The second moment and the autocovariance function of the squared errors of the GARCH model

Menelaos Karanasos*
Department of Economics, York University Heslington, York Y01 5DD, UK

Received 1 September 1996; received in revised form 1 January 1998

Abstract

Since Bollerslev and Taylor indepedently introduced the GARCH model almost a decade ago many questions have remained unanswered. This paper addresses two of them. First, 'What is the autocovariance structure of the squared errors?' and second, 'What is the condition on the parameters of the $\operatorname{GARCH}(p, q)$ model in order for the fourth moment of the errors to exist?'. In Section 2 of this paper we answer the first question and in Section 3 we answer the second one. In a recent paper Ding and Granger introduced an extension of the $\operatorname{GARCH}(1,1)$ model which they called the N-component $\operatorname{GARCH}(1,1)$ model and they mentioned that it can be expressed as a $\operatorname{GARCH}(n, n)$ model. This $\operatorname{GARCH}(n, n)$ representation is presented in Section 3. Finally, in Section 3, we introduce the two component $\operatorname{GARCH}(n, n)$ model and we express it as a $\operatorname{GARCH}(2 n, 2 n)$ model. © 1999 Elsevier Science S.A. All rights reserved.

JEL classification: C22
Keywords: Autocovariance; GARCH model; N-component; Fourth moment

1. Introduction

Two of the most common empirical findings in the finance literature are that the distributions of asset returns display tails heavier than those of the normal distribution and the squared returns are highly serially correlated. The aforementioned stylized empirical regularities led some econometricians to develop models which can accommodate and account for these phenomena. Engle (1982) introduced the Autoregressive Conditional Heteroscedasticity

[^0](ARCH) model and Bollerslev (1986) (hereafter B), and Taylor (1986), generalized the ARCH to the GARCH model:
$$
\varepsilon_{t / t-1} \sim N\left(0, h_{t}\right), \quad h_{t}=\sum_{i=1}^{p} \varepsilon_{t-i}^{2}+\sum_{j=1}^{q} \beta_{j} h_{t}-j .
$$

This paper presents exact formulae for the second moments of the squared errors of the $\operatorname{GARCH}(p, q)$ model. B (1988), Ding and Granger (1996) (hereafter DG) and Karanasos (1996) (hereafter K) give the autocorrelation function of the squared errors for the $\operatorname{GARCH}(1,1)$ process. In Section 2 we extend these results to the $\operatorname{GARCH}(p, q)$ model.

Moreover, Milhøl (1985) in Theorem 3 of his paper, gives a necessary and sufficient condition for the existence of the second-order moment of the squared errors of the $\operatorname{ARCH}(p)$ model. B (1986) in Theorem 2 of his paper gives a necessary and sufficient condition for the existence of the fourth moment of the errors of the $\operatorname{GARCH}(1,1)$, $\operatorname{GARCH}(1,2)$ and $\operatorname{GARCH}(2,1)$ models. In Section 3 of this paper we present a method for obtaining the unconditional fourth moment, and hence the kurtosis coefficient of the errors of the $\operatorname{GARCH}(p, q)$ model.

Furthermore, several empirical studies have pointed out the long memory property (significant positive autocorrelation for many lags) of speculative returns (e.g. Ding et al., 1993; DG, 1996). Motivated by this empirical result, DG (1996) considered a new version of the $\operatorname{GARCH}(1,1)$ model which they called the N-component $\operatorname{GARCH}(1,1)$ model. In this model the conditional variance of the errors $\left(h_{t}\right)$ is a weighted sum of N components $h_{i t}(i=1, \ldots, N)$ with $w_{i}(i=1, \ldots, N)$ as weights, respectively. Each component is a $\operatorname{GARCH}(1,1)$ type specification. We use the exact form solutions of Sections 2 and 3 to analyze the N-component $\operatorname{GARCH}(1,1)$ and the two-component $\operatorname{GARCH}(n, n)$ models. This is accomplished (i) by showing that the N-component $\operatorname{GARCH}(1,1)$ process corresponds to a $\operatorname{GARCH}(n, n)$ model, and that the two-component $\operatorname{GARCH}(n, n)$ process is represented by a $\operatorname{GARCH}(2 n, 2 n)$ model (Lemmas 3.1 and 3.2, respectively), and (ii) by applying the results for the general $\operatorname{GARCH}(p, q)$ model to obtain the second moments of the squared errors of the N-component $\operatorname{GARCH}(1,1)$ and the two-component $\operatorname{GARCH}(n, n)$ models. Finally, Section 4 concludes.

2. Autocovariance of the GARCH model

Let ε_{t}^{2} follow a $\operatorname{GARCH}(p, q)$ process, given by

$$
h_{t}=a_{0}+\sum_{i=1}^{p} a_{i} \varepsilon_{t-i}^{2}+\sum_{i=1}^{q} \beta_{i} h_{t-i} \Rightarrow \varepsilon_{t}^{2}
$$

$$
\begin{aligned}
& =a_{0}+\sum_{i=1}^{\max (p, q)} a_{i}^{\prime} \varepsilon_{t-i}^{2}+v_{t}-\sum_{i=1}^{q} \beta_{i} v_{t-i} \\
& \Rightarrow \prod_{i=1}^{\max (p, q)}\left(1-a_{i}^{*} L\right) \varepsilon_{t}^{2}=a_{0}+v_{t}-\sum_{i=1}^{q} \beta_{i} v_{t-i},
\end{aligned}
$$

where

$$
\begin{align*}
& a_{1}^{*} \neq a_{j}^{*} \quad \text { for } i \neq j, \\
& a_{i}^{\prime}=a_{i}+\beta_{i} \quad \text { for } i \leqslant p, q, a_{i}^{\prime}=a_{i} \quad \text { for } i, p>q \quad \text { and } \quad a_{i}^{\prime}=\beta_{i} \quad \text { for } i, q>p \tag{2.1}
\end{align*}
$$

Theorem 2.1. The autocovariance function of the squared errors of the above GARCH (p, q) process is given by

$$
\gamma_{j}= \begin{cases}\sum_{i=1}^{\max (p, q)} e_{i j} z_{i j}(2 / 3) f_{2}, & j \leqslant q-1, \tag{2.2}\\ \sum_{i=1}^{\max (p, q)} e_{i j} z_{i q}(2 / 3) f_{2}, & j \geqslant q,\end{cases}
$$

where

$$
\begin{equation*}
e_{i j}=\frac{\left(a_{i}^{*}\right)^{j+\max (p, q)-1}}{\prod_{l=1}^{\max (p, q)}\left(1-a_{i}^{*} a_{l}^{*}\right) \prod_{k=1, k \neq i}^{\max (p, q)}\left(a_{i}^{*}-a_{k}^{*}\right)}, \quad f_{2}=E\left(\varepsilon_{t}^{4}\right), \tag{2.2a}
\end{equation*}
$$

and

$$
\begin{align*}
z_{i j}= & \sum_{k=0}^{q} \beta_{k}^{2}+\sum_{l=1}^{j} \sum_{k=0}^{q-l} \beta_{k} \beta_{k+l}\left[\left(a_{i}^{*}\right)^{l}+\left(a_{i}^{*}\right)^{-l}\right] \\
& +\sum_{l=j+1}^{q} \sum_{k=0}^{q-l} \beta_{k} \beta_{k+l}\left[\left(a_{i}^{*}\right)^{l}+\left(a_{i}^{*}\right)^{l-2 j}\right], \beta_{0}=-1 . \tag{2.2b}
\end{align*}
$$

Observe that, for $j=q$, the third term on the right-hand side of the above equation disappears since the lower limit exceeds the upper limit of the double summation and that the autocovariance function depends on the fourth moment of the errors which we give in Section 3.

3. Fourth moment of the GARCH model

Let h_{t} follow a $\operatorname{GARCH}(p, q)$ process, given by

$$
\begin{equation*}
h_{t}=a_{0}+\sum_{i=1}^{p} a_{i} \varepsilon_{t-i}^{2}+\sum_{i=1}^{q} \beta_{i} h_{t-i} . \tag{3.1}
\end{equation*}
$$

Theorem 3.1. The fourth moment of the errors of the above $\operatorname{GARCH}(p, q)$ process is given by $f_{2}=3 a_{0} f_{1} \phi_{1} /\left(1-\delta_{1}\right)$, where f_{1}, ϕ_{1} and δ_{1} are given by

$$
\begin{align*}
f_{1}= & \frac{a_{0}}{1-\sum_{i=1}^{p} a_{i}-\sum_{i=1}^{q} \beta_{i}}, \\
\phi_{1}= & 1+a_{p}+\beta_{q}+\sum_{j=1}^{p-1}\left[a_{j}+a_{p}\left(a_{p-j}+\beta_{p-j}\right)\right] \sum_{i=1}^{p+q-2} \Gamma_{j+q-1, i} \\
& +\sum_{j=1}^{q-1}\left[\beta_{j}+\beta_{q}\left(a_{q-j}+\beta_{q-j}\right)\right] \sum_{i=1}^{p+q-2} \Gamma_{j i} \\
& +\beta_{q} \sum_{j=1}^{p-q} a_{q+j} \sum_{i=1}^{p+q-2} \Gamma_{j+q-1, i}+a_{p} \sum_{j=1}^{q-p} \beta_{p+j} \sum_{j=1}^{q+p-2} \Gamma_{j i}, \tag{3.2a}\\
\delta_{1}= & 3 a_{p}^{2}+\beta_{q}^{2}+a_{q} \beta_{q}+a_{p} \beta_{p}+\sum_{j=1}^{p-1}\left[a_{j}+a_{p}\left(a_{p-j}+\beta_{p-j}\right)\right] \\
& \times \sum_{i=1}^{p+q-2}\left(\gamma_{i} a_{i-\delta_{i}}+\beta_{i-\delta_{i}}\right) \Gamma_{j+q-1, i}+\sum_{j=1}^{q-1}\left[\beta_{j}+\beta_{q}\left(a_{q-j}+\beta_{q-j}\right)\right] \\
& \times \sum_{i=1}^{p+q-2}\left(\gamma_{i} a_{i-\delta_{i}}+\beta_{i-\delta_{i}}\right) \Gamma_{j i}+\beta_{q} \sum_{j=1}^{p-q} a_{q+j}^{p+q-2} \sum_{i=1}^{p+1}\left(\gamma_{i} a_{i-\delta_{i}}+\beta_{i-\delta_{i}}\right) \Gamma_{j+q-1, i} \\
& +a_{p} \sum_{j=1}^{q-p} \beta_{p+j} \sum_{i=1}^{p+q-2}\left(\gamma_{i} a_{i-\delta_{i}}+\beta_{i-\delta_{i}}\right) \Gamma_{j i}, \tag{3.2b}
\end{align*}
$$

where $\Gamma_{i j}$ is the ijth element of the matrix $\Gamma=A^{-1} . A$ is $a(p+q-2) \times$ $(p+q-2)$ matrix and consists of four submatrices:

$$
A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]
$$

A_{1} is a $(q-1) \times(q-1)$ matrix. Its ijth element is $-\left(\beta_{i-j}+a_{i-j}+\beta_{i+j}\right)$, where $\beta_{k}=0$ for $k>q$ or $k<0, \beta_{0}=-1$ and $a_{k}=0$ for $k>p$ or $k \leqslant 0 . A_{2}$ is $a(q-1) \times(p-1)$ matrix. Its ijth element is $-a_{i+j}$, where $a_{k}=0$ for $k>p . A_{3}$ is $a(p-1) \times(q-1)$ matrix. Its ijth element is $-\beta_{i+j}$, where $\beta_{k}=0$ for $k>q$. A_{4} is $a(p-1) \times(p-1)$ matrix. Its ijth element is $-\left(a_{i-j}+\beta_{i-j}+a_{i+j}\right)$, where $a_{k}=0$ for $k>p$ or $k<0, a_{0}=-1$ and $\beta_{k}=0$ for $k \leqslant 0$ or $k>q$. Moreover, $\delta_{i}=q-1$ for $i \geqslant q$, zero otherwise, and $\gamma_{i}=3$ for $i \geqslant q$, one otherwise. Finally, the condition for the existence of the fourth moment is $\delta_{1}<1$.

3.1. The N-component $\operatorname{GARCH}(1,1)$ model

In what follows, we examine the N-component $\operatorname{GARCH}(1,1)$ process, a special case of the GARCH model, introduced by DG (1996):

$$
\begin{equation*}
h_{t}=\sum_{i=1}^{n} w_{i} h_{i t} \quad \text { where } \quad h_{i t}=a_{i} \varepsilon_{t-1}^{2}+\beta_{i} h_{i t-1}+\gamma_{i} a_{0} \tag{3.3}
\end{equation*}
$$

where $\gamma_{1}=1$ and $\gamma_{i}=0$ for $i \geqslant 2$.

Lemma 3.1. The above N-component $\operatorname{GARCH}(1,1)$ process can be expressed as a GARCH (n, n) process given by

$$
\begin{align*}
h_{t}= & \sum_{i=1}^{n} w_{i} a_{i} \varepsilon_{t-1}^{2}+\sum_{i=1}^{n} \sum_{l=2}^{n}\left[\prod_{j=1}^{l-1}\left(\sum_{i_{j}=i_{j}-1+1, i_{j} \neq i}^{n-(l-1-j)} \prod_{j=1}^{l-1}\left(\beta_{i_{j}}\right)(-1)^{l+1} w_{i} a_{i} \varepsilon_{t-l}^{2}\right]\right. \\
& +\sum_{l=1}^{n}\left[\prod_{j=1}^{l}\left(\sum_{i_{j}=i_{j-1}+1}^{n-(l-j)}\right) \prod_{j=1}^{l}\left(\beta_{i_{j}}\right)(-1)^{l+1} h_{t-l}\right]+w_{1} a_{0} \prod_{i=2}^{n}\left(1-\beta_{i}\right) . \tag{3.4}
\end{align*}
$$

Moreover, if in the N-component $\operatorname{GARCH}(1,1)$ process, Eq. (3.3), the first $k(1 \leqslant k<n)$ components are integrated of order one $\left(\beta_{i}=1-a_{i}, i=1, \ldots, k\right)$, then the $\operatorname{GARCH}(n, n)$ process will still be stationary.

Once the N-component $\operatorname{GARCH}(1,1)$ process is expressed as a $\operatorname{GARCH}(n, n)$ process, Theorems 2.1 and 3.1, can be used to obtain the second moment and the autocovariance function of the squared errors.

3.2. The two-component $\operatorname{GARCH}(n, n)$ model

We now consider another version of the GARCH model, the two-component $\operatorname{GARCH}(n, n)$ model:

$$
\begin{align*}
& h_{t}=w_{1} h_{1 t}+w_{2} h_{2 t}, \quad w_{1}=1-w_{2} \tag{3.5}\\
& h_{1 t}=a_{0}+\sum_{i=1}^{n} a_{1 i} \varepsilon_{t-i}^{2}+\sum_{i=1}^{n} \beta_{1 i} h_{1, t-i}, \quad h_{2 t}=\sum_{i=1}^{n} a_{2 i} \varepsilon_{t-i}^{2}+\sum_{i=1}^{n} \beta_{2 i} h_{2, t-i} . \tag{3.5a}
\end{align*}
$$

Lemma 3.2. The above two-component $\operatorname{GARCH}(n, n)$ model can be expressed as a GARCH $(2 n, 2 n)$ process (without loss of generality, we ignore the constant), given by

$$
\begin{align*}
h_{t}= & \sum_{j=1}^{n}\left(w_{1} a_{1 j}+w_{2} a_{2 j}\right) \varepsilon_{t-j}^{2}-\sum_{j=1}^{n} \sum_{i=1}^{j}\left(w_{1} a_{1, j+1-i} \beta_{2 i}+w_{2} a_{2, j+1-i} \beta_{1 i}\right) \varepsilon_{t-(j+1)}^{2} \\
& -\sum_{j=2}^{n} \sum_{i=j}^{n}\left(w_{1} a_{1, n+j-i} \beta_{2 i}+w_{2} a_{2, n+j-i} \beta_{1 i}\right) \varepsilon_{t-(n+j)}^{2}+\sum_{j=1}^{n} \sum_{i=1}^{j-1}\left[\left(\beta_{1 j}+\beta_{2 j}\right)\right. \\
& \left.-\beta_{1 i} \beta_{2, j-i}\right] h_{t-j}-\sum_{j=1}^{n} \sum_{i=j}^{n} \beta_{1 i} \beta_{2, n+j-i} h_{t-(n+j) .} \tag{3.6}
\end{align*}
$$

Moreover, if in the two-component $\operatorname{GARCH}(n, n)$ process, Eq. (3.5), one component, $h_{1 t}$ or $h_{2 t}$, is integrated of order one $\left(\sum_{j=1}^{n} \beta_{i j}=1-\sum_{j=1}^{n} a_{i j}\right)$, then the $\operatorname{GARCH}(2 n, 2 n)$ process, Eq. (3.6), will still be stationary.

Having expressed the two-component $\operatorname{GARCH}(n, n)$ model as a $\operatorname{GARCH}(2 n, 2 n)$ model, we can use Theorems 2.1 and 3.1 to obtain the second moment and the autocovariance function of the squared errors.

4. Concluding remarks

Since the observed volatility of an asset return is regarded as a realization of an underlying stochastic process it is not surprising that so much effort has been lavished on building models to measure and forecast it. The GARCH model and its various generalizations have been very popular in this respect and have been applied to various sorts of economic and financial data sets. However, there have been relatively fewer theoretical advancements. This paper has contributed to the theoretical developments in the GARCH literature. In Section 2 we presented a method for calculating the autocovariance function of the squared errors of the $\operatorname{GARCH}(p, q)$ model. Subsequently, in Section 3 we presented a method for calculating the fourth moment of the errors of the $\operatorname{GARCH}(p, q)$ model and we considered two extensions of the GARCH model. In particular, we expressed the N-component $\operatorname{GARCH}(1,1)$ model as a $\operatorname{GARCH}(n, n)$ process and the two-component $\operatorname{GARCH}(n, n)$ model as a $\operatorname{GARCH}(2 n, 2 n)$ process.

Acknowledgements

I would like to thank an Associate Editor, and M. Karanassou for helpful comments and suggestions.

Appendix A. Proof of Theorem 2.1

We prove the theorem by induction. If we assume that it holds for a $\operatorname{GARCH}(p-1, q)$ process then it will be sufficient to prove that it holds for a $\operatorname{GARCH}(p, q)$ process.

If ε_{t}^{2} is a $\operatorname{GARCH}(p, q)$ process given by Eq. (2.1) (for simplicity we will assume that $p-1 \geqslant q$) then it can be written as an $\mathrm{ARCH}(1)$ process with a $\operatorname{GARCH}(p-1, q)$ error term $\left(x_{t}\right)$ given by

$$
\begin{equation*}
\varepsilon_{t}^{2}=a_{1}^{*} \varepsilon_{t-1}^{2}+x_{t} \quad \text { where } \quad \prod_{i=2}^{p}\left(1-a_{i}^{*} L\right) x_{t}=a_{0}+v_{t}-\sum_{i=1}^{q} \beta_{i} v_{t-i} \tag{A.1}
\end{equation*}
$$

Note that the $\operatorname{GARCH}(p, q)$ process is symmetric with respect to the p roots $a_{1}^{*}, \ldots, a_{p}^{*}$. Hence, the autocovariance will also be symmetric with respect to the p roots.

Case (i): $0 \leqslant \mathrm{j} \leqslant q-1$. Since x_{t} is a $\operatorname{GARCH}(p-1, q)$ its autocovariance is given by

$$
\begin{align*}
& \operatorname{cov}_{n}\left(x_{t}\right)=\left\{\sum_{i=2}^{p} \hat{e}_{i n} z_{i q} \operatorname{var}\left(v_{t}\right)=\sum_{i=2}^{p} \hat{e}_{i n}\left(z_{i j}-v_{i j}\right) \operatorname{var}\left(v_{t}\right), \text { if } n \geqslant q,\right. \\
& \quad \sum_{i=2}^{p} \hat{e}_{i n} z_{i, j+b} \operatorname{var}\left(v_{t}\right)=\sum_{i=2}^{p} \hat{e}_{i n}\left(z_{i j}+z_{i j, b^{+}}\right) \operatorname{var}\left(v_{t}\right), \text { if } \\
& n=j+b, q-1-j \geqslant b \geqslant 1, \sum_{i=2}^{p} \hat{e}_{i n} z_{i j} \operatorname{var}\left(v_{t}\right), \text { if } \\
& n=j, \sum_{i=2}^{p} \hat{e}_{i n} z_{i, j-b} \operatorname{var}\left(v_{t}\right)=\sum_{i=2}^{p} \hat{e}_{i n}\left(z_{i j}+z_{i j, b^{-}}\right) \operatorname{var}\left(v_{t}\right), \text { if } \\
& n=j-b, j \geqslant b \geqslant 1, \tag{A.2}
\end{align*}
$$

where the $\hat{e}_{i j}$ and $v_{i j}$ are given by

$$
\begin{align*}
\hat{e}_{i j}= & \frac{\left(a_{i}^{*}\right)^{j}\left(a_{i}^{*}\right)^{p-2}}{\prod l_{l=2}^{p}\left(1-a_{l}^{*} a_{i}^{*}\right) \prod_{k=2, k \neq i}^{p}\left(a_{i}^{*}-a_{k}^{*}\right)}, \tag{A.2a}\\
v_{i j}= & -\sum_{m=0}^{q-j-1} \beta_{q-m}\left[\left(a_{i}^{*}\right)^{q-2 j-m}-\left(a_{i}^{*}\right)^{-q+m}\right] \\
& +\sum_{k=1}^{q-j-1} \sum_{l=0}^{q-j-(k+1)} \beta_{k} \beta_{q-l}\left[\left(a_{i}^{*}\right)^{q-2 j-(l+k)}-\left(a_{i}^{*}\right)^{-q+l+k}\right] . \tag{A.2b}
\end{align*}
$$

Note that, when $j=q-1$, the second term in the above equation vanishes since the lower limit exceeds the upper limit of the summation.

In addition, $z_{i j}$ is given by Eq. (2.2b) and $z_{i j, b^{+}}$is given by

$$
\begin{align*}
z_{i j, b^{+}}= & \sum_{v=0}^{q-j-1}\left(-\beta_{q-v}+\sum_{l=1}^{v} \beta_{l} \beta_{q-(v-l)}\right)\left[\left(a_{i}^{*}\right)^{\pi_{1}(q-v)-2 \pi_{2}(j+b)}\right. \\
& \left.-\left(a_{i}^{*}\right)^{q-2 j-v}\right], \tag{A.3}
\end{align*}
$$

where $\pi_{1}=1$ for $v \leqslant q-j-b-1, \pi_{1}=-1$ for $v \geqslant q-j-b, \pi_{2}=1$ for $v \leqslant q-j-b-1, \pi_{2}=0$ for $v \geqslant q-j-b, 1 \leqslant j \leqslant q-2,1 \leqslant b \leqslant q-1-j$, and $z_{i j, b^{-}}$is given by

$$
\begin{align*}
z_{i j, b^{-}}= & \sum_{v=0}^{q+b-(j+1)}\left(-\beta_{q-v}+\sum_{l=1}^{v} \beta_{l} \beta_{q-(v-l)}\right) \\
& \times\left[\left(a_{i}^{*}\right)^{q+2 b-(2 j+v)}-\left(a_{i}^{*}\right)^{\pi_{1}(q-v)-2 \pi_{2} j}\right], \tag{A.4}
\end{align*}
$$

where $\pi_{1}=1$ for $0 \leqslant v \leqslant q-j-1, \pi_{1}=-1$ for $v \geqslant q-j, \pi_{2}=1$ for $0 \leqslant v \leqslant q-j-1, \pi_{2}=0$ for $v \geqslant q-j$, and $2 \leqslant j \leqslant q-1,1 \leqslant b \leqslant j-1$.

Note that in Eqs. (A.3) and (A.4), when $v=0$, the second summation term vanishes since the lower limit exceeds the upper limit of the summation operator.

In Eq. (A.2) we express the $z_{i q}, z_{i, j-b}$ and $z_{i, j+b}$ as functions of the $z_{i j}$ coefficients.

The covariance between ε_{t}^{2} and $x_{t-(j+v)}$ is given by

$$
\begin{align*}
\varepsilon_{t}^{2} & =a_{1}^{*} \varepsilon_{t-1}^{2}+x_{t}=\sum_{i=0}^{j+v-1}\left(a_{1}^{*}\right)^{i} x_{t-i}+\sum_{i=0}^{\infty}\left(a_{1}^{*}\right)^{j+v+i} x_{t-(j+v+i)} \Rightarrow \operatorname{cov}\left(\varepsilon_{t}^{2},\right. \\
\left.x_{t-(j+v)}\right) & =\sum_{i=0}^{j+v-1}\left(a_{1}^{*}\right)^{i} \operatorname{cov}_{j+v-i}\left(x_{t}\right)+\sum_{i=0}^{\infty}\left(a_{1}^{*}\right)^{j+v+i} \operatorname{cov}_{i}\left(x_{t}\right) . \tag{A.5}
\end{align*}
$$

Substituting Eq. (A.2) into the above equation, and after some algebra, we get

$$
\begin{aligned}
\operatorname{cov}\left(\varepsilon_{t}^{2}, x_{t-(j+v)}\right)= & \left\{\sum_{i=2}^{p} \frac{\hat{e}_{i 1} z_{i j}}{\left(a_{i}^{*}-a_{1}^{*}\right)}\left(a_{i}^{*}\right)^{j+v}\right. \\
& +\left(a_{1}^{*}\right)^{j+v} \sum_{i=2}^{p} \hat{e}_{i} z_{i j}\left(\frac{1}{1-a_{i}^{*} a_{1}^{*}}-\frac{a_{i}^{*}}{a_{i}^{*}-a_{1}^{*}}\right) \\
& -\sum_{i=2}^{p} \hat{e}_{i q} v_{i j}\left[\frac{\left(a_{i}^{*}\right)^{q+j+v}}{1-a_{1}^{*} a_{i}^{*}}+\pi_{1} \frac{\left(a_{i}^{*}\right)^{v+j-q+1}-\left(a_{1}^{*}\right)^{v+j-q+1}}{a_{i}^{*}-a_{1}^{*}}\right]
\end{aligned}
$$

$$
\begin{align*}
& +\left(a_{1}^{*}\right)^{v} \sum_{k=v+1}^{q-1-j} \sum_{i=2}^{p} \hat{e}_{i, j+k} z_{i j, k^{+}}\left(a_{1}^{*}\right)^{2 j+k} \\
& +\left(a_{1}^{*}\right)^{v} \sum_{k=1}^{j} \sum_{i=2}^{p} \hat{e}_{i, j-k} z_{i j, k}\left[\pi_{2}\left(a_{1}^{*}\right)^{k}+\left(a_{1}^{*}\right)^{2 j-k}\right] \\
& +\left(a_{1}^{*}\right)^{v}{ }^{v i n} \sum_{k=1}^{\min (v, q-1-j)} \sum_{i=2}^{p} \hat{e}_{i, j+k} z_{i j, k}\left[\left(a_{1}^{*}\right)^{-k}\right. \\
& \left.\left.+\left(a_{1}^{*}\right)^{2 j+k}\right]\right\} \operatorname{var}\left(v_{t}\right), \tag{A.6}
\end{align*}
$$

where $\pi_{1}=1$ for $v>q-j-1, \pi_{1}=0$, otherwise, and $\pi_{2}=0$ for $k=j, \pi_{2}=1$, otherwise.

The j th autocovariance of $\varepsilon_{t}^{2}(0 \leqslant j \leqslant q-1)$ is given by

$$
\begin{equation*}
\varepsilon_{t-j}^{2}=\sum_{i=0}^{\infty}\left(a_{1}^{*}\right)^{i} x_{t-j-i} \Rightarrow \operatorname{cov}_{j}\left(\varepsilon_{t}^{2}\right)=\sum_{i=0}^{\infty}\left(a_{1}^{*}\right)^{i} \operatorname{cov}\left(\varepsilon_{t}^{2}, x_{t-j-i}\right) \tag{A.7}
\end{equation*}
$$

Substituting Eq. (A.6) into the above equation, and after some algebra, we get

$$
\begin{equation*}
\operatorname{cov}_{j}\left(\varepsilon_{t}^{2}\right)=\left\{\sum_{i=2}^{p} e_{i j} z_{i j}+\left(a_{1}^{*}\right)^{j \varphi^{\prime}}\right\} \operatorname{var}\left(v_{t}\right) \tag{A.8}
\end{equation*}
$$

where

$$
\begin{align*}
\zeta^{\prime}= & \frac{1}{1-\left(a_{1}^{*}\right)^{2}} \sum_{k=1}^{j} \sum_{i=2}^{p} \hat{e}_{i, j-k^{2}} z_{i j, k}\left[\pi_{1}\left(a_{1}^{*}\right)^{k-j}+\left(a_{1}^{*}\right)^{j-k}\right] \\
& +\sum_{v=0}^{q-1-j} \sum_{k=1}^{v} \sum_{i=2}^{p}\left(a_{1}^{*}\right)^{2 v} \hat{e}_{i, j+k} z_{i j, k^{+}}\left[\left(a_{1}^{*}\right)^{-k-j}+\left(a_{1}^{*}\right)^{j+k}\right] \\
& +\frac{\left(a_{1}^{*}\right)^{2(q-j)}}{1-\left(a_{1}^{*}\right)^{2}} \sum_{k=1}^{q-1-j} \sum_{i=2}^{p} \hat{e}_{i, j+k} z_{i j, k^{+}}\left[\left(a_{1}^{*}\right)^{-k-j}+\left(a_{1}^{*}\right)^{j+k}\right] \\
& +\sum_{v=0}^{q-2-j} \sum_{k=v+1}^{q-1-j} \sum_{i=2}^{p}\left(a_{1}^{*}\right)^{2 v} \hat{e}_{i, j+k} z_{i j, k^{+}}\left(a_{1}^{*}\right)^{j+k} \\
& +\sum_{i=2}^{p} \frac{\hat{e}_{i 0} z_{i j}}{1-\left(a_{1}^{*}\right)^{2}}\left(\frac{1}{1-a_{1}^{*} a_{i}^{*}}-\frac{a_{i}^{*}}{a_{i}^{*}-a_{1}^{*}}\right) \\
& -\sum_{i=2}^{p} \hat{e}_{i q} v_{i j}\left\{\frac{\left(a_{1}^{*}\right)^{q}}{\left(1-a_{1}^{*} a_{i}^{*}\right)\left[1-\left(a_{1}^{*}\right)^{2}\right]}+\frac{\left(a_{1}^{*}\right)^{q-2 j} a_{i}^{*}}{\left(a_{i}^{*}-a_{1}^{*}\right)\left(1-a_{1}^{*} a_{i}^{*}\right)}\right. \\
& \left.-\frac{\left(a_{1}^{*}\right)^{q-2 j+1}}{\left.\left(a_{i}^{*}-a_{1}^{*}\right)\left[1-\left(a_{1}^{*}\right)^{2}\right]\right\}}\right\} \tag{A.8a}
\end{align*}
$$

where $\pi_{1}=1$ for $k=j, \pi_{1}=0$ otherwise.

The autocovariance of the $\operatorname{GARCH}(p, q)$ process is equal to the sum of p terms. The last term is the product of $\left(a_{1}^{*}\right)^{j}$ and a coefficient which depends on $a_{1}^{*}, \ldots, a_{p}^{*}, \beta_{1}, \ldots, \beta_{q}$. Each of the first $p-1$ terms is the product of $\left(a_{i}^{*}\right)^{j}$, where $i=2, \ldots, p$, and a coefficient which depends on $a_{1}^{*}, \ldots, a_{p}^{*}, \beta_{1}, \ldots, \beta_{q}\left[e_{i 0} \cdot z_{i q}\right]$. Given the symmetry of the autocovariance function in the inverse of the roots (i-roots) of the autoregressive polynomial, if we interchange the i-root a_{i}^{*} with the first i-root a_{1} in the coefficient $e_{i 0} z_{i q}$ we will get the coefficient of $\left(a_{1}^{*}\right)^{j}$, i.e. the coefficient ζ^{\prime}. Hence, ζ^{\prime} is given by

$$
\begin{equation*}
\zeta^{\prime}=e_{10} z_{1 j} \tag{A.9}
\end{equation*}
$$

Finally, substituting Eq. (A.9) into Eq. (A.8) we get Eq. (2.2).
Case (ii): $j \geqslant q$. Since x_{t} is a $\operatorname{GARCH}(p-1, q)$ process its autocovariance is given by

$$
\operatorname{cov}_{j}\left(x_{t}\right)= \begin{cases}\sum_{i=2}^{p} \hat{e}_{i j} z_{i j} \operatorname{var}\left(v_{t}\right)=\sum_{i=2}^{p} \hat{e}_{i j}\left(z_{i q}+v_{i j}\right) \operatorname{var}\left(v_{t}\right), & 0 \leqslant j \leqslant q-1 \tag{A.10}\\ \sum_{i=2}^{p} \hat{e}_{i j} z_{i q} \operatorname{var}\left(v_{t}\right), & j \geqslant q\end{cases}
$$

.where $\hat{e}_{i j}, v_{i j}$ are given by Eqs. (A.2a), (A.2b) and $z_{i q}$ is given by Eq. (2.2b).
In Eq. (A.10) we expressed the $z_{i j}$ coefficients as functions of the $z_{i q}$ coefficients. The covariance of x_{t} and ε_{t-j}^{2} is given by

$$
\begin{equation*}
\operatorname{cov}\left(x_{t}, \varepsilon_{t-j}^{2}\right)=\sum_{i=0}^{\infty}\left(a_{i}^{*}\right)^{i} \operatorname{cov}\left(x_{t}, x_{t-(j+i)}\right) \tag{A.11}
\end{equation*}
$$

Substituting Eq. (A.10) into the above equation we get

$$
\begin{align*}
\operatorname{cov}\left(x_{t}, \varepsilon_{t-j}^{2}\right) & =\left(\sum_{i=2}^{p} \frac{\hat{e}_{i j} z_{i q}}{1-a_{1}^{*} a_{i}^{*}}+\pi \sum_{i=2}^{p} \hat{e}_{i j} f_{i j}\right) \operatorname{var}\left(v_{t}\right) \\
\text { where } f_{i j} & =\sum_{v=j}^{q-1} v_{i v}\left(a_{1}^{*} a_{i}^{*}\right)^{v-j} \tag{A.12}
\end{align*}
$$

and $\pi=0$ for $j \geqslant q, \pi=1$ for $1 \leqslant j \leqslant q-1$.
The j th autocovariance of ε_{t}^{2} is given by

$$
\begin{align*}
\operatorname{cov}_{j}\left(\varepsilon_{t}^{2}\right) & =\sum_{l=0}^{j-1} \operatorname{cov}\left(x_{t-l}, \varepsilon_{t-j}^{2}\right)\left(a_{1}^{*}\right)^{l}+\left(a_{1}^{*}\right)^{j} \operatorname{var}\left(\varepsilon_{t}^{2}\right) \\
& =\sum_{v=1}^{j} \operatorname{cov}\left(x_{t}, \varepsilon_{t-v}^{2}\right)\left(a_{1}^{*}\right)^{j-v}+\left(a_{1}^{*}\right)^{j} \operatorname{var}\left(\varepsilon_{t}^{2}\right) . \tag{A.13}
\end{align*}
$$

Substituting Eq. (A.12) into the above equation, and after some algebra, we get

$$
\begin{align*}
& \operatorname{cov}_{j}\left(\varepsilon_{t}^{2}\right)=\left\{\sum_{i=2}^{p}=e_{i 0} z_{i q}\left(a_{i}^{*}\right)^{j}\left[1-\left(\frac{a_{1}^{*}}{a_{i}^{*}}\right)^{j}\right]\right. \\
&\left.+\sum_{v=1}^{q-1} \sum_{i=2}^{p}\left(a_{1}^{*}\right)^{j-v} \hat{e}_{i v} f_{i v}\right\} \operatorname{var}\left(v_{t}\right)+\left(a_{1}^{*}\right)^{j} \operatorname{var}\left(\varepsilon_{t}^{2}\right) \\
&= \sum_{i=2}^{p} e_{i j} z_{i q} \operatorname{var}\left(v_{t}\right)+\left(a_{1}^{*}\right)^{j \zeta}, \text { where } \tag{A.14}\\
& \zeta=\operatorname{var}\left(\varepsilon_{t}^{2}\right)+\left[\sum_{v=1}^{q-1} \sum_{i=2}^{p}\left(a_{1}^{*}\right)^{-v} \hat{e}_{i v} f_{i v}-\sum_{i=2}^{p} e_{i 0} z_{i q}\right] \operatorname{var}\left(v_{t}\right) . \tag{A.14a}
\end{align*}
$$

We employ the same reasoning with the one used for the $j \leqslant q-1$ case to get

$$
\begin{equation*}
\zeta=e_{10} z_{1 q} \operatorname{var}\left(v_{t}\right) \tag{A.15}
\end{equation*}
$$

Finally, substituting the above equation into Eq. (A.14) we get Eq. (2.2).

Appendix B. Proof of Theorem 3.1

Using Eq. (3.1), the law of iterated expectations, and the following equations:

$$
\begin{align*}
& \lambda_{i}=E\left(h_{t} \varepsilon_{t-i}^{2}\right)=E\left(\varepsilon_{t}^{2} \varepsilon_{t-i}^{2}\right), \quad c_{i}=E\left(h_{t} h_{t-i}\right)=E\left(\varepsilon_{t}^{2} h_{t-i}\right), \\
& E\left(\varepsilon_{t}^{2} h_{t}\right)=E\left(h_{t}^{2}\right)=f_{2} / 3 \tag{B.1}
\end{align*}
$$

we get

$$
\begin{equation*}
\frac{f_{2}}{3}=a_{0} f_{1}+\sum_{i=1}^{p} a_{i} \lambda_{i}+\sum_{i=1}^{q} \beta_{i} c_{i}, \tag{B.2}
\end{equation*}
$$

where

$$
\begin{align*}
c_{j}= & a_{0} f_{1}+\left(a_{j}+\beta_{j}\right) \frac{f_{2}}{3}+\sum_{i=1}^{j-1}\left(\beta_{j-i}+a_{j-i}\right) c_{i} \\
& +\sum_{i=1}^{q-j} \beta_{j+i} c_{i}+\sum_{i=1}^{p-j} a_{j+i} \lambda_{i}, \tag{B.2a}
\end{align*}
$$

$$
\begin{align*}
\lambda_{j}= & a_{0} f_{1}+\left(3 a_{j}+\beta_{j}\right) \frac{f_{2}}{3}+\sum_{i=1}^{j-1}\left(\beta_{j-i}+a_{j-i}\right) \lambda_{i} \\
& +\sum_{i=1}^{q-j} \beta_{j+i} c_{i}+\sum_{i=1}^{p-j} a_{j+i} \lambda_{i}, \tag{B.2b}
\end{align*}
$$

where $\beta_{k}=0$ for $k>q, \quad$ and $a_{k}=0 \quad$ for $>k>p$.

Note that in Eqs. (B.2a) and (B.2b) when $j=1$, the first summation terms become zero, when $j \geqslant q$ the second summation terms become zero, and when $j \geqslant p$ the third summation terms become zero, since the lower limit exceeds the upper limit of the summations.

Substituting c_{q} and λ_{p} into Eq. (B.2) we get

$$
\begin{align*}
\frac{f_{2}}{3}= & a_{0} f_{1}\left[1+a_{p}+\beta_{q}\right]+\frac{f_{2}}{3}\left[3 a_{p}^{2}+\beta_{q}^{2}+a_{p} \beta_{p}+a_{q} \beta_{q}\right] \\
& +\sum_{i=1}^{p-1}\left[a_{i}+a_{p}\left(a_{p-i}+\beta_{p-i}\right)\right] \lambda_{i}+\sum_{i=1}^{q-1}\left[\beta_{i}+\beta_{q}\left(a_{q-i}+\beta_{q-i}\right)\right] c_{i} \\
& +\beta_{q} \sum_{i=1}^{p-q} a_{q+i} \lambda_{i}+a_{p} \sum_{i=1}^{q-p} \beta_{p+i} c_{i} . \tag{B.3}
\end{align*}
$$

The system of Eqs. (B.2a) and (B.2b) can be written in matrix form as $A \cdot \bar{c}=B \cdot \bar{c}$ is a $(p+q-2) \times 1$ column vector given by $\bar{c}^{\prime}=\left[c_{1} \cdots c_{q-1} \lambda_{1} \cdots \lambda_{p-1}\right]$. B is $\mathrm{a}(p+q-2) \times 1$ column vector. Its i th element is given by $a_{0} f_{1}+f_{2} / 3\left(a_{i}+\beta_{i}\right)$ for $i \leqslant q-1$, and its $q-1+i$, 1th element is given by $a_{0} f_{1}+\left(3 a_{i}+\beta_{i}\right) f_{2} / 3$ for $i \leqslant p-1$.

Solving this system of equations we can express the c_{i} 's and the λ_{i} 's as functions of f_{2}.

$$
\begin{align*}
& c_{j}=a_{0} f_{1} \sum_{i=1}^{p+q-2} \Gamma_{j i}+\frac{f_{2}}{3} \sum_{i=1}^{p+q-2}\left(\gamma_{i} a_{i-\delta_{i}}+\beta_{i-\delta_{i}}\right) \Gamma_{j i}, \tag{B.4a}\\
& \lambda_{j}=a_{0} f_{1}=\sum_{i=1}^{p+q-2} \Gamma_{j+q-1, i}+\frac{f_{2}}{3} \sum_{i=1}^{p+q-2}\left(\gamma_{i} a_{i-\delta_{i}}+\beta_{i-\delta_{i}}\right)-\Gamma_{j+q-1, i} \tag{B.4b}
\end{align*}
$$

where $\delta_{i}=q-1$ for $i \geqslant q$, zero otherwise, and $\gamma_{i}=3$ for $i \geqslant q$, one otherwise. Substituting Eqs. (B.4a) and (B.4b) into Eq. (B.3) and solving for f_{2} we get $f_{2}=3 a_{0} f_{1} \phi_{1} /\left(1-\delta_{1}\right)$.

Appendix C. Proof of Lemmas 3.1 and 3.2

Substitution of the $h_{i t}$'s into the h_{t} of Eq. (3.3) yields

$$
\begin{equation*}
h_{t}=\sum_{i=1}^{n} w_{i} a_{i} \varepsilon_{t-1}^{2}+\sum_{i=1}^{n} w_{i} \beta_{i} h_{i, t-1}+w_{1} a_{0} . \tag{C.1}
\end{equation*}
$$

In the above equation, when we add and subtract sequentially the following terms:

$$
\begin{equation*}
\sum_{i=1}^{n} \prod_{j=1}^{k}\left(\sum_{i_{j}=i_{j-1}+1, i_{j} \neq i}^{n-(k-j)}\right) \prod_{j=1}^{k}\left(\beta_{i_{j}}\right) w_{i} h_{i, t-k}, \quad 1 \leqslant k \leqslant n-1, \quad i_{0}=0 \tag{C.2}
\end{equation*}
$$

we get Eq. (3.4).
The sum of the coefficients of the ε_{t-i}^{2} 's terms and of the h_{t-i} 's terms ($i=1,2, \ldots, n$) are

$$
\begin{equation*}
1-\sum_{i=k+1}^{n} \prod_{j=k+1, j \neq i}^{n}\left(1-\beta_{j}\right) \prod_{l=1}^{k}\left(a_{l}\right) w_{i}\left(1-a_{i}-\beta_{i}\right)<1 \tag{C.3}
\end{equation*}
$$

We substitute Eq. (3.5a) into Eq. (3.5) and we get (for simplicity we will assume that $a_{0}=0$)

$$
\begin{equation*}
h_{t}=\sum_{i=1}^{n}\left(w_{1} a_{1 i}+w_{2} a_{2 i}\right) \varepsilon_{t-i}^{2}+w_{1} \sum_{i=1}^{n} \beta_{1 i} h_{1, t-i}+w_{2} \sum_{i=1}^{n} \beta_{2 i} h_{2, t-i} \tag{C.4}
\end{equation*}
$$

In the above equation, when we add and subtract sequencially the following terms:

$$
\begin{equation*}
w_{1} \beta_{2 k} h_{1, t-k}+w_{2} \beta_{1 k} h_{2, t-k}, \quad 1 \leqslant k \leqslant n, \tag{C.5}
\end{equation*}
$$

we get Eq. (3.6).
The sum of the coefficients of the ε_{t-i}^{2} 's and of the h_{t-i} 's terms $(i=1,2, \ldots, 2 n)$ are

$$
\begin{align*}
& w_{1}\left[\left(1-\sum_{i=1}^{n} \beta_{2 i}\right)\left(\sum_{j=1}^{n} a_{1 j}+\sum_{j=1}^{n} \beta_{1 j}\right)+\sum_{i=1}^{n} \beta_{2 i}\right] \\
& \quad+w_{2}\left[\left(1-\sum_{i=1}^{n} \beta_{1 i}\right)\left(\sum_{j=1}^{n} a_{2 j}+\sum_{j=1}^{n} \beta_{2 j}\right)+\sum_{i=1}^{n} \beta_{1 i}\right]<1 \tag{C.6}
\end{align*}
$$

If $\sum_{i=1}^{n} a_{1 i}+\sum_{i=1}^{n} \beta_{1 i}=1$ (i.e. the first component is integrated of order one), then the sum of the coefficients of ε_{t-i}^{2} and h_{t-i} is

$$
\begin{equation*}
1-w_{2} \sum_{i=1}^{n} a_{1 i}\left(1-\sum_{j=1}^{n} a_{2 j}-\sum_{j=1}^{n} \beta_{2 j}\right)<1 \tag{C.7}
\end{equation*}
$$

References

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.
Ding, Z., Engle, L.F., Granger, C.W.J., 1993. Long memory properties of stock market returns and a new model. J. Empirical Finance 1, 83-106.
Ding, Z., Granger, C.W.J., 1996. Modeling volatility persistence of speculative returns: a new approach. Journal of Econometrics 73, 185-215.
Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica 50, 987-1008.

Karanasos, M., 1996. A theoretical and empirical comparison of the $\operatorname{GARCH}(1,1)$, the two-state markov switching and the switching ARCH models. Unpublished mimeo, department of Economics, Birkbeck College.
Taylor, S., 1986. Modelling Financial Time Series. Wiley, New York, NY.

[^0]: * Correspoding author. E-mail: mk16@york.ac.uk

