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Generalised Least Squares:
Assume that the postulated model is

y = Xb+ e, (1)

where
e � N(0, σ2Ω),

where Ω is a positive de�nite matrix-this implies that
Ω �1 is also a positive de�nite matrix.
Thus it is possible to �nd a nonsingular matrix P such that

Ω�1 = P 0P.

or
Ω = (P 0P)�1 = P�1(P 0)�1.
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Premultiply the linear model in equation (1) by P, to obtain

Py = PXb+ Pe (2)

Denote Pe by u. Then

Var(u) = E (uu0) = E (Pee 0P 0)

= PE (ee 0)| {z }
σ2Ω

P 0 = σ2P Ω|{z}
P�1(P 0)�1

P 0

= σ2PP�1(P 0)�1P 0 = σ2I .

Thus the transformed variables in equation (2) satisfy the conditions under
which OLS is BLUE.
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The coe¢ cient estimated vector from OLS regression of Py on PX is the
generalized least squares (GLS) estimator:

βG = [(PX )0PX ]�1(PX )0Py

= (X 0P 0P|{z}
Ω�1

X )�1X 0P 0Py

= (X 0Ω�1X )�1X 0Ω�1y .

From the OLS theory it follows that

Var(βG ) = σ2[(PX )0PX ]�1 = σ2(X 0P 0P|{z}
Ω�1

X )�1

= σ2(X 0Ω�1X )�1.
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An unbiased estimator of the unknown σ2 is readily obtained from the
application of OLS to the transformed model. It is

s2 = bu0bu/N � k
= (Py � PX βG )

0(Py � PX βG )/N � k
= (y � X βG )

0P 0P|{z}
Ω�1

(y � X βG )/N � k =

(y � X βG )
0Ω�1(y � X βG )/N � k,

where βG = (X
0Ω�1X )�1X 0Ω�1y .
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Note that the procedures outlined so far imply knowledge of Ω. In practice
Ω is unknown, and it is important to develop feasible generalized least
squares (FGLS).
Finally, note that if σ2Ω = V , where V is a positive de�nite
variance-covariance matrix.
Then, it follows directly that

βG = (X 0 Ω�1|{z}
σ2V �1

X )�1X 0 Ω�1|{z}
σ2V �1

y =

= (X 0V�1X )�1X 0V�1y ,

and

Var(βG ) = σ2(X 0 Ω�1|{z}
σ2V �1

X )�1

= σ2(X 0V�1X )�1.
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Feasible GLS procedure:
Let

V =

264 σ21 � � � 0
...

. . .
...

0 � � � σ2N

375 .
Further, we hypothesize that

σ2i = a0 + a1z
a2
i , i = 1, . . . ,N,

where zi is a single variable, possibly one of the regressors, thought to
determine the heteroscedasticity.
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Because the OLS residuals be = y � X β are consistent estimates of e one
can run the nonlinear regression

be2i = a0 + a1za2i + vi .
Estimates of the disturbance variances are then

bσ2i = α0 + α1z
α2
i , i = 1, . . . ,N.

These estimates give the bV matrix and a feasible GLS procedure.
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Instrumental variables (IV) estimators:
Consider the relation

yi = bxi + ei , (3)

where for simplicity the constant term has been dropped. Suppose
however, that the observed value xi can be represented as the sum of the
true value exi and a random measurement error vi , that is

xi = exi + vi .
In this case the apropriate relation may be

yi = bexi + ei (4)
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If we assume that equation (4) is the maintained speci�cation but that
observations are only available on xi and not on exi , what happens if we use
OLS?
The OLS slope is

β =

∑ y|{z}
bexi+ei

x

∑ x2
=

∑ x(bex + e)
∑ x2

= b
∑ xex
∑ x2

+
∑ xe
∑ x2

)

E (β) = b
∑ xex
∑ x2

6= b.

Thus OLS is biased. This is an example of speci�cation error.
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In this case one should make use of instrumental variables which are also
commonly referred to as instruments.
Suppose that it is possible to �nd a data matrix Z of order N � l (l � k),
which posseses two vital properties:
1. The variables in Z are correlated with those of X
2. The variables in Z are (in the limit) uncorrelated with the disturbance
term e.
Premultiplying the general relation by Z 0 gives

Z 0y|{z}
y �

= Z 0X|{z}
X �

b+ Z 0e|{z}
e�

,

with

Var(e�) = (Z 0e) = E [(Z 0e)(Z 0e)0]

= E (Z 0ee 0Z )

= Z 0E (ee 0)Z = σ2Z 0Z .
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This suggests the use of the GLS. The resultant estimator is

βGLS = βIV = [X
0Z|{z}

(X �)0

(Z 0Z )�1Z 0X|{z}
X �

]�1X 0Z|{z}
(X �)0

(Z 0Z )�1 Z 0y|{z}
y �

(5)

= (X 0PzX )�1X 0Pzy ,

where Pz = Z (Z 0Z )�1Z 0.
The variance-covariance matrix is

Var(βIV ) = σ2[X 0Z (Z 0Z )�1Z 0X ]�1

= σ2(X 0PzX )�1

and the distrurbance variance maybe estimated consistenly from

bσ2 = (y � X βIV )
0(y � X βIV )/N.

Note that the use of N or N � k or N � l in the divisor does not matter
asymptotically.
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Special case:
When l = k, that is, when Z contains the same number of columns as X ,
we have a special case of the foregoing results.
Now X 0Z is k � k and nonsingular. This implies that

[(X 0Z|{z})
(X �)0

(Z 0Z )�1(Z 0X|{z}
X �

)]�1 =

(Z 0X )�1(Z 0Z )(X 0Z )�1.

Thus the estimator in equation (5) reduces to

βIV = (Z 0X )�1(Z 0Z )(X 0Z )�1(X 0Z )(Z 0Z )�1Z 0y

= (Z 0X )�1Z 0y

Moreover, Var(βIV ) simpli�es to

Var(βIV ) = σ2[X 0Z (Z 0Z )�1Z 0X ]�1

= σ2(Z 0X )�1(Z 0Z )(X 0Z )�1.
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Two-stage least square (2SLS)
The IV estimator may also be seen as the result of a double application of
least squares:
Stage (i): Regress each variable in the X matrix on Z (X = Zd + u) to
obtain a matrix of �tted values X

bX = Z δ|{z}
(Z 0Z )�1Z 0X

= Z (Z 0Z )�1Z 0| {z }
PZ

X = PZX .
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Stage (ii): Regress y on bX to obtain the 2SLS estimated β vector

β2SLS = (bX 0 bX )�1 bX 0y
= (X 0P 0Z| {z }bX 0

PZX|{z}bX )�1X 0P 0Z| {z }bX 0
y

= (X 0PZX )X
0PZ y = βGLS ,

since P 0ZPZ = [Z (Z
0Z )�1Z 0]0 = Z (Z 0Z )�1Z 0 = PZ and

P 0ZPZ = P
2
Z = Z (Z

0Z )�1Z 0Z (Z 0Z )�1Z 0 = Z (Z 0Z )�1Z 0 = PZ .
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Thus the IV estimator can be obtained by a two-stage least-squares
procedure.
The variance-covariance matrix and the estimated disturbance term are
given by

Var(βIV ) = σ2[X 0Z (Z 0Z )�1Z 0X ]�1

= σ2(X 0PzX )�1

and bσ2 = (y � X βIV )
0(y � X βIV )/N.
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Choice of instruments:
The crucial question is, where do we �nd the instruments?
Some of them are often variables from X matrix itself.
Any variables that are thought to be exogenous and indepedent of the
disturbance are retained to serve in the Z matrix.
When some of the X variables are used as instruments, we may particion
X and Z as

X = [X1 X2], Z = [X1 Z1],

where X1 is of order N � r (r < k), X2 is N � (k � r), and Z1 is
N � (l � r).
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It can be shown that bX , the matrix of regressors in the second-stage
regression, is then bX = [X1 bX2],
and bX2 = Z (Z 0Z )�1Z 0| {z }

PZ

X2,

that is bX2 are the �tted values of X2 obtained from the regression of X2 on
the full set of instruments: X2 = Zγ+ v
and

bX2 = Zbγ,bγ = (Z 0Z )�1Z 0X2.

(Institute) Generalised Least Squares 03/06 1 / 1



There still remains the question of how many instruments to use.
The minimum number is k.
The asymptotic e¢ ciency increases with the number of isntruments.
However, the small sample bias also increases with the number of
instruments.
If, in fact, we select N instruments, it is simple to show that PZ = I
in which case the IV estimator is simply the OLS which is biased and
inconsistent.
If on the other hand, we use the minimum or close to the minimum,
number of instruments, the results may also be poor.
It has been shown that the mth moment of the 2SLS estimator exists if
and only if m < l � k + 1.
Thus, if there are just as many instruments as explanatory variables, the
2SLS estimator will not have a mean.
With one more instrument there will be a mean but not variance, and so
forth.
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