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1. Soybean Yield and Fertilizer
Suppose the soybean yield is determined by the model

yieldi = a+ bfertilizeri + ei , i = 1, . . . ,N.

The agricultural researcher is interest in the e¤ect of fertilizer on yield,
holding other factors �xed. This e¤ect is given by b.
The error term ei contain factors such as land quality, rainfall and so on.
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2. A simple wage equation

A model relating a person�s wage to observed education and other
unobserved factors is

Wagei = a+ bEduci + ei , i = 1, . . . ,N

If wage is measured in dollars per hour and educ is years of education,
then b measures the change in hourly wage given another year of
education, holding other factors �xed.
Some other factors include labor force experience, innate ability, tenure
with current employer, work ethic, and innumerable other things.
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Using data from Wooldridge�s book (Chapter 2), where N = 526
individuals from a population of people in the workforce in 1976, we obtain
the following OLS regression line:

[Wagei = �0.90+ 0.54Educi , i = 1, . . . ,N

We must interpret the equation with caution. The intercept literally means
that a person with no education has a predicted hourly wage of �90 cents
an hour. This, of course, is silly.
It turns out that only 18 people in the sample have less than eight hour of
education. Consequently, it is not surprising that the regression line does
poorly at very low education.
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For a person with eight hours of education, the predicted wage is
�0.90+ 0.54(8) = 3.42 dollars per hour (in 1976 dollars).
The slope estimate implies that one more year of education increases
hourly wage by 54 cents an hour. Therefore, four more years of education
increase the predicted wage by 0.54(4) = 2.16 dollars per hour. These are
fairly large e¤ects.
Because of the linear nature of the above equation, another year of
education increases the wage by the same amount, regardless of the initial
level of education.
Later on, we discuss some methods that allow for nonconstant marginal
e¤ects of our explanatory variables.

(Institute) Bivariate OLS Regression 5 / 43



3. CEO Salary and Return on Equity

For the population of chief executive o¢ cers, let y be annual salary in
thousands of dollars.
Let x be the average return on equity (roe) for the CEO�s �rm for the
previous three years (return on equity is de�ned in terms of net income as
a percentage of common equity).
To study the relationship between this measure of �rm performance and
CEO compensation, we postulate the simple model

salaryi = a+ broei + ei , i = 1, . . . ,N.

The data set in Wooldridge�s book contains information on 209 CEOs for
the year 1990.
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using the data, the OLS regression line relating salary to roe is

[salaryi = 963.191+ 18.501roei , i = 1, . . . ,N.

The predicted change in salary as function of the change in roe:∆ [salary
= 18.501(∆roe).
This means that if the return on equity increases by one percentage point,
∆roe= 1, then salary is predicted to change by about 18.5 or 18, 500
dollars.
We can easily use the above equation to compare predicted salaries at
di¤erent values of roe.
Suppose roe= 30. Then [salary = 963.191+ 18.501(30) = 1518, 221,
which is just over 1.5 million dollars.
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4. Voting Outcomes and Campaign Expenditures
Another example is with data on election outcomes and campaign
expenditures for 173 two-party races for the U.S. House Representatives in
1988.
There are two candidates in each race. Let voteA be the percentage of the
vote received by candidate A and shareA be the percentage of total
campaign expenditures accounted for by candidateA.
Many factors other than shareA a¤ect the election outcome (including the
quality of the candidates).
Nevertheless, we can estimate a simple regression model to �nd out
whether spending more relative to one�s challenge implies higher
percentage of the vote.
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The estimate model using the 173 observation of the vote is

\voteAi = 26.81+ 0.464shareAi , i = 1, . . . ,N.

This means that if the share of Candidate A�s spending increases by one
percentage point, Candidate A receives almost one-half a percentage point
(0.464) more of the total vote.
Whether or not this is a causal e¤ect is unclear, but it is not unbelievable.
In some cases, regression analysis is not used to determine causality but to
simply look at whether two variables are positively or negatively correlated
like a standard correlation analysis.
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2A. A log wage equation
Using the same data as in example 2, but using log(wage) as the
dependent variable, we obtain the following relationship

\log(Wage)i = 0.584+ 0.083Educi , i = 1, . . . ,N

The coe¢ cient on educ has a percentage interpretation: wage increases by
8.3% for every additional year of education.
It is important to remember that the main reason for using the log of wage
in the above equation is to impose a constant percentage e¤ect of
education on wage.
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3A.CEO Salary and Return on Equity in Logs
We can estimate a constant elasticity model relating CEO salary to �rm
sales.
The data set is the same one used in Example 3, except we now relate
salary to sales.
Let sales be annual �rm sales, measured in millions of dollars.
A constant elasticity model is

\log(salary)i = 4.822+ 0.257 log(sales)i , i = 1, . . . ,N.

The coe¢ cient of log(sales) is the estimated elasticity of salary with
respect to sales.
It implies that a 1 percent increase in �rm sales increases CEO salary by
about 0.257 percent.
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5. Test Scores and the Student-Teacher ratio
When OLS is used to estimate a line relating the student-teacher ratio
(STR) to test scores using 420 observations (districts), we have:

\TestScorei = 698.9� 2.28
(0.52)

STRi , i = 1, . . . ,N.

To test the null hypothesis that b = 0, against the alternative hypothesis
that b 6= 0 we construct the t�statistic:

t =
β� b0
se(β)

(�2.28� 0)
0.52

= �4.38.

This t�statistic exceeds the two-sided critical value of 1.96, so the null
hypothesis is rejected
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5A. Binary Regression
Suppose that you have a variables Di that equals either 0 or 1, depending
on whether the STR is less than 20:

Di =
�
1 if STR in ith district < 20
0 if STR in ith district � 20 .

Such a regression estimated by OLS yields:

\TestScorei = 650
(1.3)

+ 7.4
(1.8)

Di , i = 1, . . . ,N,

where the standard errors of the OLS estimates are given in parentheses
below the OLS estimates.
Thus the average test score for the subsample with STR grater than or
equal to 20 is 650, and the average score for the subsample with STR less
than 20 is 650+ 7.4 = 657.4
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Is the di¤erence in the population mean scores in the two groups
statistically signi�cant di¤erent from zero at the 5% level?
To �nd out, construct the t�statistic on β:

t =
β� b0
se(β)

(7.4� 0)
1.8

= 4.04 > 1.96

so we reject the null hypothesis that b = 0.
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5B. Test Scores and the Class Size
Suppose that a researcher, using data on class size (CS) and average test
scores from 100 third-grade classes, estimates the OLS regression

\Test Score = 520.4
(20.4)

+ 5.82
(2.21)

CSi , i = 1, . . . , 100.

a. A classroom has 22 students. What is the regression�s prediction for
that classroom�s average test score?
b. Last year a classroom had 19 students, and this year it has 23
students. What is the regression�s prediction for the change in the
classroom average test score?
c. Do you reject the null hypothesis that b = 0, at the 5% level?
The t�test for the null hypothesis, H0 : b = 0 against the alternative
H1 : b 6= 0 is: t = β

se(β) =
5.82
2.21 = 2.63.

Thus we reject the null hypothesis.
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6. Wage and Male/Female Workers
Suppose that a researcher, using wage data on 250 randomly selected male
workers and 280 female workers, estimates the OLS regression,

[Wage = 12.68
(0.18)

+ 2.79
(0.84)

Malei , i = 1, . . . , 530,

where wage is measured in $/hour and male is a binary variable that is
equal to one if the person is a male and zero if the person is female.
De�ne the wage gender cap as the di¤erence in the mean earnings
between men and women.
a. What is the estimated gender gap?
b. Is the estimated gender gap signi�cantly di¤erent from zero?
The t�test for the null hypothesis, H0 : b = 0 against the alternative
H1 : b 6= 0 is: t = β

se(β) =
2.79
0.84 = 3.32.

Thus we reject the null hypothesis.
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7. Weight and Height
Suppose that a random sample of 200 20-year old men is selected from a
population and their height and weight is recorded. A regression of weight
on height yields:

\Weight = �99.41
(2.15)

+ 3.94
(0.31)

Heighti , i = 1, . . . , 200,

where weight is measured in pounds and height is measured in inches.
a. What is the regression�s weight prediction for someone who is 70 inches
tall? 65 inches tall? 74 inches tall?
b. Test the null hypothesis that b = 5:
The t�test for the null hypothesis, H0 : b = 5 against the alternative
H1 : b 6= 5 is: jtj =

��� β�5
se(β)

��� = �� 3.94�50.31

�� = 3.42.
Thus we reject the null hypothesis.

(Institute) Bivariate OLS Regression 17 / 43



8. Okun�s Law
Okun (1962) developed an empirical relationship, using quarterly data
from 1947:2 to 1960:4, between changes in the state of the economy
(captured by changes in GNP) and changes in the unemployment rate,
known as Okun�s law as follows:

∆UNEMPLt = a+ b∆GNPt + et .
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Applying OLS the sample regression equation that Okun obtained was:

\∆UNEMPLt = 0.3
(0.09)

+�0.3
(0.07)

∆GNPt + et .

From the obtained results we conclude that when the economy does not
grow the unemployment rate rises by 3 per cent.
The negative b coe¢ cient suggests that when the state of the economy
improves, the unemployment rate falls. The relationship, though is less
than one to one.
The t�test for the null hypothesis, H0 : b = 0 against the alternative
H1 : b 6= 0 is: jtj =

��� β
se(β)

��� = 0.3
0.07 = 4.28.

Thus we reject the null hypothesis.
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9. Keynesian Consumption Function
Another basic relationship in economic theory is the Keynesian
consumption function that simply states that consumption (Ct) is a
positive linear function of disposable (after tax) income (Y dt ).
The relationship is as follows

Ct = a+ bY dt ,

where a is the autonomous consumption (consumption even when
disposable income is zero) and b is the marginal propensity to consume.
In this function we expect a > 0, 0 > b > 1. A β = 0.7 means that the
marginal propensity to consume is 0.7.
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A Keynesian consumption function is estimated below:

bCt = 15.116
(6.565)

+ 0.160
(0.038)

Y dt .

From this we can (a) read estimated e¤ects of changes in the explanatory
variable on the dependent variable
(b) predict values of the dependent variable for given values of the
explanatory variable
(c) perform hypothesis testing for the estimated coe¢ cients
(d) construct con�dence intervals for the estimated coe¢ cients
For example, the t�test for the null hypothesis, H0 : b = 0 against the
alternative H1 : b 6= 0 is: t = β

se(β) =
0.160
0.038 = 4.21.

Thus we reject the null hypothesis.
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10. CAPM Theory
The following equation has been estimated by OLS:

bRt = 0.567
(0.33)

+ 1.04
(0.066)

Rmt , n = 250,

where Rt and Rmt denote the excess return of a stock and the excess
return of the market index for the London Stock Exchange.
(a) Are these coe¢ cients statistically signi�cant? Explain what is the
meaning of your �ndings regarding the CAPM theory.
(b) Test the hypothesis H0 : b = 1 and H1 : b < 1 at the 5% level of
signi�cance. If you reject H0 what does this indicate about this stock?
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The t�test for the null hypothesis, H0 : b = 0 against the alternative
H1 : b 6= 0 is: t = β

se(β) =
1.04
0.066 = 15.75.

Thus we reject the null hypothesis.
The t�test for the null hypothesis, H0 : b = 1 against the alternative
H1 : b < 1 is: t = β�1

se(β) =
0.4
0.066 = 6.06.

Thus we reject the null hypothesis.
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Multivariate regressions
2� Wage equation
The �rst example is a simple variation of the wage equation introduced in
example 2 (with 526 workers). We will assume that wage is determined by
three explanatory variables, education (years of education), experience
(years of labour market experience) and tenure (years with current
employer):

\log(wage) = .284
(.104)

+ .092
(.007)

educ+ .0041
(.0017)

exper+ .022
(.003)

tenure,

where standard errors appear in parentheses below the estimated
coe¢ cients.
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The coe¢ cient .092 means that, holding exper and tenure �xed, another
year of education is predicted to increase log(wage) by .092, which
translates into an approximate 9.2 percent [100(.092)] increase in wage.
In the above equation we can obtain the estimated e¤ect on wage when an
individual stays at the same �rm for another year: exper and tenure both
increase by one year. the total e¤ect (holding educ) �xed is
.0041+ .022 = .0261 or about 2.6 percent.
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\log(wage) = .284
(.104)

+ .092
(.007)

educ+ .0041
(.0017)

exper+ .022
(.003)

tenure,

This equation can be used to test whether the return to exper, controlling
for educ and tenure, is zero in the population, against the alternative that
it is positive.
Write this as H0 : bexp er = 0 against the alternative H1 : bexp er > 0.
Since we have 522 degrees of freedom, we can use the standard normal
critical values. The 5% critical value is 1.645.
The t statistic is t =

βexp er
se(β) =

0.041
0.0017 = 2.41 and so βexp er is statistically

signi�cant.
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5� Test Scores and Student-Teacher Ratio
Can we reject the hypothesis that a change in the student-teacher ratio
has no e¤ect on test scores, once we control for the percentage of English
learners in the district?

\TestScorei = 686.0
(8.7)

� 1.10
(0.43)

STRi � 0.650
(0.031)

PctEL, n = 420.

The jtj-statistic for βSTR is
1.10
0.43 = 2.54 Thus the null hypothesis can be

rejected at the 5% level.
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Next we want to see what is the e¤ect on test scores of reducing the
student teacher ratio, holding expenditures per pupil (and the percentage
of English learners) constant? The OLS regression line is

\TestScorei = 649.6
(15.5)

� 0.29
(0.48)

STRi + 3.87
(1.59)

Expn� 0.656
(0.032)

PctEL, n = 420,

where expn is total annual expenditures per pupil in the district in
thousands of dollar.
The result is striking. Holding expenditures per pupil and the percentage
of English learners constant, changing the student-teacher ratio is
estimated to have a very small e¤ect on test scores, βSTR is only �0.29.
Moreover, the jtj-statistic for testing that the true value of the coe¢ cient
is zero is now 0.29

0.48 = 0.60.
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11. Determinants of College GPA
We obtain the following OLS regression line to predict college GPA (grade
point average) from high school GPA and achievement test score (ACT)

coblGPA = 1.29+ .453GPA+ .0094ACT.
:
Holding ACT �xed, another point on GPA is associated with .453 of a
point on the college GPA, or almost half a point.
In other words if we choose two students, A and B, and these students
have the same ACT score, but the high school GPA of student A is one
point higher than the high school GPA of student B, then we predict
student A to have a college GPA .453 higher than that of student B.
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11�Determinants of College GPA
We estimate a model explaining college GPA with the average number of
lectures missed per week (skipped) as an additional explanatory variable.
the estimated model is

coblGPA = 1.39
(0.33)

+ .412
(.094)

GPA+ .015
(.011)

ACT� .083
(.026)

skipped, n = 141.

We can easily compute t statistics to see which variables are statistically
signi�cant. The 5% critical value is about 1.96, since the degrees of
freedom 141� 4 = 137 is large enough to use the standard normal
approximation.
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The t statistic on GPA is 4.38 which is signi�cant. The t statistic on ACT
is 1.36, which is not statistically signi�cant. The coe¢ cient on ACT is also
practically small.
The coe¢ cient on skipped has a t statistic of �0.83.026 = �3.19, so skipped
is statistically signi�cant (3.19 > 1.96).
Holding GPA and ACT �xed, the predicted di¤erence in colGPA between a
student who misses no lectures per week and a student who misses �ve
lectures per week is about .42.
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12. Housing Prices
For a sample of 506 communities in the Boston area, we estimate a model
relating median housing price (price) in the community to various
community characteristics:
nox is the amount of nitrogen oxide in the air, in parts per million
dist is a weighted distance of the community from �ve employment
centers, in miles
rooms is the average number of rooms in houses in the community
stratio is the average student-teacher ratio of schools in the community.
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The population model is

log(price) = 11.08
(0.32)

� .954
(.117)

log(nox)� .134
(.043)

log(dist)

+ .255
(.019)

(rooms)� .052
(.006)

(stratio), n = 506.

The slope estimates all have the anticipated signs. Each coe¢ cient is
statistically di¤erent from zero, including the coe¢ cient on log(nox).
But we do not want to test that βnox = 0. the null hypothesis of interest

is H0 : βnox = �1, with corresponding t-statistic
(�.954+1)

.117 = .393.
There is no need to look in the t table for a critical value when the t
statistic is this small: the estimated elasticity is not statistically di¤erent
from �1.
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13. Participation rates in 401(k) Plans
We use data on 401(k) plans to estimate a model describing participation
rates in terms of the �rm�s match rate (mrate), the age of the plan (age)
and a measure of the �rm size, the total number of �rm
employees(totemp). The estimated equation is

prbate = 80.29
(0.78)

+ 5.44
(0.52)

mrate+ .269
(.045)

age� .0013
(.00004)

totemp, n = 1, 534.

The smallest t statistic in absolute value is that on the variable totemp:
t = �.00013

.00004 = �3.25, and thesis statistically signi�cant. Thus, all of the
variables are statistically signi�cant.
Holding mrate and age �xed, if a �rm grows by 10, 000 employees, the
participation rate falls by 10, 000(.00013) = 1.3 percentage points.
This is a huge increase in number of employees with only a modest e¤ect
on the participation rate.
Thus, while �rm size does a¤ect the participation rate, the e¤ect is not
practically very large.
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14. E¤ect of Job Training Grants on �rm Scrap Rates
The scrap rate for a manufacturing �rm is the number of defective items
out of every 100 items produced that must be discarded. Thus, a decrease
in the scrap rate re�ects higher productivity. We can use the scrap rate to
measure the e¤ect of worker training on productivity.
For a sample (n = 30) of Michigan manufacturing �rms in 1987, the
following equation is estimated:

log(bscrap) = 13.72
(4.91)

� .028
(.019)

hrsemp� 1.21
(0.41)

log(sales)+ 1.48
(0.43)

log(employ),

The variable hrsemp is annual hours of training per employee, sales is
annual �rm sales (in dollars), and employ is number of �rm employees.
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The main variable of interest is hrsemp. One more hour of training per
employee lowers log(scrap) by .028, which means the scrap rate is about
2.8% lower.
What about the statistical signi�cance of the training variable? The t
statistic on hrsemp is �.028.019 = �1.47, and now you probably recognize this
as not being a large enough in magnitude to conclude that hrsemp is
statistically signi�cant at the 5% level.
In fact with 30� 4 = 26 degrees of freedom for the one sided alternative,
H1 : βhrsemp < 0, the 5% critical value is about 1.71. Thus, using a strict
5% level test, we must conclude that hrsemp is not statistically signi�cant.
Because of the sample size is pretty small, we might be more liberal with
the signi�cance level. The 10% critical level is 1.32, and so hrsemp is
signi�cant against the one sided alternative at the 10% level.
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15. Hedonic price Model for Houses
A model that explains the price of a good in terms of the good�s
characteristics is called an hedonic price model.
The following equation is an hedonic price model for housing prices; the
characteristics are: square footage (sqrft), number of bedrooms (bdrms),
and number of bathrooms (bthrms).
Often, prices appears in logarithmic form, as do some of the explanatory
variables.
Using n = 19 observations on houses that were sold in Waltham,
Massachusetts, in 1990, the estimated equation is

log(dprice) = 7.46
(1.15)

+ .634
(.184)

log(sqrft)� .066
(.059)

bdrms+ .158
(.075)

bthrms, n = 19.
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Since price and sqrft both appear in logarithmic form, the price elasticity
with respect to square footage is .634, so that, holding number of
bedrooms and bathrooms �xed, a 1% increase in square footage increases
the predicted housing price by about .634%. We also reject H0 : βsqrft
= 0, against the two sided alternative at the 5% level.
The coe¢ cient on bdrms is negative, which seems counterintuitive. In any
case, bdrms does not have a statistically signi�cant e¤ect on housing price.
Given size and number of bedrooms, one more bathroom is predicted to
increase housing price by about 15.8%. However, we fail to reject
H0 : βbthrms = 0, against the two sided alternative at the 5% level.
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16. Testing hypothesis about a single linear combination of the
parameters
We consider a simple model to compare returns to education at junior
colleges and four-year colleges (we refer to the latter as universities).
The estimated model is

log([wage) = 1.47
(.021)

+ .0667
(.0068)

jc+ .0769
(.0023)

univ+ .0049
(.0002)

exper, n = 6, 763

where jc is number of years attending a two-year college and univ is
number of years at a four-year college.
It is clear that jc and univ have both economically and statistically
signi�cant e¤ects on wage.
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This certainly of interest, but we more concerned about testing whether
the estimated di¤erence in the coe¢ cients is statistically signi�cant.
The di¤erence is estimated as βjc � βuniv = �.0102, so the return to a
year at a junior college is about one percentage point less than a year at a
university.

The t�statistic for the H0 : βjc � βuniv = 0, is given by
βjc�βuniv

se(βjc�βuniv )
. To

�nd se(βjc � βuniv ) we obtain �rst the variance:
var(βjc � βuniv ) = var(βjc ) + var(βuniv )� 2cov(βjc , βuniv ).
Unfortunately we are not given the cov(βjc , βuniv ).
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We suggest another route that is much simpler to compute, and readily
applied to a variety of problems.
De�ne a new parameter as the di¤erence between θ = βjc � βuniv . Then

we want to test H0 : bθ = 0 against H1 : bθ < 0.
We can do this by rewriting the model so that θ appears directly on one of
the independent variables. Since βjc = θ + βuniv we have

log([wage) = c + (θ + βuniv )jc+ βunivuniv+ βexp er exper,

or

log([wage) = c + θjc+ βuniv (jc+univ) + βexp er exper, or

log([wage) = c + θjc+ βuniv totcoll+ βexp er exper.
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The estimated model is

log([wage) = 1.47
(.021)

� .0102
(.0069)

jc+ .0769
(.0023)

totcoll+ .0049
(.0002)

exper, n = 6, 763

The jtj statistic for testing H0 : bθ = 0 is .0102.0069 = 1.48, so there is no
strong evidence against βjc = βuniv .
The coe¢ cient on the new variable totcoll, is the same as the coe¢ cient
on univ, and the standard error is also the same.
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16. Imports

Variable Coe¢ cient Std. Error t-statistic
Constant 0.21 0.36 0.60
LOG(GDP) 1.97 0.16 12.56
LOG(CPI) 1.02 0.32 3.17
LOG(PPI) �0.77 0.30 �2.52
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