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PANEL DATA
Notation
yit is the value of the dependent variable for cross-section unit i at time t
where i = 1, . . . , n and t = 1, . . . ,T
X jit is the value of the jth explanatory variable for unit i at time t
where j = 1, . . . ,K . That is, there are K explanatory variables
Thus the upperscript j denotes an explanatory variable.
BALANCED PANELS
We will restrict our discussion to estimation with balanced panels.
That is we have the same number of observations on each cross-section
unit
so that the total number of observations is nT
When n = 1 and T is large we have the familiar time-series data case
Likewise, when T = 1 and n is large we have cross-section data
Panel data estimation refers to cases where n > 1 and T > 1
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POOLED ESTIMATOR
The most common way of organizing the data is by decision units. Thus,
let

yi|{z}
T�1

=

26664
yi1
yi2
...
yiT

37775 , εi|{z}
T�1

=

26664
εi1
εi2
...

εiT

37775 ,
and

Xi|{z}
T�K

=

26664
X 1i1 X 2i1 � � � XKi1
X 1i2 X 2i2 � � � XKi2
...

...
. . .

...
X 1iT X 2iT � � � XKiT

37775 ,
That is Xi is a T �K matrix
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Often the data are stacked to form

y|{z}
nT�1

=

26664
y1
y2
...
yn

37775 , X|{z}
nT�K

=

26664
X1
X2
...
Xn

37775 ε|{z}
nT�1

=

26664
ε1
ε2
...

εn

37775 ,
where y and ε are nT � 1 vectors, and X is an nT �K matrix
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MATRIX FORM
The standard model can be expressed as

y|{z}
nT�1

= X|{z}
nT�K

b|{z}
K�1

+ ε|{z}
nT�1

(1)

where

b|{z}
K�1

=

26664
b1
b2
...
bK

37775
The models we will discuss next are all variants of the standard linear
model given by equation (1)
The simplest estimation method is to assume that εit � iid(0, σ2) for all i
and t
Estimation of this model is straightforward using OLS
By assuming each observation is iid , however, we have essentially ignored
the panel structure of the data
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TWO EXTENSIONS
Our starting point is the following model:

yit = x0it|{z}
1�K

b|{z}
K�1

+ εit ,

That is, xit is the tth row of the Xi matrix or the itth row of the X matrix
We go one step further and specify the following error structure for the
disturbance term

εit = ai + ηit , (2)

where we assume that ηit is uncorrelated with xit
The �rst term of the decomposition, ai , is called the individual e¤ect
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ERROR STRUCTURE
In this formulation our ignorance has two parts:
The �rst part varies across individuals or the cross-section unit but is
constant across time
This part may or may not be correlated with the explanatory variables
The second part varies unsystematically (i.e., independently) across time
and individuals
RANDOM AND FIXED EFFECTS
This formulation is the simplest way of capturing the notion that two
observations from the same individual(unit) will be more like each other
than observations from two di¤erent individuals
A large proportion of empirical applications involve one of the following
assumptions about the individual e¤ect:
1. Random e¤ects model: ai is uncorrelated with xit
2. Fixed e¤ects model: ai is correlated with xit
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THE RANDOM EFFECTS MODEL
It is important to stress that the substantive assumption that distinguishes
this model from the �xed e¤ects model is that the time-invariant
person-speci�c e¤ect ai is uncorrelated with xit .
This orthogonality condition, along with our assumption about ηit , is
su¢ cient for OLS to be asymptotically unbiased
However, there are two problems:
1. OLS will produce consistent estimates of b but the standard errors will
be understated.
2. OLS is not e¢ cient compared to a feasible GLS procedure
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THE ERROR
It will be helpful to be a bit more explicit about the precise nature of the
error.
Recall that

εi|{z}
T�1

=

26664
εi1
εi2
...

εiT

37775 , ε|{z}
nT�1

=

26664
ε1
ε2
...

εn

37775 ,
and

εit = ai + ηit ,
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Thus, we can write

ηi|{z}
T�1

=

26664
ηi1
ηi2
...

ηiT

37775 , η|{z}
nT�1

=

26664
η1
η2
...

ηn

37775 .

Moreover, we have

E (ηi ) = 0, E (ηiη
0
i ) = σ2ηIT ,

E (η) = 0, E (ηη0) = σ2ηInT .
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THE ai
Further,

ai|{z}
T�1

=

26664
ai
ai
...
ai

37775 = ai i, a|{z}
nT�1

=

26664
a1
a2
...
an

37775 ,
where i is a T � 1 vector of ones, and

E (ai = 0), E (aiaj ) = 0, for i 6= j ,
E (a2i ) = σ2a, E (aiηjt ) = 0.
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THE Σ MATRIX
Given these assumptions we can write the error covariance matrix of the
disturbance term of each individual cross-section unit:

Σ|{z}
T�T

= E (εi ε0i )| {z }
T�T

= E (aia0i ) + E (ηiη
0
i ) (3)

= σ2a ii
0|{z}

T�T
+ σ2ηIT =

σ2a

264 1 � � � 1
...
. . .

...
1 � � � 1

375+ σ2η

264 1 � � � 0
...
. . .

...
0 � � � 1

375

=

26664
σ2a + σ2η σ2a � � � σ2a

σ2a σ2a + σ2η � � � σ2a
...

...
. . .

...
σ2a σ2a σ2a + σ2η

37775 .
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THE Ω MATRIX
When the data are organized as in equation (1) the covariance of the error
term for all the observations in the stacked model can be written as

Ω|{z}
nT�nT

= In 
 Σ|{z}
T�T

= E(εε0) =

26664
Σ 0 � � � 0
0 Σ � � � 0
...

...
. . .

...
0 0 Σ

37775 .
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The block diagonality of Ω makes �nding an inverse simpler and we can
focus on �nding the inverse of Σ . It is straightforward but tedious to
show that

Σ�1/2 =
1

ση
[IT �

(1� θ)

T
ii0|{z}
T�T

],

where θ =

s
σ2η

Tσ2a + σ2η
(4)

is the unknown quantity that must be estimated.
Feasible GLS estimators require that we get estimates of the variances σ2a
and σ2η in θ.
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RANDOM EFFECTS AS A COMBINATION OF WITHIN AND
BETWEEN ESTIMATORS
We consider two estimators that are consistent but not e¢ cient relative to
GLS
The �rst one is quite intuitive: convert all the data into speci�c averages
and perform OLS on this �collapsed�data set.
In particular,

yi|{z}
T�1

=

26664
yi1
yi2
...
yiT

37775) yi|{z}
1�1

=
T

∑
t=1
yit/T ,

so that we have one observation for each section i . Notice that

yi = yi � i =

26664
yi
yi
...
yi

37775.
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Moreover,

Xi|{z}
T�K

=

26664
X 1i1 X 2i1 � � � XKi1
X 1i2 X 2i2 � � � XKi2
...

...
. . .

...
X 1iT X 2iT � � � XKiT

37775)
xi 0|{z}
1�K

=
h
X 1i X 2i � � � XKi

i
,

where X ji =
T

∑
t=1
X jit/T . Recall that we also denote the tth row of the Xi

matrix by x0it = [ X
1
it X 2it � � � XKit ].

Speci�cally we perform OLS on the following equation

yi|{z}
1�1

= xi 0|{z}
1�K

b|{z}
K�1

+ error, i = 1, . . . , n (5)
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Thus, the between-group estimator can be expressed as

βB =

"
n

∑
i=1
(xi � x)(xi � x)0

#�1 n

∑
i=1
(xi � x)(yi � y),

where x = 1
nT

n

∑
i=1

T

∑
j=1
xit and , y = 1

nT

n

∑
i=1

T

∑
j=1
yit .

The estimator βB is called the between-group estimator because it ignores
variation within the group.
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DUMMY VARIABLES
To put this expression in matrix terms, stack the data as before and de�ne
a new nT � n matrix D, which is merely the matrix of n dummy variables
corresponding to each cross-section unit.
That is

D|{z}
nT�n

=

�
D1|{z}
nT�1

D2|{z}
nT�1

� � � Dn|{z}
nT�1

�
,

where Di = 1 for observation (i � 1)T + 1, . . . , iT , and zero otherwise
Next de�ne PD|{z}

nT�nT

= D(D0D)�1D0 a symmetric and idempotent matrix

that is: P0D = PD and P
2
D = PD

Premultiplying by this matrix transforms the data into the means
described in equation (5)
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PREDICTED VALUES (MEANS)
This is because the predicted value of y|{z}

nT�1

from a regression on nothing

but the individual dummies is merely PDy =

264 y1 � i
...

yn � i

375 = by
where i is the Tx1 unit vector.
(See Matrices Appendix C)
In other words, we run the following OLS regression:

PDy = PDXb+error

The β estimated this way is called the between estimator and is given by

βB = (X0P0DPDX)
�1X0P0DPDy

= (X0P2DX)
�1X0P2Dy

= (X0PDX)
�1X0PDy

since P0D = PD and P
2
D = PD .
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2SLS ESTIMATION
The between estimator is consistent (though not e¢ cient) when OLS on
the pooled sample is consistent.
This estimator corresponds to a 2SLS, using the person dummies as
instruments.
That is regress X on D and get the predicted values:

bX|{z}
nT�K

= D|{z}
nT�n

γ|{z}
n�K

= D(D0D)�1D0X| {z }
γ

= PDX.

(see Matrices Appendix C).
Then regress y on bX:

βB = (bX0bX)�1bX0y
= [(PDX)0PDX]�1(PDX)0y
= (X0P0DPDX)

�1X0P0Dy
= (X0PDX)�1X0PDy.
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WITHIN ESTIMATOR
We can also use the information �thrown away�by the between estimator.

De�ne MD = InT �
PDz }| {

D(D0D)�1D0, which is also a symmetric idempotent
matrix.
If we premultiply the data by MD and compute OLS on the transformed
data we can derive the following within estimator

βW = [(MDX)0DMX]
�1(MDX)0MDy

= (X0M0
DMDX)�1X0M0

DMDy
= (X0MDX)�1X0MDy. (6)

A. The matrix MD can be interpreted as a residual-maker matrix.
Premultiplying by this matrix transforms the data into residuals from
auxiliary regressions of all the variables on a complete set of individual
speci�c constants
(see also Matrices Appendix B):
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RESIDUALS (DEVIATIONS FROM PERSON-SPECIFIC MEANS)
i) We regress y and X on D and we save the residuals ey = MDy andeX =MDX:

ey = y�by = y�Dγ

= y�D(D0D)�1D0y| {z }
γ

= [InT �
PDz }| {

D(D0D)�1D0]y
= MDy.

ii) We regress ey = MDy on eX =MDX.
Since the predicted value from regressing y on D, that isby = Dγ = D(D0D)�1D0y, is merely the individual speci�c mean (see the
analysis above), the residuals ey = y�by are merely deviations from
person-speci�c means.
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Similarly, the residuals

X�bX = X�PDX = [InT �
PDz }| {

D(D0D)�1D0]X =eX =MDX are merely
deviations from person-speci�c means.
B. Speci�cally, equation (6) is equivalent to performing OLS on the
following equation:

yit � yi = (xit � xi )0| {z }
1�K

b|{z}
K�1

+ error, i = 1, . . . ,N, t = 1, . . . ,T .

If the assumptions underlying the random e¤ects model are correct, the
within estimator is also a consistent estimator, but it is not e¢ cient.
This defect is clear since we have included n unnecessary extra variables.
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Since

yi = xi 0b+ai ,

we can estimate ai as

αi = yi � xi 0β.
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C. The within estimator can also be expressed as

βW =

"
n

∑
i=1

T

∑
t=1
(xit � xi )(xit � xi )0

#�1 n

∑
i=1

T

∑
t=1
(xit � xi )(yit � yi ).

Its variance-covariance matrix is given by

V (βW ) = σ2η

"
n

∑
i=1

T

∑
t=1
(xit � xi )(xit � xi )0

#�1
.
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D. The within estimator is merely an estimator that would result from
running OLS on the data including a set of dummy variables

y = Xb+Da+ η,

where a0= [a1 a2 � � � an ]. Then

βW = (X0MDX)�1X0MDy.

(see Matrices Appendix B).
It is called the within estimator because it uses only the variation within
each cross-section unit.
Its variance covariance matrix is given by

V (βW ) = σ2η(X
0MDX)�1
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E. Alternatively, we can write

yi|{z}
T�1

= Xi|{z}
TxK

b+ai i|{z}
Tx1

+ηi , i = 1, . . . , n

We premultiply the above ith equation by a TxT idempotent
transformation matrix

Q = IT �
1
T
ii0,

to �swipe out�the individual e¤ect ai so that individual observations are
measured as deviations from individual means (over time):

Qyi = QXib+Qiai +Qηi
= QXib+Qηi ,
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Applying the OLS procedure to the above equation, we have

βW =

"
N

∑
i=1
X0iQXi

#�1 N

∑
i=1
XiQyi .

Its variance-covariance matrix is given by

V (βW ) = σ2η

"
N

∑
i=1
X0iQXi

#�1
.
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Notice that the pooled OLS estimate is just a weighted sum of the
between and within estimators:

β =(X0X)�1X0y.

Since MD = InT �D(D0D)�1D0 = InT �PD ) InT =MD +PD , we
have

β = (X0X)�1

8><>:X0
InTz }| {

(MD +PD )y

9>=>;
= (X0X)�1

�
X0MDy+X0PDy

	
.
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Next premultiplying X0MDy by IK = (X0MDX)(X0MDX)�1

and X0PDy by IK = (X0PDX)(X0PDX)�1 gives

β = (X0X)�1f(X0MDX)

βWz }| {
(X0MDX)�1X0MDy

+(X0PDX)(X0PDX)�1X0PDy| {z }
βB

g

= (X0X)�1f(X0MDX)βW + (X
0PDX)βB .

Notice that the sum of the two weights is equal to IK :

(X0X)�1f(X0MDX) + (X0PDX)g
= (X0X)�1fX0(MD +PD )Xg
= (X0X)�1X0X = IK .
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In the random e¤ects case, OLS on the pooled data fails to use
information about the heteroscedasticity that results from using repeated
observations of the same cross-section units.
The problem with the pooled estimator is that it weights all observations
equally.
This treatment is not generally optimal because an additional observation
on a person already in the data set is unlikely to add as much information
as an additional observation from a new (independent) individual.
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Next we have to compute the necessary quantities for a feasible GLS.
Standard ANOVA suggests the following estimators

bσ2η =
bε0W bεW

nT � n�K ,

bσ2B =
bε0BbεB
n�K ,

bσ2a = bσ2B � bσ2η
T
,

where bεW are the residuals from the within regression
and bεB are the residuals from the between regression.
These can then be used to construct bθ.
These estimators are asymptotically unbiased estimates of the relevant
variances.
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THE RANDOM EFFECT ESTIMATOR
A simple procedure to compute the random e¤ect estimator is as follows:
1. Compute the between and within estimators
2. Use the residuals to calculate the appropriate variance terms
3. Calculate bθ
4. Run OLS on the following transformed variables y� andX�

y �it = yit � (1� bθ)yi , (7)

x�it = xit � (1� bθ)xi . (8)

The transformation is intuitively appealing.
When there is no uncorrelated person-speci�c component of variance
(σ2a = 0), θ = 1, and the random e¤ects estimator reduces to the pooled
OLS estimator.
When bθ = 0 the random e¤ects estimator reduces to the within estimator.
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To get e¢ cient estimates of the parameters we have to use the GLS
method

βGLS =

"
N

∑
i=1
X0iΣ

�1Xi

#�1 N

∑
i=1
XiΣ�1yi .

where Σ is given by (3).
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We can also obtain the following

βGLS =

"
1
T

N

∑
i=1
X0iQXi + θ2

n

∑
i=1
(xi � x)(xi � x)0

#�1
�"

1
T

N

∑
i=1
X0iQyi + θ2

n

∑
i=1
(xi � x)(yi � y)0

#
= ∆βB + (IK � ∆)βW , (9)
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where θ2 has been de�ned in (4) and

∆ = θ2T

"
N

∑
i=1
X0iQXi + θ2T

n

∑
i=1
(xi � x)(xi � x)0

#�1
�"

n

∑
i=1
(xi � x)(xi � x)0

#
.

The GLS estimator (9) is a weighted average of the between-group and
the within-group estimators.
If θ ! 0, then ∆! 0, and the GLS becomes the within estimator.
If θ ! 1, then the GLS becomes the pooled OLS estimator.

Panel Data (Institute) PANEL DATA December 2011 1 / 1



Moreover, the variance covariance matrix of βGLS is

V (βGLS ) = σ2η

"
N

∑
i=1
X0iQXi + T θ2

n

∑
i=1
(xi � x)(xi � x)0

#�1
.
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THE FIXED EFFECTS MODEL
The �xed e¤ects model starts with the presumption that Cov(Xit , ai ) 6= 0.
Thus we must estimate the model conditionally on the presence of the
�xed e¤ects.
That is, we must rewrite the model as

yit = xitb+ai + ηi , i = 1, . . . , n (10)

where the ai are treated as unknown parameters to be estimated.
In the typical case, T is small and n is large.
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Although we can not estimate ai consistently, we can estimate the
remaining parameters consistently.
To do so we need only run the regression

y = Xb+Da+ η (11)

where a0=[a1 a2 � � � an ], D = In 
 iT as before, is a set of n dummy
variables.
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The above equation is just the same as running a regression of each of our
variables y and X on this set of dummies and then running the regression
of the y residuals on the X residuals.
The matrix that produces such residuals is the familiar
MD = InT �D(D0D)�1D0 = InT �PD .
We can run OLS on the transformed variables ey=MDy and eX =MDX to
get

βW = (X0MDX)�1X0MDy.

This is merely the within estimator we derived before. The within
estimator is only one possible �xed e¤ects estimator.
Any transformation that rids us of the �xed e¤ect will produce a �xed
e¤ect estimator.
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Deviations from means purges the data of the �xed e¤ects by removing
means of these variables across individual cross-section units.
That is, the predicted value of y , which belongs to group i , is just the
mean of that group:

y i = xib+ai + ηi (12)

We can di¤erence Eqs (10) and (12) to yield

yit � y i = (xit � xi )b+ (ηi � ηi )

In many applications, the easiest way to implement a �xed e¤ects
estimator with conventional software is to include a di¤erent dummy
variable for each individual unit.
This method is called the least-squares dummy variable (LSDV) method as
in Eq. (11).
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If n is very large, however, it may be computationally prohibitive to
compute coe¢ cients for each cross-section unit.
In that case another way to implement a �xed e¤ect estimator is as follows:

Transform all the variables by subtracting person-speci�c means

Run OLS on the transformed variables

Moreover, the standard errors need to be corrected. The correct standard
errors are

V (βW ) = σ2η(X
0MDX)�1.

This result is almost exactly the same output one would get from the
two-step procedure de�ned earlier.
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The correct way to estimate σ2η is

bσ2η = bε0W bεW
nT � n�K ,

The fact that the �xed e¤ects estimator can be interpreted as a simple
OLS regression of means-di¤erence variables explains why this estimator is
often called a within group estimator. That is, it uses only the variation
within an individual�s set of observations.
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A WU-HAUSMAN TEST
The random and �xed e¤ects estimators have di¤erent properties
depending on the correlation between ai and the regressors. Speci�cally,
1. If the e¤ects are uncorrelated with the explanatory variables, the
random e¤ects estimator is consistent and e¢ cient.
The �xed e¤ects estimator is consistent but not e¢ cient.
2. If the e¤ects are correlated with the explanatory variables, the �xed
e¤ects estimator is consistent and e¢ cient but the random e¤ects
estimator is now inconsistent.
One can perform a Hausman test, de�ned as

H = (βRE � βFE )
0[V (βRE )� V (βFE )]�1(βRE � βFE ).

The Hausman test statistic will be distributed asymptotically as χ2 with K
degrees of freedom under the null hypothesis that the random e¤ects
estimator is correct.
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An alternative method is to perform a simple auxiliary regression.
Let y �it and x

�
it be the data transformed for the random e¤ects model as in

Eqs. (7) and (8). Recall that the eX variables are transformed for
�xed-e¤ects regression.
The Hausman test can be computed by means of a simple F test on d in
the following auxiliary regression:

y� = X�b+ eXd+ error.
The hypothesis being tested is whether the omission of �xed e¤ects in the
random e¤ects model has any e¤ect on the consistency of the random
e¤ects estimates.
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MATRICES APPENDIX A
A matrix may be partitioned into as set of submatrices by indicating
subgroups of rows and/or columns. For example

A =
�
A11 A12
A21 A22

�

The inverse of a partitioned matrix may also be expressed in partitioned
form:

A�1 =
�

B11 �B11A12A�122
�A�122 A21B11 A�122 +A

�1
22 A21B11A12A

�1
22

�
, (13)

where B11 = (A11 �A12A�122 A21)�1 or, alternatively,

A�1 =
�
A�111 +A

�1
11 A12B22A21A

�1
11 �A�111 A12B22

�B22A21A�111 B22

�
,

where B22 = (A22 �A21A�111 A12)�1.
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Consider partition the matrix X as X =
�
X1 X2

�
.

Then

X0X =
�
X01
X02

� �
X1 X2

�
=

26664
A11z }| {
X01X1

A12z }| {
X01X2

X02X1| {z }
A22

X02X2| {z }
A22

37775 .
The inverse of the above matrix is given by equation (13) where

B11 = (X01X1 �X01X2(X02X2)�1X02X1)�1

= (X01IX1 �X01X2(X02X2)�1X02X1)�1

= (X01M2X1)�1,

where
M2 = I�X2(X02X2)�1X02,

that is, M2 is a symmetric idempotent matrix.
Similarly,

B22 = (X02M1X2)�1, where M1 = I�X1(X01X1)�1X01.
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Moreover, �B11 A12|{z}
X01X2

A�122|{z}
(X02X2)�1

is given by

�B11X01X2(X02X2)�1.

In addition, X0y in partitioned form is given by

X0y =
�
X01
X02

�
y =

�
X01y
X02y

�
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Thus the OLS estimates from the regression of y on X in partitioned form
are given by

β =

�
β1
β2

�
=

26664
A11z }| {
X01X1

A12z }| {
X01X2

X02X1| {z }
A22

X02X2| {z }
A22

37775
�1 �

X01y
X02y

�
.

Taking the �rst row we have

β1 = B11X01y�B11
X01X2z}|{
A12

(X02X2)
�1z}|{

A�122 X02y

= B11X01y�B11X01X2(X
0
2X2)

�1X02y

= B11|{z}
(X01M2X1)�1

X01(I�X2(X
0
2X2)

�1X02)| {z }
M2

y

= (X01M2X1)
�1X01M2y.

Similarly, we can show that

β2= (X
0
2M1X2)

�1X02M1y.
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Rewrite
β1 = (X

0
1M2X1)

�1X01M2y.

Regressing y and X1 on X2 yields a vector of residuals, M2y, and a matrix
of residuals, M2X1.
Regressing the former on the latter gives the β1 coe¢ cient vector.

Panel Data (Institute) PANEL DATA December 2011 1 / 1



MATRICES APPENDIX B

Mi = I�Xi (X0iXi )�1X0i , i = 1, 2.
Premultiplication of any vector by Mi gives the residuals from the
regression of that vector on Xi .
Consider the following regression

y = Xib+ ε.

The estimator of b is given by

β = (X0iXi )
�1X0iy = y.

The predicted value of y is given by

by = Xiβ = Xi (X0iXi )�1X0iy = Piy.
The vector of the residuals is given by

ε = y� by = y�Xi (X0iXi )�1X0iy
= [I�Xi (X0iXi )�1X0i ]y = [I�Pi ]y =Miy.
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MATRICES APPENDIX C
Assume for simplicity and without loss of generality that we have only two
sections. That is n = 2.
De�ne the 2T � 2 matrix D, which is merely the matrix of 2 dummy
variables corresponding to each cross-section unit.
In a partition form we have

2T�2z}|{
D =

2664
T�1z}|{
i

T�1z}|{
0

0|{z}
T�1

i|{z}
T�1

3775 or

2�2Tz}|{
D0 =

2664
1�Tz}|{
i0

1�Tz}|{
00

00|{z}
1�T

i0|{z}
1�T

3775
where i is a T � 1 unit vector.
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Then

2�2z}|{
D0D =

�
i0i 0
0 i0i

�
=

�
T 0
0 T

�
= TI )

= (D0D)�1 = (1/T )I .

Moreover,
2T�2Tz}|{
DD0 =

24 T�Tz}|{
ii0

T�Tz}|{
0

0 ii0

35 ,
where ii0 is a T � T matrix with unit elements.
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Thus

D(D0D)�1D0y =
1
T
DD0y

=
1
T

24 T�Tz}|{
ii0

T�Tz}|{
0

0 ii0

35 � y1
y2

�

=
1
T

26664
T

∑
t=1
y1t � i

T

∑
t=1
y2t � i

37775 =
�
y1 � i
y2 � i

�
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In general if we have n cross-sections then D is an nT � n matrix

nT�nz}|{
D =

2666664
T�1z}|{
i 0 � � �

T�1z}|{
0

0 i � � � 0
...

...
. . .

...
0 0 0 i

3777775 .

It can be shown that

D|{z}
nT�n

(D0D)�1D0 y|{z}
nT�1

=

26664
y1 � i
y2 � i
...

yn � i

37775 = by.
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Similarly,

D|{z}
nT�n

(D0D)�1D0 X|{z}
nT�k

=

26664
X1
X2
...
Xn

37775 = bX,
where

Xi =
h
X 1i � i X 2i � i � � � XKi � i

i
,

with X ji = ∑T
t=1 X

j
it/T .
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