OVERVIEW, TRADING STRATEGIES

- 1. Trading strategies involving a single option on a stock and the stock itself:
- i) Covered call; ii) Protective put
- 2. Trading strategies involving taking a position in two or more options of the same type:
- i) Bull spreads; ii) Bear spreads; iii) Butterfly spreads
- 3. Combinations: Option trading strategies that involve taking a position in both calls and puts on the same stock:
- i) Straddles; ii) Strips; iii) Straps; iv) Strangles

COVERED CALL

Consider a portfolio that consists of a long position (buy) in a stock plus a short position (sell) in a call option

The investment strategy represented by this portfolio is known as writing a covered call

This is because the long stock position "covers" or protects the investor from the possibility of a sharp rise in the stock price.

Ip on S_t and a sp on C

Profit (
$$\Pi$$
): $S_T - \max(S_T - X, \mathbf{0}) - S_t + C$

$$S_T < X$$
: $S_T - S_t + C$

When $S_T < X$ the profit is a positive function of S_T (slope +1)

When $S_T=0$: $\Pi=-S_t+C$ (maximum loss). From upper bound of a call this is negative: $C\leq S_t$

$$S_T > X$$
: $S_T - (S_T - X) - S_t + C = X - S_t + C$

When $S_T > X$ the profit is not affected by changes in S_T (slope 0)

When $S_T = X$: $\Pi = X - S_t + C$ (maximum gain). From lower bound of a call this is positive:

$$C \ge S_t - Xe^{-r(T-t)} \Longrightarrow C + Xe^{-r(T-t)} - S_t \ge 0 \Rightarrow C + X - S_t \ge 0$$

Finally, the profit is zero when $\Pi = S_T - S_t + C = \mathbf{0} \Rightarrow S_T = S_t - C$

An investor will invest in this strategy if he/she believes that $S_T \geq S_t - C$

See graph covered call

Covered call: Lp on S_t and a sp on C

But from the put call parity we have:

$$C+Xe^{-r(T-t)}=P+S_t\Longrightarrow S_t-C=Xe^{-r(T-t)}-P$$

That is why the profit of this strategy is similar to the one of selling a put

The reverse of writing a covered call is a short position (sell) in a stock combined with a long position (buy) in a call option

Profit (
$$\Pi$$
):
$$\overbrace{-[S_T - \max(S_T - X, \mathbf{0})] - (S_t - C)}^{\text{payoff}}$$

$$S_T < X: \qquad -(S_T - S_t + C)$$

$$S_T > X: \qquad -[S_T - (S_T - X, \mathbf{0}) - S_t + C]$$

$$= -(X - S_t + C)$$

See graph reverse covered call

PROTECTIVE PUT STRATEGY

An investment strategy that involves buying a put option on a stock and the stock itself is referred to as a protective put

Ip on S_t and Ip on P

Profit (
$$\Pi$$
): $S_T + \max(X - S_T, \mathbf{0}) - S_t - P$

$$S_T < X$$
: $S_T + X - S_T - S_t - P = X - S_t - P$

When $S_T < X$ the profit is independent of changes in S_T (slope 0): $X - S_t - P$

When
$$S_T = 0$$
: $\Pi = X - S_t - P$ (the maxim loss)

This must be negative otherwise this strategy will involve only gain

(regardless from the future price of the stock)

$$S_T > X$$
: $S_T - S_t - P$

When $S_T > X$ the profit is a positive function of S_T (slope +1): $S_T - S_t - P$

$$\Pi=0$$
 when $\Pi=S_T-S_t-P=0 \Rightarrow S_T=S_t+P$

This strategy has no upper limit

An investor will invest in this strategy if she/he believes that $S_T > S_t + P$

See graph protective put

Recall that from the put call parity we have:

$$C + Xe^{-r(T-t)} = P + S_t$$

The above equation shows that a long position in a put combined with a long position in the stock

is equivalent to a long call position plus an amount of cash: $Xe^{-r(T-t)}$

This explain why the profit pattern for a protective put strategy is similar to the profit pattern from a long call position

The reverse of a protective put is a short position in a put option combined with a short position in the stock

See graph selling a protective put

BULL SPREAD (CREATED FROM CALLS)

A bull spread can be created by buying a call on a stock with a certain strike price and selling a call on the same stock with a higher strike price.

Both options have the same expiration date.

Ip in $C(X_1)$ and a sp in $C(X_2)$ where $X_2 > X_1$

Revenue
$$Cost$$
 Π : $\max(S_T-X_1,0)-\max(S_T-X_2,0)-C_1+C_2$

$$S_T < X_1 < X_2 : -C_1 + C_2$$

That is, Π is fixed (does not depend on S_T). Further, we have: $X_2 > X_1 \Rightarrow C_2 < C_1$. Hence $\Pi < 0$

$$X_1 < S_T < X_2$$
: $S_T - X_1 - C_1 + C_2$

In this case Π is a positive function S_T . When $\Pi=0\Rightarrow S_T=X_1+C_1-C_2$

$$X_1 < X_2 < S_T$$
: $S_T - X_1 - (S_T - X_2) - C_1 + C_2 = X_2 - X_1 - C_1 + C_2$

In this case Π is fixed (does not depend on S_T).

 $X_2-X_1>0,\,C_2-C_2<0.$ Overall, $X_2-X_1-C_1+C_2$ is positive. Otherwise Π will always be negative.

See graph Bull Spread (Created using Calls)

MAIN POINTS

- A bull spread, when created from calls, requires an initial investment
- An investor entering into a bull spread is hoping that the stock price will increase
- A bull spread strategy limits both the investor's upside potential and his or her downside risk
- Symmetric strategy with respect to S_T : unlimited gain from Ip in $C(X_1)$ and unlimited loss from sp in $C(X_2)$

BEAR SPREAD (CREATED USING CALLS). THE RE-VERSE OF BULL SPREAD

A bear spread can be created by selling a call on a stock with a certain strike price and buying a call on the same stock with a higher strike price.

Both options have the same expiration date.

sp in $C(X_1)$ and a lp in $C(X_2)$ where $X_2 > X_1$

Revenue
$$Cost$$

$$\Pi: \overbrace{-[\max(S_T-X_1,0)-\max(S_T-X_2,0)]-(-C_1+C_2)}^{\mathsf{Revenue}}$$

$$S_T < X_1 < X_2 : -(-C_1 + C_2)$$

That is, Π is fixed (does not depend on S_T). Further, we have: $X_2 > X_1 \Rightarrow C_2 < C_1$. Hence $\Pi > 0$

$$X_1 < S_T < X_2$$
: $-(S_T - X_1 - C_1 + C_2)$

In this case Π is a negative function S_T . When $\Pi = 0 \Rightarrow S_T = X_1 + C_1 - C_2$

$$X_1 < X_2 < S_T$$
: $-[S_T - X_1 - (S_T - X_2) - C_1 + C_2] = -(X_2 - X_1 - C_1 + C_2)$

In this case Π is fixed (does not depend on S_T).

 $X_2-X_1>0, C_2-C_2<0$. Overall, $-(X_2-X_1-C_1+C_2)$ is negative. Otherwise Π will always be positive.

MAIN POINTS

- A bear spread created from calls involves an initial cash inflow since the price of the call sold is greater than the price of the call purchased
- An investor who enters into a bear spread is hoping that the stock price will be decline
- Like bull spreads, bear spreads limit both the upside profit potential and the downside risk.
- ullet It is a symmetric strategy with respect to S_T

See Graph Bear Spread (Created using Calls)

BULL SPREAD (CREATED USING PUTS)

A bull spread can be created by buying a put on a stock with a certain strike price and selling a put on the same stock with a higher strike price.

Both options have the same expiration date.

Ip in $P(X_1)$ and a sp in $P(X_2)$ where $X_2 > X_1$

Revenue
$$Revenue$$
 $T: max(X_1 - S_T, 0) - max(X_2 - S_T, 0) - P_1 + P_2$

$$S_T < X_1 < X_2: X_1 - S_T - (X_2 - S_T) - P_1 + P_2 = X_1 - X_2 - P_1 + P_2$$

That is, Π is fixed (does not depend on S_T). Further, we have: $X_2 > X_1 \Rightarrow P_2 > P_1$.

Overall $X_1 - X_2 - P_1 + P_2$ is negative. Otherwise Π will always be positive

$$X_1 < S_T < X_2$$
: $-(X_2 - S_T) - P_1 + P_2 = S_T - X_2 - P_1 + P_2$

In this case Π is a positive function of S_T . When $\Pi = 0 \Rightarrow S_T = X_2 + P_1 - P_2 < X_2$

$$X_1 < X_2 < S_T$$
: $-P_1 + P_2 > 0$

In this case Π is fixed (does not depend on S_T).

The profit pattern for this strategy is similar to the profit pattern from a Bull spread created using calls.

See Graph Bull Spread (Created using Puts)

BEAR SPREAD (CREATED USING PUTS). THE RE-VERSE OF A BULL SPREAD

A bull spread can be created by selling a put on a stock with a certain strike price and buying a put on the same stock with a higher strike price.

Both options have the same expiration date.

sp in $P(X_1)$ and a lp in $P(X_2)$ where $X_2 > X_1$

Revenue
$$Cost$$

$$\Pi: \overbrace{-[\max(X_1-S_T,0)-\max(X_2-S_T,0)]}^{\mathsf{Revenue}} -(-P_1+P_2)$$

$$S_T < X_1 < X_2:-[X_1 - S_T - (X_2 - S_T) - P_1 + P_2] = -(X_1 - X_2 - P_1 + P_2)$$

That is, Π is fixed (does not depend on S_T). Further, we have: $X_2 > X_1 \Rightarrow P_2 > P_1$.

Overall $-(X_1 - X_2 - P_1 + P_2)$ is positive. Otherwise Π will always be negative

$$X_1 < S_T < X_2$$
: $-[-(X_2 - S_T) - P_1 + P_2] = -(S_T - X_2 - P_1 + P_2)$

In this case Π is a negative function of S_T . When $\Pi = 0 \Rightarrow S_T = X_2 + P_1 - P_2 < X_2$

$$X_1 < X_2 < S_T$$
: $-(-P_1 + P_2) < 0$

In this case Π is fixed (does not depend on S_T).

The profit pattern for this strategy is similar to the profit pattern from a Bear spread created using calls.

See Graph Bear Spread (Created using Puts)

BUTTERFLY SPREAD (CREATED USING CALLS)

A butterfly spread can be created by buying a call option with a relatively low strike price, X_1 , buying a call option with a relatively high strike price, X_3 , and selling two call options with a strike price, X_2 , halfway between X_1 and X_2 : $X_2 = (X_1 + X_3)/2$

Ip in $C(X_1)$, sp in $2C(X_2)$, and Ip in $C(X_3)$

Revenue
$$\Pi: \overbrace{\max\left(S_T - X_1, 0\right) - 2\max\left(S_T - X_2, 0\right) + \max\left(S_T - X_3, 0\right)}^{\text{Revenue}}$$

$$\underbrace{-C_1 + 2C_2 - C_3}^{\mathsf{Cost}}$$

$$S_T < X_1, X_2, X_3$$
: $-C_1 + 2C_2 - C_3 = C^*$

In this case the profit is equal to the cost (it can be shown that $C^* < 0$)

$$X_1 < S_T < X_2, X_3 : S_T - X_1 + C^*$$

In this case Π is a positive function of S_T . When $\Pi = 0 \Rightarrow S_T = X_1 - C^* > X_1$

$$X_1, X_2 < S_T < X_3 : S_T - X_1 - 2(S_T - X_2) + C^* = 2X_2 - X_1 - S_T + C^* = X_3 - S_T + C^*$$

In this case Π is a negative function of S_T . When $\Pi = 0 \Rightarrow S_T = X_3 + C^* < X_3$

$$X_1, X_2, X_3 < S_T : S_T - X_1 - 2(S_T - X_2) + S_T - X_3 + C^* = 2X_2 - X_1 - X_3 + C^* = C^*$$

In this case the profit is equal to the cost (it can be shown that $C^* < 0$)

See Graph Butterfly Spread

A butterfly spread leads to a profit if the stock price stays close to X_2 [$X_1 - C^* < S_T < X_3 + C^*$]

but gives rise to a small loss if there is a significant stock price move in either direction

It is therefore an appropriate strategy for an investor who feels that large stock price movements are unlikely

The strategy requires a small investment initially ($C^* < 0$)

THE REVERSE OF A BUTTERFLY SPREAD (CRE-ATED USING CALLS)

A butterfly spread can be created by selling a call option with a relatively low strike price, X_1 , selling a call option with a relatively high strike price, X_3 , and buying two call options with a strike price, X_2 , halfway between X_1 and X_2 : $X_2 = (X_1 + X_3)/2$

sp in $C(X_1)$, lp in $2C(X_2)$, and sp in $C(X_3)$

Revenue
$$\overline{\mathsf{\Pi}} \colon \overbrace{-[\mathsf{max}(S_T - X_1, \mathsf{0}) - 2\,\mathsf{max}(S_T - X_2, \mathsf{0}) + \mathsf{max}(S_T - X_3, \mathsf{0}) + \mathsf{max}(S_T - X_3,$$

$$\underbrace{+\max(S_T-X_3,0)]}^{\mathsf{Revenue}}\underbrace{-(-C_1+2C_2-C_3)}^{\mathsf{Cost}}$$

$$S_T < X_1, X_2, X_3$$
: $-(-C_1 + 2C_2 - C_3) = -C^*$

In this case the profit is equal to minus the cost (it can be shown that $-C^* > 0$)

$$X_1 < S_T < X_2, X_3 : -(S_T - X_1 + C^*)$$

In this case Π is a negative function of S_T . When $\Pi = 0 \Rightarrow S_T = X_1 - C^* > X_1$

$$X_1, X_2 < S_T < X_3 : -[S_T - X_1 - 2(S_T - X_2) + C^*] = -(2X_2 - X_1 - S_T + C^*) = -(X_3 - S_T + C^*)$$

In this case Π is a positive function of S_T . When $\Pi = 0 \Rightarrow S_T = X_3 + C^* < X_3$

$$X_1, X_2, X_3 < S_T : -[S_T - X_1 - 2(S_T - X_2) + S_T - X_3 + C^*] = -(2X_2 - X_1 - X_3 + C^*) = -C^*$$

In this case the profit is equal to minus the cost (it can be shown that $-C^* > 0$)

See Graph Reverse Butterfly Spread

The reverse of a butterfly spread leads to a loss if the stock price stays close to X_2 [$X_1-C^* < S_T < X_3+C^*$]

but gives rise to a small profit if there is a significant stock price move in either direction

It is therefore an appropriate strategy for an investor who feels that large stock price movements are likely

The strategy gives rise to a small profit initially $(-C^* > 0)$

If $C^{*} > \mathbf{0}$ then a butterfly spread will always give rise to a profit

BUTTERFLY SPREAD (CREATED USING PUTS)

A butterfly spread can be created by buying a put option with a relatively low strike price, X_1 , buying a put option with a relatively high strike price, X_3 , and selling two put options with a strike price, X_2 , halfway between X_1 and X_2 : $X_2 = (X_1 + X_3)/2$

Ip in $P(X_1)$, sp in $2P(X_2)$, and Ip in $P(X_3)$

Revenue
$$\Pi: \overbrace{\mathsf{max}(X_1 - S_T, \mathbf{0}) - 2\,\mathsf{max}(X_2 - S_T, \mathbf{0})}^{\mathsf{Revenue}}$$

Revenue
$$cost$$
 $+ max(X_3 - S_T, 0)$ $-P_1 + 2P_2 - P_3$

$$S_T < X_1, X_2, X_3$$
: $X_1 - S_T - 2(X_2 - S_T) + X_3 - S_T - P_1 + 2P_2 - P_3 = X_1 - 2X_2 + X_3 + P^* = P^*$

In this case the profit is equal to the cost (it can be shown that $P^* < 0$)

$$X_1 < S_T < X_2, X_3 : -2(X_2 - S_T) + X_3 - S_T - P_1 + 2P_2 - P_3 = S_T + X_3 - 2X_2 + P^* = S_T - X_1 + P^*$$

In this case the profit is a positive function of S_T . When $\Pi = \mathbf{0} \Rightarrow S_T = X_1 - P^* > X_1$

$$X_1, X_2 < S_T < X_3 : X_3 - S_T - P_1 + 2P_2 - P_3 = X_3 - S_T + P^*$$

In this case the profit is a negative function of S_T . When $\Pi = \mathbf{0} \Rightarrow S_T = X_3 + P^* > X_3$

$$X_1, X_2, X_3 < S_T : -P_1 + 2P_2 - P_3 = P^*$$

See Graph Butterfly Spread (Created Using Puts)

A butterfly spread leads to a profit if the stock price stays close to X_2 [$X_1 - P^* < S_T < X_3 + P^*$]

but gives rise to a small loss if there is a significant stock price move in either direction

It is therefore an appropriate strategy for an investor who feels that large stock price movements are unlikely

The strategy requires a small investment initially $(P^* < 0)$

THE REVERSE OF A BUTTERFLY SPREAD (CRE-ATED USING PUTS)

sp in $P(X_1)$, lp in $2P(X_2)$, and sp in $P(X_3)$

Revenue
$$\Pi: \overbrace{-[\max(X_1-S_T,0)-2\max(X_2-S_T,0)]}^{\mathsf{Revenue}}$$

Revenue Cost
$$+ \max(X_3 - S_T, 0)$$
] $-(-P_1 + 2P_2 - P_3)$

$$S_T < X_1 < X_2, X_3$$
: $-P^*$

$$X_1 < S_T < X_2, X_3 : -(S_T - X_1 + P^*)$$

In this case the profit is a negative function of S_T . When $\Pi = \mathbf{0} \Rightarrow S_T = X_1 - P^* > X_1$

$$X_1, X_2 < S_T < X_3 : -(X_3 - S_T + P^*)$$

In this case the profit is a positive function of S_T . When $\Pi = \mathbf{0} \Rightarrow S_T = X_3 + P^* > X_3$

$$X_1, X_2, X_3 < S_T : -P^*$$

COMBINATIONS

A combination is a strategy that involves taking a position in both calls and puts on the same stock. We will consider what are known as straddles, strips, straps, and strangles

STRADDLE

A straddle involves buying a call and a put with the same strike price and expiration date

 $\operatorname{Ip} C(X)$ and a $\operatorname{Ip} P(X)$

Revenue
$$Cost$$

$$\Pi: \max(S_T - X, 0) + \max(X - S_T, 0) - C - P$$

$$S_T < X : X - S_T - C - P$$

When $S_T = \mathbf{0}: \mathbf{\Pi} = X - C - P$ (Intercept with the vertical axis)

In this case the profit is a negative function of S_T . When $\Pi=\mathbf{0}\Rightarrow S_T=X-C-P$

It can be shown that X > C + P

$$S_T > X : S_T - X - C - P$$

In this case the profit is a positive function of S_T . When $\Pi=\mathbf{0}\Rightarrow S_T=X+C+P$

If the stock price is close to the strike price at expiration of the options, the straddle leads to a loss $(X-C-P < S_T < X+C+P)$

A straddle is appropriate when an investor is expecting a large move in a stock price but does not know in which direction the move will be

The above straddle is sometimes referred to as a bottom straddle or a straddle purchase

TOP STRADDLE

A top straddle or a straddle write is the reverse position

It is created by selling a call and a put with the same exercise price and expiration date

sp C(X) and a sp P(X)

Revenue
$$Cost$$

$$\Pi: \overbrace{-[\max(S_T-X,\mathbf{0})+\max(X-S_T,\mathbf{0})]-(-C-P)}^{\mathsf{Revenue}}$$

$$S_T < X : -(X - S_T - C - P)$$

When $S_T = \mathbf{0} : \mathbf{\Pi} = X - C - P$ (Intercept with the vertical axis)

In this case the profit is a positive function of S_T . When $\Pi = \mathbf{0} \Rightarrow S_T = X - C - P$

It can be shown that X > C + P

$$S_T > X : -(S_T - X - C - P)$$

In this case the profit is a negative function of S_T . When $\Pi=\mathbf{0}\Rightarrow S_T=X+C+P$

If the stock price is close to the strike price at expiration of the options, the top straddle leads to a profit $(X - C - P < S_T < X + C + P)$

It is a highly risky strategy. The loss arising from a large stock movement in a positive direction is unlimited

STRIP

A strip consists of a long position in one call and two puts with the same strike price and expiration date

Ip in C(X) and Ip 2P(X)

Revenue
$$T: \max(S_T - X, 0) + 2\max(X - S_T, 0) - C - 2P$$

$$S_T < X : 2(X - S_T) - C - 2P$$

When $S_T = 0$: $\Pi = 2X - C - 2P$ (Intercept with the vertical axis)

In this case the profit is a negative function of S_T . When $\Pi=\mathbf{0}\Rightarrow S_T=X-C/2-P$

It can be shown that 2X > C + 2P

$$S_T > X : S_T - X - C - 2P$$

In this case the profit is a positive function of S_T . When $\Pi=0\Rightarrow S_T=X+C+2P$

If the stock price is close to the strike price at expiration of the options, the straddle leads to a loss $(X-C/2-P < S_T < X+C+2P)$

A strip is appropriate when an investor is expecting a large move in a stock price and considers a decrease in the stock price to be more likely than an increase.

STRAP

A strap consists of a long position in two calls and one put with the same strike price and expiration date

Ip in 2C(X) and Ip P(X)

Revenue
$$Cost$$
 $\Pi: \ 2 \max(S_T - X, 0) + \max(X - S_T, 0) - 2C - P$

$$S_T < X : (X - S_T) - 2C - P$$

When $S_T = \mathbf{0} : \mathbf{\Pi} = X - 2C - P$ (Intercept with the vertical axis)

In this case the profit is a negative function of S_T . When $\Pi=0\Rightarrow S_T=X-2C-P$

It can be shown that X > 2C + P

$$S_T > X : 2(S_T - X) - 2C - P$$

In this case the profit is a positive function of S_T . When $\Pi=0\Rightarrow S_T=X+C+P/2$

If the stock price is close to the strike price at expiration of the options, the straddle leads to a loss $(X-2C-P < S_T < X + C + P/2)$

A strap is appropriate when an investor is expecting a large move in a stock price and considers a decrease in the stock price to be more likely than an decrease

STRANGLE

In a strangle, sometimes called a bottom vertical combination, an investor buys a put and a call with the same expiration date and different strike prices

The call strike price, X_2 , is higher than the put strike price, X_1

lp $C(X_2)$ and a lp $P(X_1)$

$$S_T < X_1 < X_2 : X_1 - S_T - C - P$$

When $S_T = \mathbf{0} : \Pi = X_1 - C - P$ (Intercept with the vertical axis)

In this case the profit is a negative function of S_T . When $\Pi = \mathbf{0} \Rightarrow S_T = X_1 - C - P$

It can be shown that $X_1 > C + P$

$$X_1 < S_T < X_2 : -C - P$$

In this case the profit is independent of changes in stock price

$$X_1, X_2 < S_T : S_T - X_2 - C - P$$

In this case the profit is a positive function of S_T . When $\Pi=\mathbf{0}\Rightarrow S_T=X_2+C+P$

A strangle is a similar strategy to a straddle. The investor is betting that there will be a large price move but is uncertain whether it will be an increase or a decrease

As
$$X_2 \uparrow \rightarrow C \downarrow$$
; As $X_1 \downarrow \rightarrow P \downarrow$:

The further the strike prices are apart, the less the downside risk and the further the stock price has to move for a profit to be realized

SALE OF A STRANGLE

In a sale of a strangle an investor sells a put and a call with the same expiration date and different strike prices

The call strike price, X_2 , is higher than the put strike price, X_1

sp $C(X_2)$ and a sp $P(X_1)$

Revenue
$$Cost$$

$$\Pi: \overbrace{-[\max(S_T-X_2,0)+\max(X_1-S_T,0)]}^{\mathsf{Revenue}} -(-C-P)$$

$$S_T < X_1 < X_2 : -(X_1 - S_T - C - P)$$

When $S_T = \mathbf{0} : \Pi = -(X_1 - C - P)$ (Intercept with the vertical axis)

In this case the profit is a negative function of S_T . When $\Pi = \mathbf{0} \Rightarrow S_T = X_1 - C - P$

$$X_1 < S_T < X_2 : -(-C - P)$$

In this case the profit is independent of changes in stock price

$$X_1, X_2 < S_T : -(S_T - X_2 - C - P)$$

In this case the profit is a negative function of S_T . When $\Pi=\mathbf{0}\Rightarrow S_T=X_2+C+P$

The sale of a strangle is sometimes referred to as a top vertical combination

It can be appropriate for an investor who feels that large stock price movements are unlikely. However, like the sale of a straddle, it is a risky strategy since the investor's potential loss is unlimited

SUMMARY

Trading strategies:

A. Involving a single option on a stock and the stock itself:

- i) Covered call: Ip S_t , sp C(X); Protective put: Ip S_t , Ip P(X)
- B. Spreads: Involve a position in two or more options of the same type:
- i) Bull spread: lp $C(X_1)$, sp $C(X_2)$, $X_2 > X_1$; lp $P(X_1)$, sp $P(X_2)$, $X_2 > X_1$
- ii) Bear Spread: sp $C(X_1)$, lp $C(X_2)$, $X_2 > X_1$; sp $P(X_1)$, lp $P(X_2)$, $X_2 > X_1$

iii) Butterfly Spread: lp $C(X_1)$, sp $2C(X_2)$, lp $C(X_3)$; $X_2 = (X_1 + X_3)/2$

lp
$$P(X_1)$$
, sp $2P(X_2)$, lp $P(X_3)$; $X_2 = (X_1 + X_3)/2$

- C. Combinations: Involves taking a position in both calls and puts on the same stock:
- i) Straddle: $\operatorname{lp} C(X)$, $\operatorname{lp} P(X)$; ii) Strip: $\operatorname{lp} C(X)$, $\operatorname{lp} 2P(X)$; iii) Straps: $\operatorname{lp} 2C(X)$, $\operatorname{lp} P(X)$
- iv) Strangle: lp $C(X_2)$, lp $P(X_1)$, $X_2 > X_1$

METHODOLOGY

Steps:

1. Write down the profit in a general form

Recall that payoffs for calls and puts

Call Put Buy
$$\max(S_T-X,0) \quad \max(X-S_T,0)$$
 Sell $-\max(S_T-X,0) \quad -\max(X-S_T,0)$

2. Write down the profit for special case:

If
$$S_t < X$$
, then $\max(S_T - X, \mathbf{0}) = \mathbf{0}$ and $\max(X - S_T, \mathbf{0}) = S_T$

If
$$S_t > X$$
, then $\max(S_T - X, \mathbf{0}) = S_T$ and $\max(X - S_T, \mathbf{0}) = \mathbf{0}$

- 3. Draw the graph for the profit. Important points in the graph:
- i) Intercept with the vertical axis: $S_T = \mathbf{0} \to \mathbf{\Pi} = ?$
- ii) Intercept(s) with horizontal axis: $\Pi = 0 \rightarrow S_T = ?$
- iii) maximum profit; iv) maximum loss
- 4. Comment on the properties of the profit