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Abstract

We discuss the covariance structure and long-memory properties of stationary solutions of
the bilinear equation Xt = �tAt + Bt; (?), where �t ; t ∈Z are standard i.i.d. r.v.’s, and At; Bt are
moving averages in Xs; s¡ t. Stationary solution of (?) is obtained as an orthogonal Volterra
expansion. In the case At ≡ 1; Xt is the classical AR(∞) process, while Bt ≡ 0 gives the
LARCH model studied by Giraitis et al. (Ann. Appl. Probab. 10 (2000) 1002). In the general
case, Xt may exhibit long memory both in conditional mean and in conditional variance, with
arbitrary fractional parameters 0¡d1 ¡ 1

2 and 0¡d2 ¡ 1
2 , respectively. We also discuss the

hyperbolic decay of auto- and=or cross-covariances of Xt and X 2
t and the asymptotic distribution

of the corresponding partial sums’ processes. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and the main results

The present paper studies the covariance structure and long-memory properties of a
class of discrete time stationary processes which satisfy the bilinear equation

Xt = �t


a+

∞∑
j=1

ajXt−j


+ b+

∞∑
j=1

bjXt−j; (1.1)
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where {�t ; t ∈Z} are i.i.d. random variables (“shocks”) with zero mean and variance
1, and a; b; aj; bj; j¿ 1 are real coeFcients satisfying some conditions (which imply in
particular that the series in (1.1) converge in mean square and Xt (1.1) is measurable
w.r.t. to the �-Geld generated by �s; s6 t, see Section 2). Put

At = a+
∞∑
j=1

ajXt−j; Bt = b+
∞∑
j=1

bjXt−j: (1.2)

Then Bt and A2t is the conditional mean and the conditional variance of Xt , respectively,
i.e.

Bt = E{Xt |Xs; s¡ t}; A2t = var{Xt |Xs; s¡ t}: (1.3)

Recall that a time series is called conditionally homoskedastic or conditionally het-
eroskedastic depending on whether its conditional variance is constant or not. As a
particular case, Eq. (1.1) includes the classical AR(∞) processes, which are deGned
as stationary solutions of (1.1) with aj ≡ 0:

Xt − b−
∞∑
j=1

bjXt−j = a�t : (1.4)

In the case b = bj ≡ 0, (1.1) is the Linear ARCH (LARCH) model introduced by
Robinson (1991) and recently studied in Giraitis et al. (2000b), Giraitis et al. (2001):

Xt = �t


a+

∞∑
j=1

ajXt−j


 : (1.5)

Another particular case of (1.1) is the ARCH(∞) model:

r2t = �2t �
2
t ; �2t = c +

∞∑
j=1

cjr2t−j; (1.6)

where cj; cj¿ 0 are non-negative parameters and {�t ; t ∈Z} are i.i.d. r.v.’s with zero
mean and Gnite variance (Robinson, 1991; Giraitis et al., 2000a), which can be rewritten
in the form (1.1) with Xt = r2t and standardized zero mean �t = (�2t − E�2t )=(var(�

2
0))

1=2

(see Section 3 below). Eq. (1.6) includes the classical ARCH(p) and GARCH(p; q)
models of Engle (1982) and Bollerslev and Mikkelsen (1996).
The general bilinear model (1.1) combines the dependence structure and properties

of both linear (AR) and nonlinear (ARCH) models. In particular, (1.1) may exhibit
long memory both in conditional mean and in conditional variance, with arbitrary
(fractional) parameters 0¡d1; d2¡ 1

2 . As shown in the present paper, the parameters
d1; d2 determine the decay rate of autocovariances of {Xt} and {X 2

t } and the behavior
of the corresponding partial sums’ processes.
The interest in models of heteroskedastic time series with long memory exists in

econometrics and Gnance, where empirical facts about asset returns and some other G-
nancial data motivated the study of stationary processes which exhibit long memory in
conditional variance. A number of such models (FIGARCH, LM-ARCH, FIEGARCH)
were proposed in the ARCH literature; however, long-memory properties of some of
these models have not been theoretically established, and even the existence of station-
ary solution remains controversial (Giraitis et al., 2000a; Mikosch and StHaricHa, 1999;
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KazakeviJcius et al., 2001). The long memory, in the sense of the asymptotic behavior
of the covariance function, was rigorously established for a class of stochastic volatility
models which includes Gaussian subordinated models with arbitrary form of nonlin-
earity (Robinson, 1999) and a general class of exponential volatily models and the
EGARCH model (Surgailis and Viano, 2001).
As far as ARCH models have zero conditional mean, attempts have been made to

generalize them to include non-zero drift (Baillie et al., 1996; Ling and Li, 1997;
TeyssiKere, 2000). The last paper introduces a class of double long memory models
which combine long memory ARCH and linear ARFIMA processes and discusses
various inference procedures and Monte-Carlo simulations.
Let us describe the main results of the paper and the contents of the remaining

sections. Section 2 obtains the stationary solution of (1.1) as orthogonal Volterra series.
Let A(z) :=

∑∞
j=1 ajzj; B(z) :=

∑∞
j=1 bjzj; |z|¡ 1 be the generating functions of {aj}

and {bj}, respectively. We assume that A(z) and B(z) are analytic on {|z|¡ 1} and
B(z) �=1 (|z|¡ 1). Put

G(z) := (1− B(z))−1 =
∞∑
j=0

gjzj; H (z) :=A(z)(1− B(z))−1 =
∞∑
j=1

hjzj: (1.7)

Put ‘p = {� = (�0; �1; : : :): ‖�‖p ¡∞}; ‖�‖p = {∑∞
j=0 |�j|p}1=p; ‖�‖ := ‖�‖2.

Let (�? )j =
∑j

i=0 �i j−i denote the convolution.

Assumption A1. {gj}∈ ‘2; {hj}∈ ‘2 and

‖h‖=



∞∑
j=1

h2j



1=2

¡ 1: (1.8)

Assumption A2.

‖(a(n) − a)?g‖ → 0; ‖(b(n) − b)?g‖ → 0; (1.9)

where a(n)j := ajI (16 j6 n); b(n)j := bjI (16 j6 n).

According to Theorem 2.2 below, if Assumptions A1 and A2 are satisGed, then Eq.
(1.1) with b=0 admits the stationary solution Xt=�tAt+Bt , with At=a+A0t ; Bt=B0t and
A0t :=

∑∞
j=1 ajXt−j; B0t :=

∑∞
j=1 bjXt−j given by the convergent orthogonal Volterra

series

A0t = a
∞∑
k=1

∑
sk¡···¡s1¡t

ht−s1hs1−s2 : : : hsk−1−sk �s1 : : : �sk ; (1.10)

B0t = a
∞∑
k=1

∑
sk¡···¡s1¡t

gt−s1hs1−s2 : : : hsk−1−sk �s1 : : : �sk : (1.11)

The above solution can be written in the more compact form:

Xt = a
∞∑
k=1

∑
sk¡···¡s16t

gt−s1hs1−s2 : : : hsk−1−sk �s1 : : : �sk : (1.12)
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In the case b= bj = 0, one has gj = #0j; hj = aj, where #0j = 1 if j= 0;=0 otherwise,
and (1.12) coincides with the stationary solution of the LARCH equation (1.5) given
in Giraitis et al. (2000b).
Theorem 2.4 obtains a similar representation of a stationary solution of (1.1) with

b �=0.

Assumption A3. There exist Gnite limits La := limn→∞
∑n

j=1 aj and Lb := limn→∞∑n
j=1 bj such that

Lb �=1: (1.13)

Under Assumptions A1–A3, Eq. (1.1) admits the stationary solution

Xt = $ + ( La+ $ La)
∞∑
k=1

∑
sk¡···¡s16t

gt−s1hs1−s2 : : : hsk−1−sk �s1 : : : �sk ; (1.14)

where $ = EXt = b=(1 − Lb) (Theorem 2.4). Eqs. (1.12) or (1.14) imply the useful
formula for the covariance

cov(X0; Xt) =
(a+ $ La)2

1− ‖h‖2
∞∑
j=0

gjgj+t : (1.15)

Eq. (1.14) also yields an orthogonal Volterra series representation for the stationary so-
lution Xt = r2t of the ARCH(∞) Eq. (1.6) and a new suFcient and necessary condition
for the existence of its covariance stationary solution (see Section 3).
Section 4 discusses long-memory properties of the stationary solution of (1.1) with

b= 0. Eqs. (1.10)–(1.12) imply the moving average representations

At = a+
∞∑
j=1

hjYt−j; Bt =
∞∑
j=1

gjYt−j; Xt =
∞∑
j=0

gjYt−j (1.16)

with respect to the weak white noise (martingale diNerence sequence) {Ys := �sAs}. As
it turns out, the stationary solution Xt = �tAt + Bt may exhibit long memory both in
conditional mean and in conditional variance, in the sense that the transfer functions
G(z) and H (z) admit the representations

G(z) = P1(z)(1− z)−d1 ; H (z) = P2(z)(1− z)−d2 ; (1.17)

where 0¡di ¡ 1
2 ; i= 1; 2, and Pi(z) =

∑∞
j=0 pijzj; i= 1; 2 have no poles on the unit

disk |z|6 1. Under additional conditions on Pi(z); i = 1; 2, (1.17) implies that the
autocovariance functions of {At} and {Bt} decay as t2d2−1 and t2d1−1, respectively.
In Section 4 we also present concrete examples of {aj} and {bj} satisfying (1.17)
together with Assumptions A1 and A2.
Section 5 discusses the decay of auto- and=or cross-covariance functions of the

“observable” sequences {Xt} and {X 2
t }. Assuming (1.17) and some additional moment

conditions, we show that cov(X0; Xt) and cov(X0; X 2
t ) decay as t2d1−1 and td1+d2−1, re-

spectively. For the LARCH model, the last decay was obtained in Giraitis et al. (2001).
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The asymptotic behavior of cov(X 2
0 ; X

2
t ) is more complicated:

cov(X 2
0 ; X

2
t ) ∼

{
'′
22 t

2(2d1−1) if 2(1− 2d1)¡ 1− 2d2;

'′′
22 t

2d2−1 if 2(1− 2d1)¿ 1− 2d2;
(1.18)

where '′
22; '

′′
22 are some constants (Theorem 5.1). The dichotomy in the asymptotic

behavior (1.18) is reOected in the asymptotic distribution of suitably normalized sums∑N
t=1 (X

2
s − EX 2

s ), which is Gaussian for 2(1 − 2d1)¿ 1 − 2d2, and non-Gaussian
(given by a double Ito–Wiener integral) for 2(1 − 2d1)¡ 1 − 2d2 (0¡d1; d2¡ 1

2 )
(Theorem 6.1). On the other hand, linear sums

∑N
t=1 Xs are asymptotically Gaussian

under normalization which depends only on d1 (Theorem 6.2).
Let us note, Gnally, that formally (1.1) appears to be a particular case of more general

bilinear models introduced by Granger and Andersen (1978) and later studied by several
authors (see Tong, 1981; Subba Rao and Gabr, 1984; Terdik, 1999). However, these
works seem to focus on bilinear models with short memory which speciGcally exclude
(1.1). Continuous time bilinear analogs of (1.1) also have been studied in the literature,
see e.g. Ito and Nisio (1964), Morozan (1996).

2. Existence of stationary solution

Let (*;F; P) be a probability space, and let {�s; s∈Z} be a sequence of i.i.d. r.v.’s
deGned on this space, with zero mean and unit variance. Let Ft = �{�s; s6 t}; t ∈Z
be the increasing family of sub-�-Gelds of F. A random sequence {yt; t ∈Z} is called
adapted if, for each t ∈Z; yt is Ft-measurable. Let Lp(*) (16p¡∞) denote the
Banach space of all complex-valued random variables - deGned on (*;F; P) such that
E|-|p ¡∞ (we identify r.v.’s which coincide P-a.s.). Write l.i.m. for the limit in mean
square.

De�nition 2.1. By a solution of (1.1) we mean an adapted sequence {Xt; t ∈Z} with
Gnite second moment EX 2

t ¡∞; such that for every t ∈Z; the series A0t =
∑∞

j=1 ajXt−j

and B0t =
∑∞

j=1 bjXt−j converge in mean square and (1.1) holds.

Note the above deGnition implies the convergence Xt = l:i:m: [�t(a +
∑n

j=1 ajXt−j)
+ b+

∑n
j=1 bjXt−j] in L2(*).

Theorem 2.2. Let Assumptions A1 and A2 be satis8ed and let b=0. Then there exists
a solution of (1.1) which is unique; strictly stationary; ergodic and is given by the
convergent orthogonal Volterra series (1.12). Moreover; EXt = 0 and

cov(X0; Xt) =
a2

1− ‖h‖2
∞∑
j=0

gjgj+t : (2.1)
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Proof. Let us check that series (1.12) converges. By orthogonality;

EX 2
t = a2

∞∑
k=1

∑
sk¡···¡s16t

g2t−s1h
2
s1−sk : : : h

2
sk−1−sk

= a2‖g‖2
∞∑
k=0

‖h‖2k = a2‖g‖2=(1− ‖h‖2): (2.2)

Eq. (2.1) follows similarly. Clearly; {Xt} of (1.12) is strictly stationary and adapted.
Let us show that (1.12) is a solution of (1.1). Put

A0t; n :=
n∑

j=1

ajXt−j; B0t; n :=
n∑

j=1

bjXt−j:

Let us show that A0t; n and B0t; n converge in L2(*) to random variables A0t and B0t deGned
in (1.10) and (1.11), respectively. By (1.12),

A0t −A0t; n=a
∞∑
k=1

∑
sk¡···¡s1¡t


ht−s1−

n∧(t−s1)∑
j=1

ajgt−j−s1


 hs1−s2 : : : hsk−1−sk �s1 : : : �sk :

The expression in {: : :} equals ht−s1 − (a(n)?g)t−s1 = ((a− a(n))?g)t−s1 and we obtain
as in (2.2)

E(A0t − A0t; n)
2 = a2‖(a− a(n))?g‖2=(1− ‖h‖2):

Thus the convergence of A0t; n to A0t follows by Assumption A2. Similarly,

B0t −B0t; n=a
∞∑
k=1

∑
sk¡···¡s1¡t


gt−s1−

n∧(t−s1)∑
j=1

bjgt−j−s1


 hs1−s2 : : : hsk−1−sk �s1 : : : �sk :

As G(z)=1+B(z)G(z), or gt=(b?g)t (t¿ 1), the expression inside the curly brackets
equals gt−s1 − (b(n)?g)t−s1 = ((b− b(n))?g)t−s1 , implying

E(B0t − B0t; n)
2 = a2‖(b− b(n))?g‖2=(1− ‖h‖2)

and the convergence of B0t; n follows again by Assumption A2. As Xt = �t(a+A0t )+B0t ,
see (1.10)–(1.12), this proves that {Xt} of (1.12) is a solution of (1.1). The ergodicity
follows from Stout (1974, Theorem 3.5.8), as Xt = f(�t ; �t−1; : : :) for a measurable f.
It remains to show the uniqueness. Let X ′

t ; X
′′
t be two solutions of (1.1). Then

X̃ t :=X ′
t − X ′′

t is a solution of

X̃ t = �t
∞∑
j=1

ajX̃ t−j +
∞∑
j=1

bjX̃ t−j=: �tÃ
0
t + B̃

0
t ;

where the series Ã
0
t ; B̃

0
t converge in L2. As X̃ t −

∑∞
j=1 bjX̃ t−j = Ỹ t , where Ỹ t := �tÃ

0
t

are uncorrelated with zero mean and variance EỸ
2
t = E(Ã

0
t )
2¡∞, by inverting this

representation one has

X̃ t = (1− B(L))−1Ỹ t =
∞∑
j=0

gjỸ t−j
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and therefore, using hj = (a?g)j,

Ã
0
t =

∞∑
j=1

(a?g)jỸ t−j =
∞∑
j=1

hjỸ t−j:

Hence

E(Ã
0
t )
2 = ‖h‖2EỸ

2
t = ‖h‖2E(Ã0t )2

or ‖h‖= 1. But this contradicts (1.8), hence E(Ã
0
t )
2 = 0 and EX̃

2
t = ‖g‖2E(Ã0t )2 = 0.

Remark 2.3. From Theorem 3.2 it follows that the homogeneous Eq. (1.1) with a=b=0
under Assumptions A1 and A2 admits only trivial solution Xt ≡ 0.

Next, we discuss the case b �=0.

Theorem 2.4. Let b �=0; and let Assumptions A1–A3 be satis8ed. Then Eq. (1.1)
admits a solution which is unique; strictly stationary; ergodic and is given by the
convergent Volterra series (1.14). Moreover; EXt = $ and the covariance of {Xt} is
given by (1.15).

Proof. Let LX t be a solution to the equation

LX t = �t


a+ La$ +

∞∑
j=1

aj LX t−j


+

∞∑
j=1

bj LX t−j: (2.3)

According to Theorem 2.2; such a solution exists; is unique; and is written as the
Volterra series (1.12) with a replaced by a + La$. Then Xt :=$ + LX t is a solution to
(1.1). Indeed;

$ + LX t = $ + l:i:m: �t


a+ La$ +

n∑
j=1

aj LX t−j


+ l:i:m:

n∑
j=1

bj LX t−j

= l:i:m: �t


a+

n∑
j=1

aj($ + LX t−j)


+ l:i:m:

n∑
j=1

bj($ + LX t−j):

The remaining statements of Theorem 2.4 including representation (1.14) follow now
from Theorem 2.2.

Remark 2.5. From Theorem 2.4 it follows that under Assumptions A1–A3 Eq. (1.1)
with b �=0 and a+ La$ = 0 admits the unique trivial solution Xt ≡ $.

Remark 2.6. Assumption A3 is necessary for the existence of a solution of (1.1) with
constant mean $=EXt �=0. This fact follows from DeGnition 3.1; the existence of Gnite
limits lim E(

∑n
j=1 ajXt−j)=$ lim

∑n
j=1 aj=$ La; lim E(

∑n
j=1 bjXt−j)=$ lim

∑n
j=1 bj=

$ Lb and the identity EXt = b+ LbEXt .
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Proposition 2.7. Assume {aj}∈ ‘2; the existence of 8nite limit lim
∑n

j=1 aj = La if
b �=0; and either

∑
j=1 |bj|¡ 1; or

∑∞
j=1 |bj|¡∞ and |B(z)|¡ 1 for all |z|6 1.

Then:
(i) Assumptions A2 and A3 are satis8ed; as well as conditions {gj}∈ ‘2; {hj}∈ ‘2

of Assumption A1 with exception of ‖h‖¡ 1.
(ii) If; in addition; ‖h‖¡ 1 holds; then the statements of Theorems 2:2 and 2:4 apply

and the solution Xt of (1.1) has absolutely summable covariances∑
t∈Z

|cov(X0; Xt)|¡∞: (2.4)

(iii) ‖a‖+ ‖b‖1¡ 1 implies ‖h‖¡ 1.

Proof. (i) The assumptions on {bj} imply {gj}∈ ‘1; see Rudin (1987) and Giraitis
et al. (2000a; Lemma 4.1). Whence and from the conditions of the proposition it
follows all requirements of Assumptions A1–A3 with exception of ‖h‖¡ 1.
(ii) Eq. (2.4) follows from {gj}∈ ‘1 and (1.15), (2.1).
(iii) Follows from ‖h‖6 ‖a‖‖g‖1 and ‖g‖16 (2/)−1

∫ /
−/ |1 − B(e−i0)|−1 d06

1=(1− ‖b‖1).

Example 2.8. Consider the equation

Xt = �t(1 + 1Xt−1) + 2Xt−1; (2.5)

where 1; 2 are real parameters. In this case; gt = 2t (t¿ 0) and ht = 12t−1 (t¿ 1).
Condition ‖h‖¡ 1 in this case becomes ‖h‖2 = 12=(1− 22)¡ 1; or

12 + 22¡ 1: (2.6)

Clearly; (2.6) implies Assumptions A1 and A2. According to Theorem 2.2; the station-
ary solution Xt of (2.5) is

Xt =
∞∑
k=1

(1=2)k
∑

sk¡···¡s16t

2t−sk �s1 · · · �sk :

Another form of the solution can be obtained by direct iteration of (2.5):

Xt = �t +
∞∑
j=1

�t−j

t∏
s=t−j+1

(1�s + 2): (2.7)

Note that the series in (2.7) is orthogonal and convergent in L2(*):

EX 2
t = 1 +

∞∑
j=1

E


 t∏

s=t−j+1

(1�s + 2)



2

= 1 +
∞∑
j=1

(12 + 22)j = (1− 12 − 22)−1:

A continuous time version of (2.5) is the stochastic diNerential equation

dXt = (1 + 1Xt) dWt + 2Xt dt; t ∈R;
where Wt; t ∈R is standard Brownian motion. The last equation can be explicitly
solved: Xt =

∫ t
−∞ exp{1(Wt − Ws) + (2 − 12=2)(t − s)} dWs; for 2¡ − 12=2. See Ito

and Nisio (1964); Morozan (1996) on stationary solutions of more general bilinear
equations with continuous time.
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3. Covariance stationary ARCH(∞) sequences

According to Giraitis et al. (2000a), a random sequence {Xt; t ∈Z} satisGes an
ARCH(∞) equation if there exist a sequence {�t ; t ∈Z} of i.i.d. random variables and
(non-random) numbers c; cj¿ 0 (j¿ 1) such that

Xt = �2t


c +

∞∑
j=1

cjXt−j


 : (3.1)

The problem of the existence of a stationary solution of Eq. (3.1), with possibly inGnite
mean EX0, was studied by Nelson (1990), Bougerol and Picard (1992) and recently
by KazakeviJcius et al. (2001).
Conditions for the existence of covariance stationary solutions of (3.1) were obtained

in Embrechts et al. (1997), Giraitis et al. (2000a), KazakeviJcius et al. (2001). Put
0i=E�2i0 ; i=1; 2; �2 = var(�20)= 02− 021. As shown in Giraitis et al. (2000a) (see also
KazakeviJcius et al., 2001), condition

01
∞∑
j=1

cj ¡ 1 (3.2)

is necessary and suFcient for the existence of a strictly stationary solution of (3.1) with
Gnite expectation EXt ¡∞. Moreover, the solution is unique and can be written as

Xt = c�2t

∞∑
k=0

∑
sk¡···¡s1¡t

ct−s1 : : : csk−1−sk �
2
s1 : : : �

2
sk ; (3.3)

the series convergent in L1(*), with mean $ :=EXt = c01=(1 − 01
∑∞

j=1 cj). In the
degenerate case �=0, or �2t = 01 a.s., (3.3) becomes Xt = $ a.s. Giraitis et al. (2000a)
also showed that

01=22

∞∑
j=1

cj ¡ 1 (3.4)

is suFcient in order that the solution Xt (3.3) has Gnite variance (and therefore is
covariance stationary).
By introducing normalized variables �t = (�2t − 01)=�, (3.1) can be rewritten as the

bilinear equation (1.1), with a= �c; aj = �cj; b= 01c; bj = 01cj:

Xt = �t


�c + �

∞∑
j=1

cjXt−j


+ 01c + 01

∞∑
j=1

cjXt−j: (3.5)

The corresponding generating functions A(z); B(z) are given by

A(z) = �
∞∑
j=1

cjzj; B(z) = 01
∞∑
j=1

cjzj: (3.6)

As in Section 2, put G(z)=(1−B(z))−1=
∑∞

j=0 gjzj and H (z)=A(z)G(z)=
∑∞

j=1 hjzj.
Note that Lb=

∑∞
j=1 bj=01

∑∞
j=1 cj and $=c01=(1− Lb). Also note hj=(�=01)gj (j¿ 1)
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and

gj =
j∑

k=1

0k
1

∑
0=i0¡i1¡···¡ik−1

ci1ci2−i1 : : : cik−2−ik−1cj−ik−1 (j¿ 1); g0 = 1: (3.7)

Theorem 3.1. Let 0¡�¡∞. Then a covariance stationary solution of (3.1) exists
if and only if Lb¡ 1 and ‖h‖¡ 1 hold; in which case the above solution is unique;
ergodic and is given by the convergent orthogonal Volterra series:

Xt = $ + $(�=01)�t
∞∑
k=1

∑
sk¡···¡s1¡t

ht−s1 : : : hsk−1−sk �s1 : : : �sk

+$
∞∑
k=1

∑
sk¡···¡s1¡t

ht−s1 : : : hsk−1−sk �s1 : : : �sk : (3.8)

Moreover; cov(X0; Xt)¿ 0 and

cov(Xt; X0) =
(a+ $ La)2

1− ‖h‖
∞∑
j=0

gjgj+t ;

a+ $ La= c
(√

02 − 021 +
021
∑∞

1 cj
1− 01

∑∞
1 cj

)
: (3.9)

Proof. Let Lb¡ 1 and ‖h‖¡ 1. Then the assumptions of Proposition 2.7(ii) applies
and the existence of the solution together with (3.8) follows from Proposition 2.7 and
Theorem 2.4.
Conversely, assume that a covariance stationary solution {Xt} of (3.1) exists. As

Lb¡ 1 is a necessary condition for its existence, it remains to show the necessity of
‖h‖¡ 1. Put LX t = Xt − $. By (3.5),

LX t = Yt +
∞∑
j=1

bj LX t−j; (3.10)

where Yt=�tAt=�t(�c+�
∑∞

j=1 cjXt−j)=�t(a=(1− Lb)+
∑∞

j=1 aj LX t−j) are uncorrelated
and EY 2

t =: �
2
Y ¿ 0 does not depend on t by the covariance stationarity of {Xt}. By

inverting (3.10), one obtains LX t = G(L)Yt and therefore
∑∞

j=1 aj LX t−j =
∑∞

j=1 hjYt−j.
Hence �2Y =EA2t =(a=(1− Lb))2 + ‖h‖2�2Y , thereby proving ‖h‖¡ 1. The non-negativity
of the covariance together with (3.9) follow from (1.15) and the non-negativity of
gj (3.7).

Theorem 3.1 and representation (3.8) allow us to obtain further results of Giraitis
et al. (2000a, Propositions 3.1 and 3.2), under the weaker condition ‖h‖¡ 1 instead
of (3.4).
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Corollary 3.2. Let {Xt} be the ARCH(∞) sequence of (3.1); satisfying conditions
(3.2) and ‖h‖¡ 1. Then∑

t∈Z
cov(X0; Xt)¡∞: (3.11)

Assume additionally; for some constants 0¡c− ¡c+; 4¿ 1; that c−j−46 cj6
c+j−4; j¿ 1. Then there are constants 0¡C− ¡C+¡∞ such that for all t¿ 1

C− t−46 cov(X0; Xt)6C+ t−4: (3.12)

Proof. Eq. (3.11) is immediate from Theorem 3.1; (1.15) and=or Proposition 2.7(ii);
while (3.12) follows from (1.15) and

c̃− j−46 gj6 c̃+ j−4 (∃0¡c̃−6 c̃+¡∞) (3.13)

and the elementary inequalities: 1− t−46
∑∞

j=1 j−4(t + j)−46 1+ t−4; t¿ 1; where
0¡1− ¡1+¡∞ are some constants. The lower bound in (3.13) is immediate by
gj¿ 01cj; see (3.7). The upper bound seems to be well known from analysis. It can
also be proved by the following argument. Write (3.7) as gj =

∑j
k=1 g(k)j . It suFces

to show that there exist 0¡C ¡∞ and 0¡d¡ 1 such that for all k; j¿ 1

g(k)j 6Cdkj−4: (3.14)

Relation (3.14) follows from the recurrent equation g(k)j = 01
∑j−1

i=1 cig
(k−1)
j−i ; by induc-

tion on k¿ 1; see Giraitis et al. (2000b; Lemma 4.2).

Example 3.3. Consider the classical GARCH(1; 1) equations: r2t = �2t �
2
t ; �

2
t = 10 +

1r2t−1 + 2�2t−1; which can be rewritten as

r2t = �2t


10=(1− 2) + 1

∞∑
j=1

2j−1r2t−j




or in the form (3.1) with c = 10=(1 − 2); cj = 12j−1. In this case gj = (1 − 2)
(011 + 2)j−1; hj = �1(011 + 2)j−1. Inequalities Lb¡ 1 and ‖h‖¡ 1 are equivalent to
101 + 2¡ 1 and

1202 + 21201 + 22¡ 1; (3.15)

respectively. Condition (3.15) for the existence of the covariance stationary solution
{r2t } of GARCH(1; 1) was obtained in Karanasos (1999); He and TerUasvirta (1999);
KazakeviJcius et al. (2001).
From (3.8) we obtain the following orthogonal Volterra representation of GARCH(1; 1):

r2t = $ + $1�t
∞∑
k=1

(1�=4)k
∑

sk¡···¡s1¡t

4t−sk �s1 : : : �sk

+$2
∞∑
k=1

(1�=4)k−1
∑

sk¡···¡s1¡t

4t−sk �s1 : : : �sk ;

where �t=(�2t −01)=� and 4 := 101+2; $ := 1001=(1−4); $1 := 10�=(1−2); $2 := 10�=4.
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4. Long memory in conditional mean and conditional variance

In this section we discuss some concrete examples of generating functions A(z) and
B(z) satisfying Assumptions A1 and A2 which allow us to model long memory in
conditional mean and=or conditional variance.
Recall that a weak white noise is a sequence {6t ; t ∈Z} of random variables with

zero mean and covariance cov(6t ; 6s) = #t−s. Let {Wt; t ∈Z} be a 2nd order process
having moving average representation:

Wt = m+
∞∑
j=0

pj6t−j; (4.1)

where m∈R is a constant, {6t ; t ∈Z} is a weak white noise, and ∑∞
j=1 p2j ¡∞.

De�nition 4.1. The process {Wt} (4.1) will be called long memory with fractional
parameter 0¡d¡ 1

2 if

pj ∼ cjd−1; j → ∞;

where c �=0. {Wt} (4.1) will be called short memory if
∑∞

j=0 |pj|¡∞.

It is well-known that a moving average representation (4.1) exists if and only if the
spectral density f of {Wt} satisGes

∫ /
−/ logf(0) d0¿−∞. Note that {Wt} being short

memory implies that its covariance function cov(W0; Wt) = E620(p?p)t is absolutely
summable:

∑
t∈Z |cov(W0; Wt)|¡∞. On the other hand, if {Wt} is long memory with

fractional parameter 0¡d¡ 1
2 then the covariance is not summable and

cov(W0; Wt) ∼ c0t2d−1; t → ∞;

where c0 = c2E620B(d; 1− 2d) and B(· ; ·) is the beta-function.

De�nition 4.2. Let Xt; At ; Bt be deGned as in (1.1) and (1.2). We say that {Xt} exhibits
long memory in conditional mean if {Bt} is a long-memory process with fractional
parameter 0¡d1¡ 1

2 . Similarly; we say that {Xt} exhibits long memory in conditional
variance if {At} is a long-memory process with fractional parameter 0¡d2¡ 1

2 .

Under conditions of Theorem 2.2, the processes {At} and {Bt} admit moving average
representations (1.16) with respect to the weak white noise {6s=Ys=�sAs}. Thus, {Xt}
exhibits long memory in conditional mean with fractional parameter 0¡d1¡ 1

2 if and
only if

gj ∼ c1jd1−1; j → ∞ (∃c1 �=0): (4.2)

In view of the last equality of (1.16), condition (4.2) is also necessary and suFcient
in order that {Xt} itself is long memory with fractional parameter d1. Similarly, {Xt}
exhibits long memory in conditional variance with fractional parameter 0¡d2¡ 1

2 if
and only if

hj ∼ c2jd2−1; j → ∞ (∃c2 �=0): (4.3)
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Proposition 4.3. Assume the generating functions A(z) and B(z) are given by

1− B(z) = P1(z)(1− z)d1 ; A(z) = P2(z)(1− z)d1−d2 ; (4.4)

where 06di ¡ 1
2 and Pi(z) =

∑∞
j=0 pijzj; i = 1; 2 satisfy the following conditions:

(i) P1(z) has no zeros in {|z|6 1} and
∑∞

j=0 j2|p1j|¡∞;
(ii) P2(1) �=0;

∑∞
j=0 |p2j|¡∞ and p2j = o(j−1).

Then Assumptions A1 and A2 with exception of (1.8) are satis8ed. Moreover; if
d1; d2¿ 0; then {gj} and {hj} satisfy (4.2) and (4.3); respectively; with the asymptotic
constants

c1 = (P1(1)9(d1))−1; c2 = P2(1)(P1(1)9(d2))−1:

Furthermore;
∑∞

j=0 |gj|¡∞ if d1 = 0; and
∑∞

j=1 |hj|¡∞ if d2 = 0.

Proof. First note that if P1(z) satisGes (i) then Q(z) :=P−1
1 (z)=

∑∞
j=0 qjzj satisGes (ii).

Indeed; by (i); Q(1)=P−1
1 (1) �=0 and the function v(x) :=

∑∞
j=0 p1jeijx has a bounded

second derivative: |(d2=dx2)v(x)|6∑∞
j=0 |p1j|j2. Therefore v−1(x) =

∑∞
j=0 qjeijx also

has a bounded second derivative. The last fact implies
∑∞

j=0 |qjj|¡∞ and there-
fore Q(z) satisGes (ii). Next; observe that if Q1(z); Q2(z) satisfy (ii) then the product
Q1(z)Q2(z) satisGes (ii) as well.
To check (4.2), note that if |d|¡ 1; d �=0, then (1− z)−d = 1 +

∑∞
j=1 /jzj, where

/j =
9(j + d)

9(j + 1)9(d)
∼ 1

9(d)
j−1+d:

Therefore (1 − B(z))−1 = P−1
1 (z)(1 − z)−d1 =

∑∞
j=0(q ∗ /)jzj. Since

∑∞
j=0 |qjj|¡∞,

it is easy to show that

gj ≡ (q ∗ /)j =
j∑

k=0

qj−k/k ∼
( ∞∑

k=0

qk

)
/j ∼ (P1(1)9(d1))−1jd1−1:

Thus (4.2) holds. Using a similar argument, (4.3) follows from H (z) =
A(z)(1− B(z))−1 = (P2(z)=P1(z))(1− z)−d2 =

∑∞
j=0 hjzj, where

hj ∼ P2(1)(P1(1)9(d2))−1jd2−1:

This proves the validity of Assumption A1 with exception of (1.8). Assumption A2
can be easily checked using (4.2), (4.3) and the dominated convergence theorem, since
|a(n)j |6 |aj|6C|j|−1+d2−d1 ; |b(n)j |6 |bj|6C|j|−1−d1 , where 0¡d1; d2¡ 1

2 .

Corollary 4.4. Under the assumptions of Proposition 4:3; {Xt} exhibits:
(i) long memory in conditional mean and in conditional variance if 0¡d1; d2¡ 1

2 ;
(ii) long memory in conditional mean and short memory in conditional variance if

0¡d1¡ 1
2 ; d2 = 0;

(iii) short memory in conditional mean and long memory in conditional variance if
d1 = 0; 0¡d2¡ 1

2 ;
(iv) short memory in conditional mean and in conditional variance if d1 = 0; d2 = 0.
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5. Hyperbolic decay of covariance functions

Consider the bilinear model (1.1) with b = 0 which exhibits long memory both in
conditional mean and in conditional variance in the sense of DeGnition 4.2, or (4.2)–
(4.3). In this section, we study the implications of (4.2) and (4.3) on the decay rate
of the autocovariance functions of the “observable” sequences {Xt} and {X 2

t } as well
as of the cross-covariance between the two sequences; in other words, the asymptotics
of cov(Xs; Xt); cov(Xs; X 2

t ); cov(X
2
s ; X

2
t ) as |t − s| → ∞. Put $p :=E�p0 .

Assumption A4. The fourth moment $4 = E�40¡∞ and

11$1=24 ‖h‖2¡ 1:

The above moment assumption was introduced in Giraitis et al. (2000b). As shown in
the last paper; Assumption A4 guarantees the existence of Gnite fourth moment EY 4

0 ;
where Yt = �tAt is the stationary solution to the LARCH equation

Yt = �t


a+

∞∑
j=1

hjYt−j


 ; (5.1)

see Section 1.

Lemma 5.1 (Giraitis et al., 2001). Let Assumption A4 and (4.3) be satis8ed. Then

cov(Y0; Y 2
t ) ∼ c3td2−1; t → ∞; (5.2)

where c3 := 2a3c2=(1− ‖h‖2)2.

Remark 5.2. The moment assumption A4 for the existence of EY 4
t was improved in

Giraitis et al. (2001) to

$4‖h‖44 + 4|$3| ‖h‖33 + 6‖h‖2¡ 1:

The last paper also obtains conditions for E|Yt |3¡∞ and (5.2) which do not require
Gniteness of $4.

Lemma 5.3. Let Assumption A4 and (4.3) be satis8ed. Then there exists a 8nite
constant C such that for any integers t′′ ¡t′6 t

|EYt′′Yt′Y 2
t |6C|t − t′|d2−1+ |t′ − t′′|d2−1: (5.3)

The proof of Lemma 5.3 is given at the end of Section 5. DeGne the following
asymptotic constants:

'11 = (ac1=(1− ‖h‖2))2B(d1; 1− 2d1);

'+12 =
2a3c1c2‖g‖2
(1− ‖h‖2)2 B(d1; 1− d1 − d2);
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'−
12 =

2a3c1c2‖g‖2
(1− ‖h‖2)2 B(d2; 1− d1 − d2);

'′
22 = 2(a

2c21=(1− ‖h‖2))2B2(d1; 1− 2d1);

'′′
22 = (4a

4c22‖g‖4=(1− ‖h‖2)3)B(d2; 1− 2d2):

Theorem 5.4. Let Assumptions A1 and A2 as well as (4.2) and (4.3) be satis8ed;
with 0¡d1¡ 1

2 ; 0¡d2¡ 1
2 . Then:

(i)

cov(X0; Xt) ∼ '11 |t|2d1−1; |t| → ∞;

(ii)

cov(X0; X 2
t ) ∼

{
'+12 t

d1+d2−1; t → ∞;

'−
12 |t|d1+d2−1; t → −∞;

provided Assumption A4 holds;
(iii)

cov(X 2
0 ; X

2
t ) ∼

{
'′
22 |t|2(2d1−1) if 2(1− 2d1)¡ 1− 2d2;

'′′
22 |t|2d2−1 if 2(1− 2d1)¿ 1− 2d2;

|t| → ∞;

provided Assumption A4 holds.

Proof. (i) Follows immediately from (4.2) and the white noise representation

Xt =
∞∑
j=0

gjYt−j; (5.4)

see (1.16).
(ii) Let t ¿ 0. Using (5.2) and Assumption A4 one obtains

cov(X0; X 2
t ) = cov


∑

s60

g−sYs;

(∑
s6t

gt−sYs

)2
=

∑
s160; s26t

g−s1g
2
t−s2 cov(Ys1 ; Y

2
s2 )

+ 2
∑

s2¡s160

gt−s1g−s1gt−s2 cov(Y
2
s1 ; Ys2 ):

Put 4t := cov(Y0; Y 2
t ). Then

Jt :=
∑

s160; s26t

g−s1g
2
t−s24s2−s1 =

∑
s160

g−s1

t−s1∑
u=0

g2t−s1−u4u ≡
∑
s160

g−s1Kt−s1 :
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Using Lemma 5.1, one easily obtains

Kt =
t∑

u=0

g2t−u4u ∼ ‖g‖2c3td2−1 (t → ∞):

Consequently by (4.2),

Jt ∼ c1c3‖g‖2
∑
s¿0

sd1−1(t + s)d2−1 ∼ '+12t
d1+d2−1; t → ∞: (5.5)

In a similar way, one can show the asymptotics Jt ∼ '−
12|t|d1+d2−1 (t → −∞).

It remains to show

Qt = o(Jt); (5.6)

where

Qt =
∑

s2¡s160∧t

gt−s1g−s1gt−s24s1−s2 :

Indeed, as t → ±∞,

|Qt |6C
∑

s2¡s160∧t

|t − s1|d1−1+ |s1|d1−1+ |t − s2|d1−1+ |s1 − s2|d2−1

6C
∑
s160

|t − s1|d1−1|s1|d1−1+ |t − s1|d1+d2−1

6Ct3d1+d2−2 = o(td1+d2−1);

proving (ii).
(iii) We have

X 2
t =

∑
s6t

g2t−sY
2
s + 2

∑
s2¡s16t

gt−s1gt−s2Ys1Ys2 =: xt + yt:

Here,

cov(x0; xt) =
∑

s16t; s260

g2t−s1g
2
−s2 cov(Y

2
s1 ; Y

2
s2 ) =: @1t :

Next,

cov(y0; yt) = 4
∑

s2¡s16t

∑
s4¡s360

gt−s1gt−s2g−s1g−s4 cov(Ys1Ys2 ; Ys3Ys4 )

= 4
∑

s2¡s160

gt−s1gt−s2g−s1g−s2EY
2
s1Y

2
s2

+ 4
∑

s2¡s16t∧0; s3¡s1∧0
gt−s1gt−s2g−s1g−s3EY

2
s1Ys2Ys3 =: @2t + 01t ;
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where we used the fact that cov(Ys1Ys2 ; Ys3Ys4 ) = EYs1Ys2Ys3Ys4 vanishes for s1 �= s3;
s2¡s1; s4¡s3. Similarly,

cov(x0; yt) = 2
∑

s3¡s26s160

g2−s1gt−s2gt−s3EY
2
s1Ys2Ys3 =: 02t ;

cov(y0; xt) = 2
∑

s2¡s16s3∧0; s36t

g−s1g−s2g
2
t−s3EYs1Ys2Y

2
s3 =: 03t :

Hence

@t := cov(X 2
0 ; X

2
t ) = @1t + @2t +

3∑
i=1

0it :

It suFces to show

@1t ∼ '′′
22 t

2d2−1; (5.7)

@2t ∼ '′
22 t

2(2d1−1); (5.8)

0it = o(max(t2d2−1; t2(2d1−1))); i = 1; 2; 3: (5.9)

Let us prove (5.9) for i = 1. According to (4.2) and Lemma 5.3, uniformly in
s2¡s16 0,∑

s3¡s1∧0
|g−s3 | |EY 2

s1Ys2Ys3 |6C
∑

s36s2¡s1∧0
|s3|d1−1|s1 − s2|d2−1|s2 − s3|d2−1+

+C
∑

s2¡s3¡s1∧0
|s3|d1−1|s1 − s3|d2−1|s2 − s3|d2−1

6C|s1 − s2|d2−1;
where in the last sum we used the inequality max(|s1 − s3|; |s2 − s3|)¿ |s1 − s2|=2.
Hence

|01t |6C
∑

s2¡s160

|t − s1|d1−1|t − s2|d1−1|s1|d1−1+ |s1 − s2|d2−1

6C
∑
s160

|t − s1|2d1+d2−2|s1|d1−1+ 6Ct3d1+d2−2:

As min(1−2d1; 2(1−2d2))¡ [(1−2d1)+2(1−2d2)]=2=3=2−2d1−d2¡ 2−3d1−d2,
this proves (5.9) for i = 1.
Similarly, by (4.2) and Lemma 5.3 and noting that 2d1 + d2 − 2¡d2 − 1 − # for

#¿ 0 suFciently small,

|03t |6C
∑

s2¡s16s3∧0; s36t

|s1|d1−1+ |s2|d1−1+ |s1 − s2|d2−1+ |s1 − s3|d2−1+ g2t−s3

6C
∑

s16s3∧0; s36t

|s1|2d1+d2−2
+ |s1 − s3|d2−1+ g2t−s3
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6C
∑

s16s3∧0; s36t

|s1|d2−1−#
+ |s1 − s3|d2−1+ g2t−s3

6C
∑
s3

|s3|2d2−1−#
+ g2t−s36Ct2d2−1−#;

proving (5.9) for i= 3. The proof of (5.9) for i= 2 is analogous as in the case i= 3.
Consider (5.7). According to Giraitis et al. (2000b), as t → ∞,

rt := cov(Y 2
0 ; Y

2
t ) ∼ c4t2d2−1; (5.10)

where c4 = 4a4c22(1 − ‖h‖2)−3B(d2; 1 − 2d2). Note that if
∑

s¿0 |ps|¡∞ and, as
s → ∞; ps = o(1=s); vs ∼ cs−4, where 0¡4¡ 1, then∑

s¿0

psvt+s ∼ vt
∑
s¿0

ps; t → ∞: (5.11)

Applying (5.10) and (5.11) to @1t =
∑

s1 ;s2¿0 g2s1g
2
s2rt−s1+s2 , one obtains @1t∼

(
∑

s¿0 g2s )
2rt , or (5.7).

It remains to show (5.8). Write

@2t = 4(EY 2
0 )

2
∑

s2¡s160

gt−s1g−s1gt−s2g−s2

+ 4
∑

s2¡s160

gt−s1g−s1gt−s2g−s2 cov(Y
2
s1 ; Y

2
s2 ) =: @

′
2t + @′′

2t :

We have

@′
2t = 2(EY

2
0 )

2


(∑

s¿0

gt+sgs

)2
−
∑
s¿0

g2t+sg
2
s


 ∼ '′

22t
2(2d1−1);

while @′′
2t = o(t

2(2d2−1)) easily follows. This proves (5.8) and the theorem.

Proof of Lemma 5.3. We shall use the results and notation of the paper Giraitis et al.
(2000b).
We use the representation Yt = �tAt , with At = a + A0t given by (1.10). Let t ¿ 0,

then

At =
t−1∑
A=0

A0; AA[A; t); (5.12)

where, for any integers u6 A¡ t,

Au;A := a
∞∑
k=0

∑
sk¡···¡s1¡u

hA−s1 : : : hsk−1−sk �s1 : : : �sk ;

A[A; t) := �A
t−1∑
k=0

∑
A¡sk−1¡···¡s1¡t

ht−s1 : : : hsk−1−A�s1 : : : �sk−1 :
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Consider Grst the case t= t′ ¿t′′=0. Then EY 3
t Y0 =$3EA3t Y0 and by (5.12) we obtain

EA3t Y0 = EA3t �0A0 = E

(
t−1∑
A=0

A0; AA[A; t)

)3
�0A0

=
t−1∑

A1 ;A2 ;A3=0

E[A[A1 ; t)A[A2 ; t)A[A3 ; t)�0]E[A0A0; A1A0; A2A0; A3 ]:

Note EA40¡∞ and supA¿0 EA
4
0; A ¡∞, which follows from Assumption A4 and

(Giraitis et al., 2000b, Lemma 3.1). Hence |EA0A0; A1A0; A2A0; A3 |6C ¡∞ and the
statement of the lemma for 0 = t′′ ¡t′ = t follows from

t−1∑
A1 ;A2 ;A3=0

|EA[A1 ; t)A[A2 ; t)A[A3 ; t)�0|6Ctd2−1: (5.13)

The last expectation can be written as

EA[A1 ; t)A[A2 ; t)A[A3 ; t)�0 =
∑
(S)3

hS1
t hS2

t hS3
t E[�S1�S2�S3�0]1 (∧Si = Ai; i = 1; 2; 3) ; (5.14)

where the sum is taken over all collections (S)3 = (S1; S2; S3) of non-empty ordered
subsets Si ⊂ [Ai; t) ∩ Z with

∧
Si :=min(s: s∈ Si) = Ai; i = 1; 2; 3, and where, for any

such ordered subset S = {sk ; : : : ; s1}; sk ¡ · · ·¡s1,

hS
t := ht−s1hs1−s2 : : : hsk−1−sk ; �S := �s1 : : : �sk :

Using the diagram argument of (Giraitis et al., 2000b, Lemmas 3.2 and 4.2), one can
show the bounds∑

(S)3

|hS1
t hS2

t hS3
t | |E�S1�S2�S3 |1 (∧ (S1 ∪ S2 ∪ S3) = A)6C|t − A|−2(1−d2); (5.15)

and
t∑

A1 ;A2 ;A3=A

|EA[A1 ; t)A[A2 ; t)A[A3 ; t)|6C|t − A|−2(1−d2); (5.16)

where 2(1− d2)¿ 1, which will be used to prove (5.13). Without loss of generality,
one may assume $3 = E�30 �=0.
Note E[�S1�S2�S3�0]=0 in (6.14) if

∧
(S1∪S2∪S3)=A1∧A2∧A3¿ 0. Let A3=

∧
S3=0.

There are two cases: (1)
∧
(S1 ∪ S2) = A1 ∧ A2 = 0 and (2) A1; A2¿ 0. In case (1),

|E�S1�S2�S3�0|6C|E�S1�S2�S3 | and the sum on the r.h.s. of (5.14) over such (S)3 can
be bounded by the r.h.s. of (5.15) which is o(td2−1).
In case (2), or A1 ∧ A2¿ 1; A3 = 0, from the identity A[0; t) = �0

∑t−1
u=0 huA[u; t) one has

EA[A1 ; t)A[A2 ; t)A[0; t)�0 = E�20
∑t−1

u=0 huEA[A1 ; t)A[A2 ; t)A[u; t). Hence and from (5.14), (5.16)
t−1∑

A1 ;A2=1

|EA[A1 ; t)A[A2 ; t)A[0; t)�0|6C
t−1∑
u=0

|hu| |EA[A1 ; t)A[A2 ; t)A[u; t)|

6C
t−1∑
u=0

|u|d2−1+ |t − u|−2(1−d2)6Ctd2−1;
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which proves (5.13), or the bound |EA3t Y0|6Ctd2−1. In a similar way, one can show
the more general bound: for any s1; s2¿ t ¿ 0,

|EAt; s1At; s2AtY0|6Ctd2−1: (5.17)

Consider now the general case 0 = t′′ ¡t′ ¡t. Then by (5.12)

EY 2
t Yt′Y0 = E

(
t−1∑
s=t′

At′ ; sA[s; t)

)2
�t′At′Y0

=
t−1∑

s1 ; s2=t′
E[A[s1 ;t)A[s2 ;t)�t′ ]E[At′ ; s1At′ ; s2At′Y0]:

Whence and from (5.17), we have |EY 2
t Yt′Y0|6C|t′|d2−1 ∑t−1

s1 ; s2=t′ |EA[s1 ;t)A[s2 ;t)�t′ |,
and the lemma follows from the bound

t−1∑
s1 ; s2=t′

|EA[s1 ; t)A[s2 ; t)�t′ |6C|t − t′|d2−1;

whose proof is similar (actually, simpler) to that of (5.13).

6. Convergence of partial sums’ processes

In this section we consider the weak convergence of partial sums’ processes {SN1(A);
06 A6 1} and {SN2(A); 06 A6 1}, where

SN1(A) :=
[NA]∑
s=1

Xs; SN2(A) :=
[NA]∑
s=1

(X 2
s − EX 2

s )

and where {Xt} is the stationary solution of (1.1) with b = 0 which exhibits long
memory in conditional mean and in conditional variance in the sense of DeGnition 4.2.
Let us introduce the fractional Brownian motion, J1(A;d), and the Rosenblatt process,

J2(A;d), as the stochastic integrals

J1(A;d) = k1(d)
∫
R

[∫ A

0
(s− x)d−1+ ds

]
W (dx); (6.1)

J2(A;d) = k2(d)
∫
R2

[∫ A

0
(s− x1)d−1+ (s− x2)d−1+ ds

]
W (dx1)W (dx2) (6.2)

with respect to standard Gaussian white noise W (dx) with zero mean and variance dx;
see e.g. Taqqu (1975). The normalizations ki(d); i = 1; 2 in (6.1), (6.2) are chosen
so that EJ 2i (1;d) = 1; i = 1; 2. The processes J1(A;d) and J2(A;d) are deGned for
0¡d¡ 1

2 and 1
4 ¡d¡ 1

2 , respectively. Recall that the fractional Brownian motion
can be alternatively deGned for any d∈ (− 1

2 ;
1
2 ) as the Gaussian process with zero
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mean and the covariance

EJ1(A;d)J1(A′;d) = (1=2)(|A|1+2d + |A′|1+2d − |A− A′|1+2d):
Write ⇒D[0;1] and ⇒ for the weak convergence of random elements in the Skorohod
space D[0; 1] and the convergence of Gnite dimensional distributions, respectively.
Consider Grst the partial sums’ process {SN2(A)}. Put SNi=SNi(1); i=1; 2. According

to Theorem 5.4(iii), under Assumption A4,

var SN2 ∼
{

'̃′
22N

1+2d2 if 2(1− 2d1)¿ 1− 2d2;

'̃′′
22N

4d1 if 2(1− 2d1)¡ 1− 2d2;
(6.3)

where '̃′
22 = '′

22=(d2(1 + 2d2)); '̃′′
22 = '′′

22=(2d1(4d1 − 1)).

Theorem 6.1. Let conditions of Theorem 5:4(iii) be satis8ed. Then

(var SN2)−1=2SN2(A) ⇒D[0;1]

{
J1(A;d2) if 1− 2d2¡ 2(1− 2d1);

J2(A;d1) if 1− 2d2¿ 2(1− 2d1):
(6.4)

Proof. The tightness of random elements {(var SN2)−1=2SN2(A); A∈ [0; 1]} in D[0; 1] fol-
lows from (6.3) and the stationarity of increments; as E(SN2(A′) − SN2(A))2 =
ES2N2(A

′− A)=var S[N (A′−A)]26C(var SN2)|A′− A|4; 06 A¡A′6 1; with 4¿ 1; see e.g.
Billingsley (1968).
It remains to prove the Gnite dimensional convergence. We shall prove the conver-

gence of one-dimensional distributions at A=1 only, as the general case can be treated
analogously. With (6.1)–(6.2) in mind, write SN2 = UN1 + UN2, where

UN1 = 2
N∑
t=1

∑
s2¡s16t

gt−s1gt−s2Ys1Ys2 ;

UN2 =
N∑
t=1

∑
s6t

g2t−s(Y
2
s − EY 2

s ):

Let Grst 1 − 2d2¡ 2(1 − 2d1). Then from the proof of Theorem 5.4(iii) one ob-
tains varUN2 ∼ var SN2; varUN1 = o(var SN2), and the convergence in distribution
(var(SN2))−1=2SN2 ⇒ J1(1;d2) follows from

N−1=2−d2UN2 ⇒ 1J1(1;d2); (6.5)

where 1= ('̃′
22)

1=2 = 2ac2‖g‖2={(1− ‖h‖2)(d2(1 + 2d2))1=2}.
Given a large K ¿ 0, split UN2 = U−

N2 + U+
N2, where

U−
N2 :=

N∑
t=1

∑
t−K¡s6t

g2t−s(Y
2
s − EY 2

s ); U+
N2 :=

N∑
t=1

∑
s6t−K

g2t−s(Y
2
s − EY 2

s ):

It suFces to show that, for all N¿ 1

E(U+
N2)

26 #KN 2d2+1; (6.6)
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where #K → 0 (K → ∞), and that, for any K ¡∞ Gxed,

N−1=2−d2U−
N2 ⇒ 1KJ1(1;d2); (6.7)

where 1K → 1 (K → ∞). Here, (6.6) follows from (5.10) while (6.7) follows from

N−1=2−d2
N∑
t=1

(Y 2
t − EY 2

t ) ⇒ (('̃′
22)

1=2=‖g‖2)J1(1;d2);

see Giraitis et al. (2000b, Theorem 2.3), since U−
N2 can be represented as U−

N2 =∑K−1
i=0 g2i

∑N
t=1 (Y

2
t − EY 2

t ) + OP(1). This proves (6.5) and the Grst part of the
theorem, too.
Next, consider the case 1−2d2¿ 2(1−2d1). In this case from the proof of Theorem

5.4(iii) one obtains varUN1 ∼ var SN2; varUN2 = o(var SN2), and (var(SN2))−1=2SN2 ⇒
J2(1;d1) follows from

N−2d1UN1 ⇒ ('̃′′
22)

1=2J2(1;d1): (6.8)

The proof of (6.8) uses the “scheme of discrete multiple integrals” (Surgailis, 1982;
Surgailis and VaiJciulis, 1999). Consider a quadratic form

Q(�) =
∑
s1 �=s2

�(s1; s2)Ys1Ys2 (6.9)

in martingale diNerences Ys (5.1). (Below, we use the fact that the sequence {Ys} is
ergodic, which follows from Theorem 2.2 applied to the bilinear equation (5.1), or
from the ergodicity of the sequence {At = a + A0t } given by Volterra series (1.10).)
We claim that there exists a constant C ¡∞ independent of � and such that

EQ2(�)6C‖�‖2; (6.10)

where ‖�‖2 := ∑s1 �=s2 �
2(s1; s2). It suFces to check (6.10) for � symmetric: �(s1; s2)=

�(s2; s1) and vanishing everywhere except for a Gnite number of points (s1; s2)∈Z2.
By the martingale property of Ys,

EQ2(�) = 4
∑
s2¡s1

�2(s1; s2)E[Y 2
s1Y

2
s2 ] + 8

∑
s3¡s2¡s1

�(s1; s2)�(s1; s3)E[Ys3Ys2Y
2
s1 ]

=: 4I1 + 8I2:

Here, I16C‖�‖2 as EY 4
s 6C. Next, by Lemma 5.3,

|I2|6C
∑

s3¡s2¡s1

|�(s1; s2)�(s1; s3)| |s1 − s2|d2−1+ |s2 − s3|d2−1+

6C
∑
s2¡s1

|�(s1; s2)| |s1 − s2|d2−1+  (s1);

where  (s1)={∑s3 |�(s1; s3)|2}1=2 and where we used the fact that
∑

s3 |s2−s3|2(d2−1)+
6C. Hence by the Cauchy–Schwarz inequality,

|I2|6C‖�‖
(∑

s1 ; s2

 2(s1)|s1 − s2|2(d2−1)+

)1=2
6C‖�‖

(∑
s1

 2(s1)

)1=2
= C‖�‖2:

This proves (6.10).
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Introduce a stochastic measure WN deGned on intervals (x′; x′′]; x′ ¡x′′ by

WN ((x′; x′′]) :=�−1N−1=2 ∑
x′¡s=N6x′′

Ys; (6.11)

where �2 = EY 2
0 = a2=(1 − ‖h‖2). As {Ys} is an ergodic square integrable martingale

diNerence sequence, see above, from the classical martingale CLT (Billingsley, 1968) it
follows that for any m¡∞ and for any mutually disjoint intervals (x′j; x

′′
j ]; j=1; : : : ; m,

(WN ((x′1; x
′′
1 ]); : : : ; WN ((x′m; x

′′
m])) ⇒ (W ((x′1; x

′′
1 ]); : : : ; W ((x′m; x

′′
m])); (6.12)

where W (dx) is the standard Gaussian white noise as in (6.1) and (6.2).
To show (6.8), write the l.h.s. as the “discrete double integral”:

N−2d1UN1 =
∫
R2

fN (x1; x2)WN (dx1)WN (dx2); (6.13)

where the piecewise constant function FN (x1; x2); (x1; x2)∈R2 is deGned by

fN (x1; x2) :=�2N 1−2d1
N∑
t=1

gt−s1gt−s2 = �2N 1−2d1
N∑
t=1

gt−[x1N ] gt−[x2N ] (6.14)

for (x1; x2)∈ (s1=N; (s1 + 1)=N ]× (s2=N; (s2 + 1)=N ] such that s1 �= s2; (s1; s2)∈Z2, and
fN (x1; x2) = 0 elsewhere. More generally, a “discrete double integral”

∫
’ d2WN ≡∫

R2 ’(x1; x2)WN (dx1)WN (dx2) is deGned for each (simple) function ’ taking a G-
nite number of constant values ’G1 ;G2 on “squares” G1×G2⊂R2; Gi = (si; (si + 1)=N ];
si ∈Z; i = 1; 2, and vanishing on “diagonals”: ’G1 ;G2 = 0; G1 = G2, by∫

’ d2WN :=
∑
G1 ;G2

’G1 ;G2WN (G1)WN (G2)

with WN given by (6.11). By deGnition, any such integral is an oN-diagonal quadratic
form of type (6.9), and bound (6.10) translates to

E
(∫

’ d2WN

)2
6C‖’‖2; (6.15)

where ‖’‖=(∫R2 ’2(x1; x2) dx1 dx2)1=2 stands for the norm in the Hilbert space L2(R2)
of all real-valued square integrable functions on R2. Convergence (6.8) now follows
from (6.12)–(6.15) and the representation

J2(1;d1) = k2(d1)�−2c−21

∫
R2

f(x1; x2)W (dx1)W (dx2);

see (6.2), where f(x1; x2) :=�2c21
∫ 1
0 (s − x1)

d1−1
+ (s − x2)

d1−1
+ ds is the limit in L2(R2)

of fN (6.14): ‖fN − f‖ → 0 (N → ∞). See also Surgailis (1982) or Surgailis and
VaiJciulis (1999) for details. This ends the proof of Theorem 6.1.

Finally, we discuss the limit of partial sums’ processes SN1(A) =
∑[NA]

s=1 Xs. We shall
suppose that conditions of Theorem 2.2 are satisGed and consider both cases when
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{Xt} exhibits either long or short memory in conditional mean. In other words, we
shall assume that the coeFcients gj satisfy either condition

gj ∼ c1jd1−1 (6.16)

with some 0¡d1¡ 1
2 ; c1 �=0, or condition

∞∑
j=0

|gj|¡∞: (6.17)

Conditions (6.16) and (6.17) imply

var SN1 ∼ '̃11N 1+2d1 ; (6.18)

var SN1 ∼ �̃2N; (6.19)

respectively, where '̃11 :='11=(d1(1 + 2d1)); �̃
2 :=

∑
s∈Z cov(Xs; X0).

Theorem 6.2. Assume conditions of Theorem 2:2. Moreover;
(i) if condition (6.16) holds (i.e.; {Xt} exhibits long memory in conditional mean);

then

(var SN1)−1=2SN1(A) ⇒D[0;1] J1(A; d1): (6.20)

(ii) if condition (6.17) holds (i.e.; {Xt} exhibits short memory in conditional mean);
then

N−1=2SN1(A) ⇒ �̃W (A); (6.21)

where {W (A); A¿ 0} is a standard Brownian motion.
(iii) if condition (6.17) together with Assumption A4 hold and there exist C ¡∞;

0¡d2¡ 1
2 such that for all j¿ 1

|hj|6Cjd2−1; (6.22)

then convergence (6.21) is true with ⇒ replaced by ⇒D[0;1].

Proof. (i) (cf. Giraitis et al. (2000b; proof of Theorem 2.3).) We shall use the moving
average representation (1.16). Write Yt = 6′t;K + 6′′t;K ; where

6′t;K := �tE{At |F[t−1; t−K]}; 6′′t;K := �t(At − E{At |F[t−1; t−K]})
and where F[s; t] = �{�u: s6 u6 t} is the �-Geld. Then

Xt =
∑
s6t

gt−sYs =
∑
s6t

gt−s6′s;K +
∑
s6t

gt−s6′′s;K =: X
′
t;K + X ′′

t;K :

Note that both {6′t;K} and {6′′t;K} are strictly stationary weak white noises; the former
being Gnitely dependent; moreover; E(6′t;K)

2 → EY 2
0 ; E(6′′t;K)

2 → 0 (K → ∞). Whence;
one can easily show

N−(1=2+d1)
[NA]∑
s=1

X ′
s;K ⇒ cKJ1(A; d1);

where c2K → '̃11 (K → ∞). On the other hand; var(N−1=2−d1
∑N

s=1 X ′′
s;K)6CE(6′′0;K)

2

→ 0 (K → ∞). Clearly; the above facts imply the convergence (var SN1)−1=2SN1(A)⇒
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J1(A; d1). The tightness in D[0; 1] follows from stationarity of {Xt} and (6.18) similarly
as in the proof of Theorem 6.1.
(ii) follows by the same argument as (i), with J1(A; d1); '̃11 replaced by W (A); �̃2,

respectively.
(iii) We need only to check the tightness, which follows from

ES4N16CN 1+2d2 : (6.23)

Using Lemma 5.3 and (5.1), (6.17),

ES4N1 = E

(
N∑
t=1

∑
s6t

gt−sYs

)4

6C
∑

16t1 ;:::; t46N

∑
s1¿s2¿s3

|gt1−s1gt2−s2gt3−s3gt4−s1E[Y
2
s1Ys2Ys3 ]|

6C
∑

16t1 ; t2 ; t36N

∑
s1¿s2¿s3

|gt1−s1gt2−s2gt3−s3 | |s1 − s2|d2−1+ |s2 − s3|d2−1+

6C
∞∑

u1 ;u2 ;u3=0

|gu1gu2gu3 |
∑

16t1 ; t2 ; t36N

|t1−t2+u2−u1|d2−1+ |t2−t3+u3−u2|d2−1+

6CN 1+2d2
∞∑

u1 ;u2 ;u3=0

|gu1gu2gu3 |6CN 1+2d2 ;

since supv∈Z
∑N

A=1 |A+ v|d2−1+ 6CNd2 . This proves (6.23) and the theorem.
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