Problem Set 4.

1. Solve the first part of exercise 3.8 in Johnston and Dinardo:

Sometimes variables are standardized before the computation of regression coefficients. Standardization is achieved by dividing each observation on a variable by its standard deviation, so that the standard deviation of the transformed variable is unity. If the original relation is, say

$$
\begin{equation*}
Y=b_{1}+b_{2} X_{2}+b_{3} X_{3}+e \tag{1}
\end{equation*}
$$

and the corresponding relation between the transformed variables is

$$
\begin{equation*}
Y^{*}=b_{1}^{*}+b_{2}^{*} X_{2}^{*}+b_{3}^{*} X_{3}^{*}+e^{*} \tag{2}
\end{equation*}
$$

where $Y^{*}=Y / s_{y}, X_{i}^{*}=X_{i} / s_{i}, i=2,3$
what is the relationship between $b_{2}^{*}, b_{3}^{*}$ and $b_{2}, b_{3}$ ?

Answer: We multiply both sides of equation (2) by $s_{Y}$ to obtain:

$$
Y=s_{y} b_{1}^{*}+\frac{s_{Y}}{s_{2}} b_{2}^{*} X_{2}+\frac{s_{Y}}{s_{3}} b_{3}^{*} X_{3}+e^{\prime}
$$

Since this is the original regression, that is equation (1):

$$
Y=b_{1}+b_{2} X_{2}+b_{3} X_{3}+e,
$$

it follows that

$$
b_{1}^{*}=\frac{b_{1}}{s_{y}}, b_{2}^{*}=\frac{s_{2}}{s_{Y}} b_{2}, b_{3}^{*}=\frac{s_{3}}{s_{Y}} b_{3}
$$

2. Solve exercise 3.9 in Johnston and Dinardo:

Test each of the hypotheses $b_{1}=1, b_{2}=1, b_{3}=-2$, in the regression model

$$
\begin{equation*}
Y_{t}=b_{0}+b_{1} X_{1 t}+b_{2} X_{2 t}+b_{3} X_{3 t}+e_{t} \tag{3}
\end{equation*}
$$

given the following sums of squares and products of deviations from means for 24 observations:

$$
\begin{aligned}
\sum y^{2} & =60, \quad \sum x_{1}^{2}=10, \quad \sum x_{2}^{2}=30, \quad \sum x_{3}^{2}=20 \\
\sum y x_{1} & =7, \quad \sum y x_{2}=-7, \quad \sum y x_{3}=-26 \\
\sum x_{1} x_{2} & =10, \quad \sum x_{1} x_{3}=5, \quad \sum x_{2} x_{3}=15
\end{aligned}
$$

Test also the hypothesis that $b_{1}+b_{2}+b_{3}=0$.

Answer: Our regression is

$$
Y_{t}=b_{0}+b_{1} X_{1 t}+b_{2} X_{2 t}+b_{3} X_{3 t}+e_{t}
$$

Summing over the sample observations, equation (3) gives

$$
\begin{equation*}
\bar{Y}=b_{0}+b_{1} \overline{X_{1}}+b_{2} \overline{X_{2}}+b_{3} \overline{X_{3}} \tag{4}
\end{equation*}
$$

Next, subtracting the above equation from equation(3) gives
$Y_{t}-\bar{Y}=b_{1}\left(X_{1 t}-\overline{X_{1}}\right)+b_{2}\left(X_{2 t}-\overline{X_{2}}\right)+b_{3}\left(X_{3 t}-\overline{X_{3}}\right)+e_{t}$,
or

$$
y_{t}=b_{1} x_{1 t}+b_{2} x_{2 t}+b_{3} x_{3 t}+e_{t}, t=1, \ldots, 24
$$

where $y_{t}=Y_{t}-\bar{Y}$, and $x_{i t}=X_{i t}-\overline{X_{i}}$ with $i=1,2,3$.

The above expression is the regression model in deviation form. We can write it in a matrix form as

$$
y=x b+u,
$$

where $b=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]^{\prime}$.

The vector of the estimated coefficients $(\beta)$ is given by

$$
\beta=\left(x^{\prime} x\right)^{-1} x^{\prime} y,
$$

where

$$
\begin{aligned}
x^{\prime} x & =\left[\begin{array}{ccc}
\sum x_{1}^{2} & \sum x_{1} x_{2} & \sum x_{1} x_{3} \\
\sum x_{1} x_{2} & \sum x_{2}^{2} & \sum x_{2} x_{3} \\
\sum x_{1} x_{3} & \sum x_{2} x_{3} & \sum x_{3}^{2}
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
10 & 10 & 5 \\
10 & 30 & 15 \\
5 & 15 & 20
\end{array}\right],
\end{aligned}
$$

and

$$
x^{\prime} y=\left[\begin{array}{l}
\sum y x_{1} \\
\sum y x_{2} \\
\sum y x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
-7 \\
-26
\end{array}\right] .
$$

Thus,

$$
\begin{aligned}
& \beta=\underbrace{\left[\begin{array}{ccc}
10 & 10 & 5 \\
10 & 30 & 15 \\
5 & 15 & 20
\end{array}\right]^{-1}}_{\left(x x^{\prime}\right)^{-1}} \underbrace{\left[\begin{array}{c}
7 \\
-7 \\
-26
\end{array}\right]}_{x^{\prime} y}= \\
&= \\
&=\left[\begin{array}{ccc}
0.15 & -0.05 & 0 \\
-0.05 & 0.07 & -0.04 \\
0 & -0.04 & 0.08
\end{array}\right]\left[\begin{array}{c}
7 \\
-7 \\
-26
\end{array}\right] \\
& {\left[\begin{array}{c}
1.4 \\
0.2 \\
-1.8
\end{array}\right] . }
\end{aligned}
$$

Because

$$
\begin{aligned}
\underbrace{\left[\begin{array}{ccc}
10 & 10 & 5 \\
10 & 30 & 15 \\
5 & 15 & 20
\end{array}\right]^{-1}}_{\left(x x^{\prime}\right)^{-1}} & =\frac{\left[\begin{array}{ccc}
375 & -125 & 0 \\
-125 & 175 & -100 \\
0 & -100 & 200
\end{array}\right]}{[10(375)-10(125)+5(0)]} \\
& =\frac{\left[\begin{array}{ccc}
375 & -125 & 0 \\
-125 & 175 & -100 \\
0 & -100 & 200
\end{array}\right]}{} \\
& =\left[\begin{array}{ccc}
0.15 & -0.05 & 0 \\
-0.05 & 0.07 & -0.04 \\
0 & -0.04 & 0.08
\end{array}\right]
\end{aligned}
$$

Moreover, since

$$
\begin{aligned}
y^{\prime} y & =\sum y^{2}=60 \\
\beta^{\prime} x^{\prime} y & =\underbrace{\left[\begin{array}{lll}
1.4 & 0.2 & -1.8
\end{array}\right]}_{\beta^{\prime}} \underbrace{\left[\begin{array}{c}
7 \\
-7 \\
-26
\end{array}\right]}_{x^{\prime} y}=55.2
\end{aligned}
$$

it follows that

$$
\hat{e}^{\prime} \hat{e}=y^{\prime} y-\beta^{\prime} x^{\prime} y=60-55.2
$$

Hence,

$$
s^{2}=\frac{\hat{e}^{\prime} \hat{e}}{N-k}=\frac{60-55.2}{24-4}=0.24
$$

The estimated variance-covariance matrix of the vector $\beta$ is given by

$$
\begin{aligned}
& E(\beta-b)(\beta-b)^{\prime}= \\
& {\left[\begin{array}{ccc}
\operatorname{var}\left(\beta_{1}\right) & \operatorname{cov}\left(\beta_{1}, \beta_{2}\right) & \operatorname{cov}\left(\beta_{1}, \beta_{3}\right) \\
\operatorname{cov}\left(\beta_{1}, \beta_{2}\right) & \operatorname{var}\left(\beta_{2}\right) & \operatorname{cov}\left(\beta_{2}, \beta_{3}\right) \\
\operatorname{cov}\left(\beta_{1}, \beta_{3}\right) & \operatorname{cov}\left(\beta_{2}, \beta_{3}\right) & \operatorname{var}\left(\beta_{3}\right)
\end{array}\right]} \\
& =s^{2}\left(x^{\prime} x\right)^{-1}= \\
& 0.24\left[\begin{array}{ccc}
0.15 & -0.05 & 0 \\
-0.05 & 0.07 & -0.04 \\
0 & -0.04 & 0.08
\end{array}\right]
\end{aligned}
$$

In other words, $\operatorname{var}\left(\beta_{1}\right)=0.24 \times 0.15=0.036$;

$$
\operatorname{var}\left(\beta_{2}\right)=0.24 \times 0.07=0.0168
$$

$$
\text { and } \operatorname{var}\left(\beta_{3}\right)=0.24 \times 0.08=0.0192
$$

Furthermore, the test statistics for each hypotheses $b_{1}=$ $1, b_{2}=1, b_{3}=-2$ are

$$
\begin{aligned}
& t_{1}=\frac{\beta_{1}-1}{\operatorname{se}\left(\beta_{1}\right)}=\frac{1.4-1}{\sqrt{0.036}}=2.108, \\
& t_{2}=\frac{\beta_{2}-1}{s e\left(\beta_{2}\right)}=\frac{0.2-1}{\sqrt{0.0168}}=-6.172, \\
& t_{3}=\frac{\beta_{3}-(-2)}{s e\left(\beta_{3}\right)}=\frac{-1.8-(-2)}{\sqrt{0.0192}}=1.4434 .
\end{aligned}
$$

The $5 \%$ critical value is 2.086 . We therefore reject (at the $5 \%$ significance level) the first two hypotheses but not the third one.

Finally, the test statistic for the hypothesis $b_{1}+b_{2}+b_{3}=$ 0 is

$$
\begin{gathered}
\frac{\left(\beta_{1}+\beta_{2}+\beta_{3}\right)-0}{\sqrt{\operatorname{var}\left(\beta_{1}+\beta_{2}+\beta_{3}\right)}}= \\
\frac{1.4+0.2-1.8}{\sqrt{0.036+0.0168+0.0192+2(-0.012)+2(0)+2(-0.001)}}=1.2
\end{gathered}
$$

so we cannot reject the hypothesis that $b_{1}+b_{2}+b_{3}=0$.
3. Solve exercise 3.10 in Johnston and Dinardo:

The following sums were obtained from 10 sets of observations on $Y, X_{1}$, and $X_{2}$ :

$$
\begin{aligned}
\sum Y & =20, \quad \sum X_{1}=30, \sum X_{2}=40 \\
\sum Y^{2} & =88.2, \sum X_{1}^{2}=92, \sum X_{2}^{2}=163 \\
\sum Y X_{1} & =59, \quad \sum Y X_{2}=88, \quad \sum X_{1} X_{2}=119
\end{aligned}
$$

Estimate the regression of $Y$ on $X_{1}$ and $X_{2}$, including an intercept term, and test the hypothesis that the coefficient of $X_{2}$ is zero.

Answer: In this case we will work in deviation form. The data in deviation form are

$$
\begin{aligned}
\sum y^{2} & =\sum Y^{2}-N \bar{Y}^{2}=48.2, \\
\sum x_{1}^{2} & =\sum X_{1}^{2}-N{\overline{X_{1}}}^{2}=2, \\
\sum x_{2}^{2} & =\sum X_{2}^{2}-N{\overline{X_{2}}}^{2}=3, \\
\sum x_{1} x_{2} & =\sum X_{1} X_{2}-n \overline{X_{1} X_{2}}=-1, \\
\sum y x_{1} & =\sum Y X_{1}-N \overline{Y X_{1}}=-1, \\
\sum y x_{2} & =\sum Y X_{2}-N \overline{Y X_{2}}=8 .
\end{aligned}
$$

The OLS slope estimates for

$$
y_{i}=b_{1} x_{i 1}+b_{2} x_{i 2}+e_{i},
$$

are

$$
\begin{aligned}
\beta= & {\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left(x^{\prime} x\right)^{-1} x^{\prime} y=} \\
= & \underbrace{\left[\begin{array}{cc}
\sum x_{1}^{2} & \sum x_{1} x_{2} \\
\sum x_{1} x_{2} & \sum x_{2}^{2}
\end{array}\right]^{-1} \underbrace{\left[\begin{array}{l}
\sum y x_{1} \\
\sum y x_{2}
\end{array}\right]}_{x^{\prime} y}}_{\left(x^{\prime} x\right)^{-1}}= \\
= & {\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]^{-1}\left[\begin{array}{c}
-1 \\
8
\end{array}\right]=} \\
& \frac{\left[\begin{array}{cc}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
8
\end{array}\right]}{5}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\end{aligned}
$$

and the intercept is

$$
\beta_{0}=\bar{Y}-\beta_{1} \overline{X_{1}}-\beta_{2} \overline{X_{2}}=-7 .
$$

Next, the estimated residual variance is

$$
s^{2}=\frac{\hat{e}^{\prime} \hat{e}}{N-k}=\frac{y^{\prime} y-\beta^{\prime} x^{\prime} y}{N-k}=\frac{48.2-23}{7}=3.6,
$$

since

$$
\beta^{\prime} x^{\prime} y=\underbrace{\left[\begin{array}{ll}
1 & 3
\end{array}\right]}_{\beta^{\prime}} \underbrace{\left[\begin{array}{c}
-1 \\
8
\end{array}\right]}_{x^{\prime} y}=23
$$

and the estimated variance-covariance matrix is

$$
\begin{aligned}
E(\beta-b)(\beta-b)^{\prime} & =\left[\begin{array}{cc}
\operatorname{var}\left(\beta_{1}\right) & \operatorname{cov}\left(\beta_{1}, \beta_{2}\right) \\
\operatorname{cov}\left(\beta_{1}, \beta_{2}\right) & \operatorname{var}\left(\beta_{2}\right)
\end{array}\right]= \\
s^{2}\left(x^{\prime} x\right)^{-1} & =3.6\left[\begin{array}{ll}
0.6 & 0.2 \\
0.2 & 0.4
\end{array}\right]=\left[\begin{array}{ll}
2.16 & 0.72 \\
0.72 & 1.44
\end{array}\right] .
\end{aligned}
$$

The test statistic for the hypothesis $b_{2}=0$ is

$$
t=\frac{\beta_{2}}{\operatorname{se}\left(\beta_{2}\right)}=\frac{3}{\sqrt{1.44}}=2.5 .
$$

The $5 \%$ critical value is 2.365 . Therefore we reject $b_{2}=$ 0.
4. In the two variable equation $\widehat{Y}_{i}=\alpha+\beta X_{i}, i=$ $1, \ldots, n$, show that $\operatorname{cov}(\alpha, \beta)=-\sigma^{2} \bar{X} / \sum x^{2}$.

Answer: See Lecture Notes.
(Not this one) 5. Economic theory postulates certain causality relationships between nominal uncertainty, real uncertainty, the rate of inflation, and output growth. Analyze the causal effect of real (output growth) and nominal(inflation) uncertainty on inflation and output growth.

Answer: See Lecture Notes (Inflation-Output Growth).

