EXERCISES FROM HULL'S BOOK

1. Three put options on a stock have the same expiration date, and strike prices of $\$ 55, \$ 60$, and $\$ 65$. The market price are $\$ 3$, $\$ 5$, and $\$ 8$, respectively. Explain how a butterfly spread can be created. Construct a table showing the profit from the strategy. For what range of stock prices would the butterfly spread lead to loss?

$$
X_{1}=55, X_{2}=60, X_{3}=65, P_{1}=3, P_{2}=5, P_{3}=8
$$

A butterfly spread can be created by buying a put option with a relatively low strike price, X_{1}, buying a put option with a relatively high strike price, X_{3}, and selling two put options with a strike price, X_{2}, halfway between X_{1} and $X_{2}: X_{2}=\left(X_{1}+X_{3}\right) / 2$

Ip in $P\left(X_{1}\right)$, sp in $2 P\left(X_{2}\right)$, and lp in $P\left(X_{3}\right)$
Revenue
П: $\overbrace{\max \left(X_{1}-S_{T}, 0\right)-2 \max \left(X_{2}-S_{T}, 0\right)}$
$\overbrace{+\max \left(X_{3}-S_{T}, 0\right)}^{\text {Revenue }} \overbrace{-P_{1}+2 P_{2}-P_{3}}^{\text {cost }}$
$S_{T}<X_{1}, X_{2}, X_{3}: X_{1}-S_{T}-2\left(X_{2}-S_{T}\right)+X_{3}-$ $S_{T}-P_{1}+2 P_{2}-P_{3}=X_{1}-2 X_{2}+X_{3}+P^{*}=P^{*}$

In this case the profit is equal to the cost (it can be shown that $P^{*}<0$)
$X_{1}<S_{T}<X_{2}, X_{3}:-2\left(X_{2}-S_{T}\right)+X_{3}-S_{T}-P_{1}+$ $2 P_{2}-P_{3}=S_{T}+X_{3}-2 X_{2}+P^{*}=S_{T}-X_{1}+P^{*}$

In this case the profit is a positive function of S_{T}. When $\Pi=0 \Rightarrow S_{T}=X_{1}-P^{*}>X_{1}$
$X_{1}, X_{2}<S_{T}<X_{3}: X_{3}-S_{T}-P_{1}+2 P_{2}-P_{3}=$ $X_{3}-S_{T}+P^{*}$

In this case the profit is a negative function of S_{T}. When $\Pi=0 \Rightarrow S_{T}=X_{3}+P^{*}>X_{3}$
$X_{1}, X_{2}, X_{3}<S_{T}:-P_{1}+2 P_{2}-P_{3}=P^{*}$
See Graph Butterfly Spread (Created Using Puts)
2. Use put-call parity to show that the cost of a butterfly spread created from European puts is identical to the cost of a butterfly spread created from European calls

Using put-call parity we have:

$$
\begin{align*}
C_{1}+X_{1} e^{-r(T-t)} & =P_{1}+S_{t} \tag{1}\\
C_{2}+X_{2} e^{-r(T-t)} & =P_{2}+S_{t} \tag{2}\\
C_{3}+X_{3} e^{-r(T-t)} & =P_{3}+S_{t} \tag{3}
\end{align*}
$$

Adding equation one and two and subtracting 2 times equation 3 gives

$$
P_{1}+P_{3}-2 P_{2}=C_{1}+C_{3}-2 C_{2}
$$

3. What is the result if the strike price of the put is higher than the strike price of the call in a strangle?

STRANGLE

In a strangle, sometimes called a bottom vertical combination, an investor buys a put and a call with the same expiration date and different strike prices

The call strike price, X_{2}, is LOWER than the put strike price, X_{1}

Ip $C\left(X_{2}\right)$ and a lp $P\left(X_{1}\right)$
$\Pi: \overbrace{\max \left(S_{T}-X_{2}, 0\right)+\max \left(X_{1}-S_{T}, 0\right)-C-P}^{\text {Revenue }}$
$S_{T}<X_{1}<X_{2}: X_{1}-S_{T}-C-P$

When $S_{T}=0: \Pi=X_{1}-C-P$ (Intercept with the vertical axis)

In this case the profit is a negative function of S_{T}. When $\Pi=0 \Rightarrow S_{T}=X_{1}-C-P$

It can be shown that $X_{1}>C+P$
$X_{2}<S_{T}<X_{1}:\left(S_{T}-X_{2}\right)+X_{1}-S_{T}-C-P=$ $X_{1}-X_{2}-C-P$

In this case the profit is independent of changes in stock price
$X_{1}, X_{2}<S_{T}: S_{T}-X_{2}-C-P$

In this case the profit is a positive function of S_{T}. When $\Pi=0 \Rightarrow S_{T}=X_{2}+C+P$

A strangle is a similar strategy to a straddle. The investor is betting that there will be a large price move but is uncertain whether it will be an increase or a decrease

$$
\text { As } X_{2} \uparrow \rightarrow C \downarrow ; \text { As } X_{1} \downarrow \rightarrow P \downarrow:
$$

The further the strike prices are apart, the less the downside risk and the further the stock price has to move for a profit to be realized
4. Draw a diagram showing the variation of an investor's profit and loss with the terminal stock price for a portfolio consisting of
a) One share and a short position in one call option
b) Two shares and a short position in one call option
c) One share and a short position in two call options
d) One share and a short position in four call options

In each case, assume that the call option has an exercise price equal to the current stock price.

a) COVERED CALL

Consider a portfolio that consists of a long position (buy) in a stock plus a short position (sell) in a call option

The investment strategy represented by this portfolio is known as writing a covered call

This is because the long stock position "covers" or protects the investor from the possibility of a sharp rise in the stock price.

Ip on S_{t} and a sp on C
$\operatorname{Profit~(п):~} \overbrace{S_{T}-\max \left(S_{T}-X, 0\right)-X+C}^{\text {payoff }}$
$S_{T}<X: S_{T}-X+C$
When $S_{T}<X$ the profit is a positive function of S_{T} (slope +1)

When $S_{T}=0: \Pi=-X+C$ (maximum loss).

Finally, the profit is zero when $\Pi=S_{T}-X+C=0 \Rightarrow$ $S_{T}=X-C$
$S_{T}>X: S_{T}-\left(S_{T}-X\right)-X+C=C$

When $S_{T}>X$ the profit is not affected by changes in S_{T} (slope 0)

An investor will invest in this strategy if he/she believes that $S_{T} \geq X-C$

See graph covered call
b) Ip on $2 S_{t}$ and a sp on C
$\operatorname{Profit}(\Pi): \overbrace{2 S_{T}-\max \left(S_{T}-X, 0\right)-2 X+C}^{\text {payoff }}$
$S_{T}<X: 2\left(S_{T}-X\right)+C$
When $S_{T}<X$ the profit is a positive function of S_{T}
(slope +2)
When $S_{T}=0: \Pi=-2 X+C$ (maximum loss)

Finally, the profit is zero when $\Pi=2\left(S_{T}-X\right)+C=0$

Thus when $S_{T}=X-C / 2$
$S_{T}>X: 2 S_{T}-\left(S_{T}-X\right)-2 X+C=S_{T}-X+C$

When $S_{T}>X$ the profit is still affected by changes in $S_{T}($ slope +1$)$

When $S_{T}=X: \Pi=C$

An investor will invest in this strategy if he/she believes that $S_{T} \geq X-C / 2$

See graph
c) Ip on S_{t} and a sp on $2 C$

Profit (п): $\overbrace{S_{T}-2 \max \left(S_{T}-X, 0\right)-X+2 C}^{\text {coseoff }}$
$S_{T}<X: S_{T}-X+2 C$

When $S_{T}<X$ the profit is a positive function of S_{T}
(slope +1)

When $S_{T}=0: \Pi=-X+2 C$ (maximum loss)

Finally, the profit is zero when $\Pi=S_{T}-X+2 C=0$

Thus when $S_{T}=X-2 C$
$S_{T}>X: S_{T}-2\left(S_{T}-X\right)-X+2 C=-S_{T}+X+2 C$

When $S_{T}>X$ the profit is still affected by changes in $S_{T}($ slope -1$)$

When $S_{T}=X: \Pi=2 C$

Finally, the profit is zero when $\Pi=-S_{T}+X+2 C=0$

Thus when $S_{T}=X+2 C$

An investor will invest in this strategy if he/she believes that $X-2 C \leq S_{T} \leq X+2 C$

See graph
d) Ip on S_{t} and a sp on $4 C$
$\operatorname{Profit}(\Pi): \overbrace{S_{T}-4 \max \left(S_{T}-X, 0\right)}^{\text {payoff }} \overbrace{-X+4 C}^{\text {cost }}$
$S_{T}<X: S_{T}-X+4 C$

When $S_{T}<X$ the profit is a positive function of S_{T}
(slope +1)

When $S_{T}=0: \Pi=-X+4 C$ (maximum loss)

Finally, the profit is zero when $\Pi=S_{T}-X+4 C=0$

Thus when $S_{T}=X-4 C$
$S_{T}>X: S_{T}-4\left(S_{T}-X\right)-X+4 C=-3 S_{T}+3 X+4 C$

When $S_{T}>X$ the profit is still affected by changes in S_{T} (slope -3)

When $S_{T}=X: \Pi=4 C$

Finally, the profit is zero when $\Pi=-3 S_{T}+3 X+4 C=$ 0

Thus when $S_{T}=X+4 C / 3$

An investor will invest in this strategy if he/she believes that $X-4 C \leq S_{T} \leq X+4 C / 3$

See graph

