(1999b) on the first-order A-PARCH model, and Karanasos (1999) and He and Teräsvirta

(1999a) on the GARCH( p,q) model.

Several previous articles dealing with financial market data–e.g., Dacorogna et al. (1993),

Ding et al. (1993) and Muller et al. (1997)–have commented on the behaviour of the

autocorrelation function of power-transformed absolute returns, and the desirability of having a

model which comes close to replicating certain stylized facts in the data (abstracted from Baillie

and Chung, 2001). In this respect, estimates of the autocorrelations of power-transformed

observations can be of great importance. By comparing these estimates to those obtained by the

data, one can have a clear indication of how well the estimated model fits the data.

Another potential motivation for the derivation of the autocorrelations of the power-

transformed absolute returns is that they can be used to estimate the parameters of the A-PARCH

model. The approach is to use the minimum distance estimator (MDE), which estimates the

parameters by minimizing the Mahalanobis generalized distance of a vector of sample

autocorrelations from the corresponding population autocorrelations (see Baillie and Chung,

2001).3 In a recent paper, Kristensen and Linton (in press) propose a closed-form estimator for
1 Theoretical results on the moment structure of the EGARCH model have also been derived (see Demos, 2002; He et

al., 2002; Karanasos and Kim, 2003). Further, for a discussion of the GARCH-in-mean model, see Karanasos (2001),

Arvanitis and Demos (2004) and Karanasos et al. (2004).
2 Ling and McAleer (2002a) provide the necessary and sufficient condition for the existence of higher order moments

of a version of the A-PGARCH( p,q) model. Ling and McAleer (2002b) investigate some structural properties of a

family of GARCH(1,1) processes.
3 One motivation for the MDE approach can be found in Jacquier et al. (1994) who, on examining the autocorrelations

of transformations of fitted returns from maximum likelihood estimation (MLE), have noted their discrepancy when

compared with the autocorrelations of actual returns.
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the linear GARCH(1,1) model, which is based on the autocorrelation function of the squared

GARCH process.4 The estimator has the advantage over the often used quasi-maximum-

likelihood estimator that it can be easily implemented, and does not require the use of any

numerical optimisation procedures or the choice of initial values of the conditional variance

process. Kristensen and Linton (in press) point out that their procedure easily extends to other

GARCH-type processes that can be represented as an ARMA-like model.

The practical implications of the results are illustrated empirically using daily data on five

East Asia stock indices. To obtain the theoretical results and to carry out the estimation we

assume that the innovations are drawn from either the normal, student-t, generalized error, or

double exponential distributions. In most cases, likelihood ratio testing procedures choose high

order A-PARCH specifications. Additionally, in the majority of the cases, model selection

criteria support the general power ARCH model, as against Bollerslev’s (1986) GARCH and

Taylor/Schwert models.5 These findings highlight the need to have analytical expressions for the

moment structure of the general A-PARCH( p,q) model in addition to those for the

GARCH( p,q) and A-PARCH(1,1) models.

The remainder of the paper is organized as follows. Section 2 investigates the autocorrelation

functions of the power-transformed conditional variance and absolute returns. Section 3

discusses the data and presents the empirical results. Section 4 concludes the analysis.

2. A-PARCH model

2.1. A-PARCH( p,q) process

Since its introduction by Ding et al. (1993), the A-PARCH model has been frequently

applied. For example, Hentschel (1995) defined a parametric family of asymmetric GARCH

models that nests the EGARCH and A-PARCH models. He and Teräsvirta (1999c)

considered a family of first-order asymmetric GARCH processes which includes the A-

PARCH as a special case. Brooks et al. (2000) analyzed the applicability of the power

ARCH models to national stock market returns for ten countries.6 Laurent (2004) derives

analytical expressions for the score of the A-PARCH model. The use of the A-PARCH model is

now widespread in the literature (see, for example, Mittnik and Paolella, 2000; Giot and Laurent,

2003).

One of the most common models in finance and economics to describe a time series rt, of the

returns from some asset, is the martingale process

rt ¼ eth
1=2
t ; ð1Þ

where {et} are independent, identically distributed random variables with E(et)=E(et
2�1)=0. ht

is positive with probability one and is a measurable function of Rt�1, which in turn is the sigma-

algebra generated by {rt�1, rt�2, . . .}. That is ht denotes the conditional variance of the returns
4 We are grateful to C. Conrad for calling this paper to our attention.
5 Taylor (1986) and Schwert (1990) have suggested that the conditional standard deviation obeys a GARCH

specification.
6 It is also worth noting that Fornari and Mele (1997) showed the usefulness of the A-PARCH scheme in approximating

models developed in continuous time as systems of stochastic differential equations. This feature of GARCH schemes

has usually been overshadowed by their well-known role as simple econometric tools providing reliable estimates of

unobserved conditional variances (Fornari and Mele, 2001).
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{rt}, (rt|Rt�1)~(0,ht). In addition ht is specified as an A-PARCH(p,q) process

h
d
2
t ¼ x þ

Xp
j¼1

bjh
d
2

t�j þ
Xq
l¼1

alh
d
2

t�l fl et�lð Þ; ð2Þ

with

fl et�lð Þu jet�lj � clet�l½ �d; l ¼ 1; . . . ; q;

where al (l=1, . . . , q) and bj ( j=1, . . . , p) are the ARCH and GARCH parameters, respectively,

cl (|cl|b1) is the leverage parameter and d (d N0) is the parameter for the power term. Further, to

guarantee that htN0 almost surely for all t, we assume that x N0, alz0 with at least one al N0
and bjz0.7 Within the A-PARCH model, by specifying permissible values for a’s, b’s, c’s and
d in Eq. (2), it is possible to nest a number of the more standard ARCH and GARCH

specifications (see Ding et al., 1993; Hentschel, 1995; Brooks et al., 2000).

In order to distinguish the general model in Eq. (2) from a version in which bj=0 ( j=1, . . . ,
p), we will hereafter refer to the former as A-PGARCH and the latter as A-PARCH.

For the subsequent development of our theory, it is useful to write the d / 2th power of the

conditional variance in an ARMA form. Hence, from the right hand side of Eq. (2) we add and

subtract alklh
d/2
t� l (l=1, . . . , q), in order to get the ARMA representation of ht

d/2

h
d
2
t ¼ x þ

X̃pp
i¼1

b̃bih
d
2

t�i þ
Xq
l¼1

alvl;t�l; ð3Þ

with

vl;t�luh
d
2

t�l fl et�lð Þ � kl½ �;
where p̃umax ( p,q), B̃biuaiki +bi (i =1, . . . , p̃) and kl (l=1, . . . , q) denotes the expected value

of [ fl(et)] and is given by

kluE fl etð Þ½ � ¼

1ffiffi
p

p 1� clð Þd þ 1þ clð Þd
h i

2
d
2
�1ð ÞC dþ1

2

� �
; if et f

i:dð Þ
N 0; 1ð Þ;

r � 2ð Þ
d
2C r�d

2

� �
C dþ1

2

� �
C r

2

� �
2
ffiffiffi
p

p 1� clð Þd þ 1þ clð Þd
h i

; if et f
i:dð Þ

tr 0; 1ð Þ;

1� clð Þd þ 1þ clð Þd
h i

C dþ1
vð Þkd2

d
v�1ð Þ

C 1
vð Þ

; if et f
i:dð Þ

GEv 0; 1ð Þ;

1� clð Þd þ 1þ clð Þd
h i

C d þ 1ð Þ2� d
2
þ1ð Þ; if et f

i:dð Þ
DE 0; 1ð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð4Þ
where ku{2(�2)/vC(1 /v)[C(3 /v)]�1}1 / 2 and N, tr, GEv, and DE denote the normal, student-t,

generalized error and double exponential distributions, respectively. Moreover, r are the degrees

of freedom of the student-t distribution, v is the tail thickness parameter of the generalized error

distribution, and C(d ) is the Gamma function.

Note that vl,t�l in Eq. (3) is defined as the difference between fl(rt�l) and its conditional

expectation. Thus, vl,t�l is a serially uncorrelated process with zero mean.
7 Nelson and Cao (1992) imposed weaker inequality constraints to keep the conditional variance nonnegative (see

Appendix A).
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Expression (3) will be used in the derivation of the autocorrelation function of the d / 2th
power of the conditional variance (see Theorem 1 below). It can also be used (employing the

methodology in Karanasos, 2001) to obtain the optimal predictor (and the corresponding forecast

error and forecast error uncertainty) of the future values of ht
d/2.

Assumptions.

(1) All the roots of the autoregressive polynomial B̃B Lð Þu1�
Pp̃p

i¼1 b̃biL
i¼
Qp̃p

i¼1 1�kiLð Þ
h i

lie outside the unit circle.

(2) The polynomials B̃(L) and A Lð Þu
Pq

l¼1 alLl have no common left factors other than

unimodular ones (irreducibility condition).

Finally, for future development, it is helpful to note that |rt|
d may be expressed as

jrtjd ¼ k0h
d
2
t þ v0;t; ð5Þ

where vl,t�l is defined by Eq. (3) and k0 is given by Eq. (4) with g0=0.

2.2. Autocorrelation functions

As stated in the Introduction the moment structure of the GARCH model has been the subject

of much research. In this section we present the autocorrelation functions of the power

transformations of the conditional variance and the absolute-valued observations. We examine

only the case where the roots of B̃(L)=0 are simple. That is ki p kf, for all i, fa{1, . . . , p̃} such

that i p f.
From Eq. (5) one readily obtains

Cov jrtjd; jrt�mjd

 �

¼ k20Cov h
d
2
t ; h

d
2
t�m


 �
þ k0Cov h

d
2
t ; v0;t�m


 �
; maNð Þ: ð6Þ

It is clear from the above expression that the autocovariances of ht
d/2 are needed for the

computation of the autocovariances of the power-transformed absolute observations. Thus our

first theorem establishes the lag-m autocorrelation of ht
d/2, qm h

d
2
t


 �
uCorr h

d
2
t ; h

d
2
t�m


 �
; maN.

Theorem 1. Suppose that 0bE ½ fl ðetÞ fn ðetÞ � bl8 t l; n ¼ 0; . . . ; qð Þ. Then, under Assumptions
1 and 2, the autocorrelation function of ht

d/2 is

qm h
d
2
t


 �
¼ cmh

c0h
; ð7Þ

with

cmhu
X̃pp
i¼1

fimpim;

and

fimu
kp̃p�1þm
iỸpp

f¼1

1� kikf
� � Ỹpp

f¼1
f p i

ki � kf
� � ;

pimu
Xq
l¼1

a2l kll � k2l
� �

þ
Xm
d¼1

Xq�d

n¼1

ananþd kn;nþd � knknþd

� �
kdi þ k�d

i

� �
þ
Xq

d¼mþ1

Xq�d

n¼1

ananþd kn;nþd � knknþd

� �
kdi þ kd�2m

i

� �
;
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where kl (l=1, . . . , q) denotes the expected value of the fl(et ) and is given by Eq. (4). Moreover,

ki is the inverse of the ith root of the autoregressive polynomial B̃(L), and kln (l, n=1, . . . , q)

denotes the expected value of fl(et )� fn(et ) and is given by

klnuE fl etð Þfn etð Þ½ �

¼

1ffiffi
p

p 1� clð Þ 1� cnð Þ½ �d þ 1þ clð Þ 1þ cnð Þ½ �d
n o

2d�1C 2dþ1
2

� �
; if et f

i:dð Þ
N 0; 1ð Þ;

r � 2ð ÞdC r
2
�d

� �
C d þ 1

2

� �
1�clð Þ 1�cnð Þ½ �dþ 1þc1ð Þ 1þcnð Þ½ �d

n o
C r

2

� �
2
ffiffiffi
p

p ; if et f
i:dð Þ

tr 0; 1ð Þ;

1� clð Þ 1� cnð Þ½ �d þ 1þ clð Þ 1þ cnð Þ½ �d
n o

C 2dþ1
v

� �
k2d2

2d
v
�1ð Þ

C 1
v

� � ; if et f
i:dð Þ

GEv 0; 1ð Þ;

1� clð Þ 1� cnð Þ½ �d þ 1þ clð Þ 1þ cnð Þ½ �d
n o

C 2d þ 1ð Þ2� dþ1ð Þ; if et f
i:dð Þ

DE 0; 1ð Þ:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð8Þ
In addition, the dth moment of the conditional variance is

E hd
t

� �
¼

E h
d
2
t


 �h i2
1� c0h

; ð9Þ

with

E h
d
2
t


 �
¼ x

1�
X̃pp
i¼1

b̃bi

;

where ch
0 is defined by Eq. (7).

Proof. See Appendix B. 5

Remark 1. The condition for the existence of the d / 2th and dth moments of the conditional

variance are
Pp̃p

i¼1 b̃bib1 and c0hb1, respectively. Note that the autocorrelation function of ht
d/2

exists if and only if the d / 2th and dth moments of the conditional variance exist. When cl =c
(l=1, . . . , q, |c|b1),

Pp̃p
i¼1 b̃bib1 is a necessary and sufficient condition for the existence of a

unique d-order stationary solution {rt} to model Eqs. (1) and (2) (see Ling and McAleer, 2002a).

Remark 2. The result in Eq. (9) is very important because E hd
t

� �
will be used in the derivation

of the 2dth moment of the absolute returns (see Theorem 2 below).

Now suppose that the conditional mean of rt, given information through time t�1, is

governed by

E rt

�����
X

t�1

 !
¼ cg htð Þ:

Mean equations of this form have been widely used in empirical studies of time varying risk

premia. Various specifications for the functional form of the risk premium cg(ht) have appeared in

the empirical literature, most commonly imposing g htð Þ ¼
ffiffiffiffi
ht

p
; g htð Þ ¼ ln htð Þ or g htð Þ ¼ ht

(see, for example, Engle et al., 1987; Duan, 1995; Härdle and Hafner, 2000; Fountas et al., 2004).

The results in Theorem 1 can be used to derive the autocorrelations of rt, when g(ht)=ht
d/2.
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Next, we examine the moment structure of the power-transformed absolute returns.

Theorem 2. Suppose that 0bE ½ fl ðetÞ fn ðetÞ � bl8 t l; n ¼ 0; . . . ; qð Þ. Then, under Assumptions

1 and 2, the autocorrelation function of j rtj d in Eqs. (1) and (2), at lag mðmaNÞ, is given by

qm jrtjd

 �

u
Cov jrtjd; jrt�mjd


 �
Var jrtjd

 �

¼
k20c

m
h þ k0

X̃pp
i¼1

f4i0
Xmin m;qð Þ

l¼1

al k0l � k0klð Þkm�l
i

k20c
0
h þ k00 � k20

� � ; mz1ð Þ; ð10Þ

with

f4i0u
kp̃p�1
iỸpp

f¼1
f p i

ki � kf
� � :

Moreover, the 2dth moment of the absolute returns is

E jrtj2d

 �

¼ k00E hd
t

� �
;

where kl, ch
m, are defined by Eqs. (4) and (7), respectively, k0l is given by Eq. (8) with c=0 and

E ðhd
tÞ is given in Eq. (9).

Proof. The proof of Theorem 2 can be deduced from Eq. (6), the results in Theorem 1 and the

Wold representation of Eq. (3). 5

As an illustration of how the results in Theorem 2 can be simplified in specific cases, we

conclude this section by giving a relatively straightforward example. In particular, Theorem 2

can be employed to obtain the well-known autocorrelation function of squared returns of the

GARCH(1,1) model under normality, as given for example by Bollerslev (1988).

Example. In model (2) let p =q =1, d =2, and c1=0 which is the GARCH(1,1) model. For this

model, when et~N(0,1), the condition for the existence of the second moment of the conditional

variance is 3a1+b1
2+2a1b1b1. Furthermore, the fourth moment of the returns and the

autocorrelation function of the squared returns are

E r4t
� �

¼ 3x2 1þ a1 þ b1ð Þ
1�a1�b1ð Þ 1�3a1�b2

1�2a1b1

� � ; qm r2t
� �

¼
a1 a1þb1ð Þm�1

1�a1b1�b2
1

� �
1� 2a1b1 � b2

1

� � :

Finally, notice that when the returns from some asset (rt) follow an ARMA model we cannot

obtain analytical expressions for the autocorrelation function of |rt|
d. However, in a simulation

study we obtain the simulated theoretical autocorrelations for various moving average A-

PGARCH (1,1) processes with conditional t-distributed errors. We find that the theoretical

autocorrelations of the MA(1) model start high whereas those of the white noise model start

considerably low. Similarly, the discrepancy between the first three autocorrelations for the white

noise model and the MA(3) model is large. Nevertheless, the pattern of the theoretical

autocorrelation function after the third lag is very similar in all four models.8
8 The simulations were performed for many different parameter choices and also with conditionally normal errors and

similar results were found in all cases. We do not report the results for space considerations. Details are available from the

first author upon request.
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3. Empirical analysis

3.1. Estimation results

Daily stock price index data for five East Asia countries were sourced from the Datastream

database for the period January 1980 to April 1997, giving a total of 4518 observations. The five

countries and their respective price indices are: Korea (KOSPI), Japan (NIKKEI), HongKong (Hang

Seng), Taiwan (SE), and Singapore (Straits-Times).9 For each national index, the continuously

compounded return was estimated as rt =log( pt)� log(pt�1) where pt is the price on day t.

In order to carry out our analysis of stock returns, we have to select a form for the mean

equation. Ding et al. (1993), and Ding and Granger (1996) suggested an MA(1) specification for

the mean; Nelson (1991) and Hafner and Herwartz (2001) used an AR(1) form, while Hentschel

(1995) modeled the index return as a white noise process. In practice, there is little to differentiate

an AR(1) and an MA(1) model when the AR and the MA coefficients are small, and the

autocorrelations at lag one are equal, since the higher order autocorrelations die out very quickly in

the AR model (Nelson, 1991). We therefore model all the four stock returns as MA(1) processes.

To select our best A-PGARCH specification, we begin with high order models and follow a

dgeneral to specificT modelling approach to fit the data. We estimate A-PGARCH models of

order up to A-PGARCH(3,4) and A-PGARCH(4,2) for the returns on the five stock indices

using four alternative distributions: the normal, student-t, double exponential and generalized

error.10 In most of the cases, the Akaike Information Criterion (AIC) and the likelihood ratio

(LR) test (see Table 1) choose high order A-PGARCH models.11 For example, when the

innovations et are t-distributed, the A-PGARCH(3,4) and A-PGARCH(3,3) specifications were

chosen for the KOSPI and NIKKEI indices respectively. Further, the A-PGARCH(4,2), A-

PGARCH(2,2) and A-PGARCH(2,1) specifications were chosen for the Hang Seng, SE and

Straits-Times indices respectively. In contrast, in all the cases, the Schwarz Information Criterion

(SIC) (not reported) chose the A-PGARCH(1,1) model.

The existence of outliers, particularly in daily data, causes the distribution of returns to

exhibit excess kurtosis. To accommodate the presence of such leptokurtosis, one should estimate

the A-PGARCH models using non-normal distributions. As reported by Palm (1996), the use of

a student-t distribution is widespread in the literature. In particular, Palm and Vlaar (1997)

among others show that this distribution performs better in order to capture the higher observed

kurtosis (see also, Beine et al., 2002). Indeed, the maximum log likelihood (ML) function

strongly increases when using either the student-t or generalized error distributions. In

accordance with this, for four out of the five indices the AIC is minimized when the student-t

distribution is used, while for the SE index, it chooses the generalized error distribution.

A series of tests (not reported) in which the restricted case is either the Bollerslev or the

Taylor/Schwert model were performed. When the innovations are t-distributed, the LR tests
9 We use the daily returns for the Straits-Times index for the period January 1985 to April 1997 (3213 observations).
10 We use an S-PLUS program called S+GARCH, which uses the Berndt et al. (1974) (BHHH) algorithm to estimate the

A-PGARCH models.
11 We do not report the parameter estimates of the selected specifications for space considerations. Interested readers can

obtain them on request. In only three out of the fourteen cases were the estimated a’s and b’s positive. That is, we

encountered many instances of negative estimated a’s and b’s. In all of these cases, the ARCH and GARCH coefficients

satisfy the set of conditions sufficient to guarantee the nonnegativity of the conditional variance (see equation 29 in

Nelson and Cao, 1992). These conditions are given in the Appendix.



Table 1

Selected specifications

KOSPI NIKKEI Hang Seng SE Straits-Times

Generalized error distribution

Order: (1,3)a (4,1) (1,1) (3,2) (4,1)

d 1.49 (0.16) 1.22 (0.14) 1.52 (0.10) 1.34 (0.13) 2.13 (0.35)

v 1.07 (0.03) 1.13 (0.02) 1.10 (0.02) 1.01 (0.03) 1.16 (0.02)

AIC �28,083 �30,055.9 �26,106.9 �25,607.6 �20,879.7

ML 14,053.6 15,038.9 13,061.4 12,815.8 10,449.8

LRb 14.06 [9.49] 14.50 [7.81] – 10.38 [9.49] 10.48 [7.81]

Student-t distribution

Order: (3,4)a (3,3) (4,2) (2,2) (2,1)

d 1.33 (0.14) 1.26 (0.14) 1.28 (0.14) 1.16 (0.12) 1.89 (0.16)

r 4.37 (0.30) 5.98 (0.51) 4.83 (0.30) 4.22 (0.30) 4.67 (0.32)

AIC �28,083.3 �30,075.3 �26,130.6 �25,526.5 �20,959.4

ML 14,057.6 15,051.7 13,078.3 12,774.3 10,487.7

LR 27.84 [15.50] 45.04 [12.60] 11.82 [11.10] 12.10 [7.81] 2.74 [2.71*]

For the GEv and tr distributions, Table 1 reports the estimated power terms (d), the degrees of freedom (v and r,

respectively), the value of the AIC and the ML value of the preferred model. aThe order of the preferred model. bLR is the

following LR test: LR=2� [MLU�MLR], where MLU and MLR denote the ML values of the unrestricted and restricted

[A-PGARCH(1,1)] models, respectively. The numbers in (d ) are standard errors. The numbers in [d ] are 5% critical

values. *The number is the 10% critical value.

Due to space limitations, we have not reported the results for the models with the normal and double exponential

distributions. They are available upon request from the authors.
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provide evidence in support of the general power ARCH model, as three of the countries tested

generate significant test statistics. In particular, the Taylor/Schwert (Bollerslev) model cannot be

rejected against the power ARCH model for the SE (Straits-Times) index. In only three out of

the twenty cases does the LR test produce insignificant calculated values, indicating an inability
Table 2

dth moment of the conditional variance

k* 1� B̃(1) E h
d
2
t

�

ch
0 E hd

t

� �
KOSPI 0.997 0.998 0.008 0.845 5�10�4

MA(1)–A-PGARCH(3,4)

(Student-t)

NIKKEI 0.969 0.974 0.001 0.114 7�10�7

MA(1)–A-PGARCH(3,3)

(Student-t)

Hang Seng 0.943 0.876 0.002 0.060 3�10�6

MA(1)–A-PGARCH(4,2)

(Student-t)

SE 0.991 0.984 0.005 0.609 7�10�5

MA(1)–A-PGARCH(3,2)

(Generalized error)

Straits-Times 0.892 0.869 0.0002 0.775 2�10�7

MA(1)–A-GARCH(2,1)

(d =2, Student-t)

Table 2 reports the estimated values of the d / 2th and dth moments of the conditional variance. k*umax{i=1,. . ., p̃}|k i |

E h
d
2
t

�
and E hd

t

� �

are calculated using the formulae in Eq. (9).
.



Table 3

dth moment of the conditional variance

b̃1 E h
d
2
t

ih
ch
0 E hd

t

� �
KOSPI 0.988 2.477 0.915 72.096

NIKKEI 0.981 1.027 0.366 1.665

Hang Seng 0.958 1.743 0.279 4.217

SE 0.993 2.056 0.324 6.257

Straits-Times 0.995 3.102 0.823 54.506

Table 3 reports the estimated values of the d / 2th and dth moments of the conditional variance for the MA(1)–A-

PGARCH(1,1) models with t-distributed innovations. E h
d
2
t

�
and E hd

t

� �

are calculated using the formulae in Eq. (9).
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to reject the Bollerslev model over the power ARCH model. Further, the AIC chooses the power

ARCH model instead of the Bollerslev and Taylor/Schwert models for three out of the five

indices, regardless of the distributional assumptions. By and large, these findings support the

conclusion that the power ARCH model is preferred.

3.2. Correlation structure results

The condition for the existence of the dth moment of the conditional variance (or the 2dth
moment of the absolute observations) for the general A-PGARCH( p,q) model is ch

0b1, where

ch
0 is defined as in Theorem 1. Table 2 reports a measure of volatility persistence,12 the sum of

the estimated b̃i (i =1, . . . , p̃) coefficients, an estimate of ch
0 and the estimated d / 2th and dth

moments of the conditional variance for all five dbestT A-PGARCH specifications.13 Table 3

reports the aforementioned estimated moments for the five A-PGARCH (1,1) models with t-

distributed innovations.14

In order to obtain the estimated theoretical autocorrelations of the power-transformed

conditional variance [q(ht
d/2)] and absolute observations [q(|rt|

d)], we use the estimated

parameters and the formulae in Theorems 1 and 2. For each of the five stock indices, Fig. 1 plots

the estimated theoretical autocorrelations of the dbestT A-PGARCH specification.15 Specifically,

we use the power GARCH process, with conditionally t-distributed errors for Japan, Hong Kong

and Korea, and innovations that are drawn from the generalized error distribution for the SE

index. Finally, we use Bollerslev’s GARCH model with t-distributed innovations for the Straits-

Times index.

The estimated power GARCH model for the KOSPI index exhibits the highest persistence

(0.997). As a result the estimated autocorrelations of the power-transformed absolute

observations start high, at lag three 0.58, and decrease very slowly. Observe that the

autocorrelation at lag 150 is 0.35. The estimated model for the Hang Seng index has t-

distributed innovations and exhibits lower persistence (0.943). Thus, the estimated autocorrela-

tions start considerably low, at lag two 0.09, and decrease more rapidly. The autocorrelation at
15 We used Maple to evaluate the autocorrelations. The codes are available from the authors on request.

12 The persistence of a volatility shock for the general A-PGARCH( p,q) process is considered to be the largest root of

the autoregressive polynomial B̃(L) (k*umax{i=1,. . ., p̃}|k i |).
13 We define dbestT as the specification chosen by the AIC.
14 We use an Ox program called G@RCH, which uses the BHHH algorithm to estimate these models (see Laurent and

Peters, 2002). For these cases the stock returns have been multiplied by 100.
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lag 120 is 0.01. The estimated models for the KOSPI and SE indices demonstrate similar

persistence (0.997 and 0.991, respectively). However, in the case of the SE index, the power

term is much lower (1.34). Note that the autocorrelation at lag two is 0.32 and decreases very
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d. SE: MA(1)-A-PGARCH(3,2)-(Generalized Error).
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Fig. 1. Autocorrelations of the dth power of the observations q(|rt |
d, |rt�m |

d). This figure plots the sample

autocorrelations of the dth absolute power of the observations (solid line), and the estimated theoretical autocorrelations

of the dth power of the absolute-valued observations (columns).
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slowly. The autocorrelation at lag 150 is 0.08. The estimated models for the NIKKEI and Hang

Seng indices have t-distributed innovations and very similar estimated power terms (1.26 and

1.28, respectively). However, the NIKKEI index demonstrates higher persistence (0.969). Note

that the autocorrelation at lag three is 0.09 and decreases more slowly. Finally, the estimated
–0.1
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Fig. 2. Autocorrelations of the dth power of the observations q(|rt |
d, |rt�m |

d), MA(1)-A-PGARCH(1,1)-(Student-t).

This figure plots the sample autocorrelations of the dth absolute power of the observations (solid line), and the

estimated theoretical autocorrelations of the dth power of the absolute-valued observations (columns), for the five

A-PGARCH(1,1) specifications.
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model for the Straits-Times index exhibits the lowest persistence. Therefore, the autocorrelations

decrease the fastest.

Fig. 1 also plots the sample autocorrelations of the dth power of the absolute-valued

observations. Only for the SE index are the estimated theoretical autocorrelations close to the

sample autocorrelations. Fig. 2 plots the estimated theoretical autocorrelations (and the

corresponding sample equivalents) of the five A-PGARCH(1,1) models of Table 3. For the

NIKKEI index, it can be seen that the fitted power-transformed returns from the A-PGARCH(3,3)

model generally have autocorrelations that are substantially too low when compared with the

corresponding sample equivalents (see Fig. 1b). In contrast, the A-PGARCH(1,1) model does a

good job of replicating the observed pattern of autocorrelations of the power-transformed returns

(see Fig. 2b).

4. Conclusions

In this paper we illustrated how the A-PGARCH model may also be expressed as an

ARMA process. Further, we used this ARMA representation to derive results concerning the

moments of the general asymmetric power GARCH( p,q) specification. In particular, we

obtained the autocorrelation function of the power-transformed absolute errors. Since the A-

PGARCH model includes the Bollerslev, Taylor/Schwert and five other models as special

cases our theoretical results provide a useful tool which facilitates comparison between all

these major classes of GARCH models. The derivation of the autocorrelations of the fitted

power-transformed values and their comparison with the corresponding sample equivalents

will help the investigator (a) to decide which is the most appropriate method of estimation

(e.g., maximum likelihood estimation (MLE), minimum distant estimator (MDE)) for a

specific model, (b) to choose, for a given estimation technique, the model (e.g., A-

PGARCH, EGARCH) that best replicates certain stylized facts of the data and, (c) in

conjunction with the various model selection criteria, to identify the optimal order of the

chosen specification. It is worth noting that our results on the moment structure of the

general A-PARCH( p,q) model extend the results in He and Teräsvirta (1999b) on the first-

order A-PARCH model, and Karanasos (1999) and He and Teräsvirta (1999a) on the

GARCH( p,q) model. We should also mention that the methodology used in this paper can

be applied to obtain the moments of more sophisticated asymmetric power GARCH models,

e.g. the A-PGARCH-in-mean, the multivariate A-PGARCH and the fractional integrated

A-PGARCH models.
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Appendix A. Inequality constraints

First, we assume that the autoregressive polynomial B Lð Þu1�
Pp

j¼1 bj L
j has all its roots

outside the unit circle and we denote the reciprocal of the jth root, j =1, . . . , p, by nj.
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Then, in the case of distinct roots, we can write the A-PGARCH( p,q) model in Eq. (2) in an

A-PARCH(l) form

h
d
2
t ¼

x
B 1ð Þ þ

Xl
d¼1

Xp
j¼1

ndj
np�1
jYp

k¼1
k p j

nj � nk
� �

Xmin d;qð Þ

n¼1

an jrt�d j � cnrt�d½ �d

nnj
; ðA:1Þ

see Karanasos (2001). Further, let /d denote the dth ARCH parameter in the above equation.

Then for dzmax( p,q) we may write /du
Pp

j¼1 ndj gj; where gju
np�1

jQp

k¼1
k p j

nj�nkð Þ
Pq

l¼1
al
nlj
:

If n1 is real and positive and if we define g*umax{ j=2,. . ., p}|gj| and n*umax{ j=2,. . ., p}|nj|,
then clearly

n�d
1 /dzg1 � p� 1ð Þg4 n4=n1

� �d
: ðA:2Þ

If, in addition, n1N |nj| for j=2, . . . , p and g1N0; the (positive) first term on the right side of Eq.

(A.2) dominates the (negative) second term as dYl. If the right side of Eq. (A.2) is

nonnegative for some d*, it remains nonnegative for all dzd*. Rearranging Eq. (A.2), it is clear

that the right side of Eq. (A.2) must be positive for any d* greater than [ln(g1)� ln(g*( p�1))] /

ln(n* /n1). In this case, therefore, if {/d}d=0,. . ., d* is nonnegative, so is {/d}d=0,. . ., l (abstracted

from Nelson and Cao, 1992). As Nelson and Cao wrote bpresumably such sufficient (but not

necessary) conditions should not be imposed in estimationQ.

Appendix B

Proof of Theorem 1. First, we define the autocovariance-generating function for ht
d/2 by

gh zð Þ ¼
Xl

m¼�l

Cov h
d
2
t ; h

d
2
t�m


 �
zm:

Using the ARMA representation of the power-transformed conditional variance, which is

defined by Eq. (3), the results in Hamilton (1994, pp. 61–63) and the fact that

Cov vl;t; vn;t
� �

¼ E h
d
2
t


 �
� E fl etð Þ � kl½ � fn etð Þ � kn½ �f g ðB:1Þ

we obtain the canonical factorization of gh(z)

gh zð Þ ¼
Xl

m¼�l

Cov h
d
2
t ; h

d
2
t�m


 �
zm ¼ E hd

t

� �
� E

A¯ zð ÞA¯ z�1ð Þ
B̃B zð ÞB̃B z�1ð Þ

� �
; ðB:2Þ

where A¯ zð Þu
Pq

l¼1 ālz
l�

�
, and ālual[ fl(et)�kl]. From Eq. (B.2), it follows that

A¯ zð ÞA¯ z�1
� �

¼
Xq
l¼1

ālz
l

 ! Xq
l¼1

ālz
�l

 !
¼
Xq�1

n¼0

Xq�n

d¼1

fnādādþn zn þ z�nð Þ; ðB:3Þ
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where fnu
:5; if n ¼ 0;
1; if np 0:

�
. Next, using B̃B zð Þu

Qp̃p
i¼1 1� kizð Þ we obtain

1

B̃B zð ÞB̃B z�1ð Þ
¼
X̃pp
i¼1

1

1� kizð Þ 1� kiz�1ð Þ � kp̃p�1
iỸpp

f¼1
f p 1

ki � kf
� �

1� kikf
� �

¼
X̃pp
i¼1

kp̃p�1
iỸpp

f¼1
f p 1

ki � kf
� �

1� kikf
� �

Xl
d¼0

kizð Þd
" # Xl

d¼0

kiz
�1

� �d" #

¼
Xl
d¼0

X̃pp
i¼1

fdfid zd þ z�d
� �

: ðB:4Þ

Finally, using E fl etð Þ � kl½ � fn etð Þ � kn½ �f g ¼ kln � klknð Þ, inserting Eqs. (B.3) and (B.4) into

Eq. (B.2) yields the result in Theorem 1. 5

References

Arvanitis, S., Demos, A., 2004. Time dependence and moments of a family of time-varying parameter GARCH in mean

models. Journal of Time Series Analysis 25, 1–25.

Baillie, R.T., Chung, H., 2001. Estimation of GARCH models from the autocorrelations of the squares of a process.

Journal of Time Series Analysis 6, 631–650.

Beine, M., Laurent, S., Lecourt, C., 2002. Accounting for conditional leptokurtosis and closing days effects in FIGARCH

models of daily exchange rates. Applied Financial Economics 12, 589–600.

Berndt, E., Hall, B., Hall, R., Hausman, J., 1974. Estimation and inference in nonlinear structural models. Annals of

Economic and Social Measurement 3, 653–665.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307–327.

Bollerslev, T., 1988. On the correlation structure for the generalized autoregressive conditional heteroskedastic process.

Journal of Time Series Analysis 9, 121–131.

Brooks, R.D., Faff, R.W., McKenzie, M.D., 2000. A multi-country study of power ARCH models and national stock

market returns. Journal of International Money and Finance 19, 377–397.

Dacorogna, M.M., Müller, U.A., Nagler, R.J., Olsen, R.B., Pictet, O.V., 1993. A geographical model for the daily and

weekly seasonal volatility in the FX market. Journal of International Money and Finance 12, 413–438.

Demos, A., 2002. Moments and dynamic structure of a time-varying-parameter stochastic volatility in mean model.

Econometrics Journal 5, 345–357.

Ding, Z., Granger, C.W.J., 1996. Modeling volatility persistence of speculative returns: a new approach. Journal of

Econometrics 73, 185–215.

Ding, Z., Granger, C.W.J., Engle, R.F., 1993. A long memory property of stock market returns and a new model. Journal

of Empirical Finance 1, 83–106.

Duan, J.C., 1995. The GARCH option pricing model. Mathematical Finance 5, 13–32.

Engle, R.F., Lilien, D., Robbins, R., 1987. Estimating time varying risk premia in the term structure: the ARCH-M

model. Econometrica 55, 391–407.

Fornari, F., Mele, A., 1997. Weak convergence and distributional assumptions for a general class of nonlinear ARCH

models. Econometric Reviews 16, 205–229.

Fornari, F., Mele, A., 2001. Recovering the probability density function of asset prices using GARCH as diffusion

approximations. Journal of Empirical Finance 8, 83–110.

Fountas, S., Karanasos, M., Mendoza, A., 2004. Output variability and economic growth: the Japanese case. Bulletin of

Economic Research 56, 353–363.

Giot, P., Laurent, S., 2003. Value-at-risk for long and short positions. Journal of Applied Econometrics 18, 641–663.

Granger, C.W.J., Ding, Z., 1995. Some properties of absolute returns: an alternative measure of risk. Annales d’Economie

de Statistique 40, 67–95.



M. Karanasos, J. Kim / Journal of Empirical Finance 13 (2006) 113–128128
Hafner, C.M., Herwartz, H., 2001. Option pricing under linear autoregressive dynamics, heteroskedasticity, and

conditional leptokurtosis. Journal of Empirical Finance 8, 1–34.

Hamilton, J.D., 1994. Time Series Analysis. Princeton University Press, Princeton.
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