
Chow forecast test:

Instead of using all the sample observations for estima-
tion, the suggested procedure is to divide the data set

of N sample observations into N1 observations to be
used for estimation

and N2 = N �N1 for testing if the parameter vector is
constant.

There are no hard and fast rules for determining the rel-
ative size of N1 and N2.

It is not uncommon to reserve 5; 10; or 15 percent of the
observations for testing.



Predictive accuracy test:

The test of predictive accuracy, widely referred to as
Chow test, is as follows:

1. Estimate the OLS vector from the �rst N1 observa-
tions, obtaining

�1 = (X
0
1X1)

�1X 01y1

and the vector of the residuals be1 = y1�X1�1 and the
RSS1 = be01be1.
2. Fit the same regression to all N = N1+N2 observa-
tions and obtain the (restricted) RSS= be0be.
3. Employ the F test statistic

F =
be0be� be01be1=N2be01be1=N1 � k � F (N2; N1 � k) (1)

4. Reject the null hypothesis of parameter constancy if
F exceeds a preselected critical value.



THE CUSUM TEST

Recall that our OLS regression is

yt = x
0
tb+ et; t = 1; : : : ; N;

where x0t = [1 x2t � � �xkt] is the row vector of the re-
gressors at time t.

Alternatively, we have

y = Xb+ e;

where

X =

26664
� � �x01 � � �
� � �x02 � � �...
� � �x0N � � �

37775



The idea behind recursive estimation is very simple.

Fit the model to the �rst k observations

Next use the �rst k + 1 data points and compute the
coe¢ cient vector again.

Proceed in this way, adding one sample data point at a
time, until the �nal coe¢ cient vector is obtained, based
on all N sample data points.

This process generates a sequence of vectors,

�k, �k+1,: : :,�N

where the subscript indicates the number of sample points
used in the estimation.



In general

�t = (X
0
tXt)

�1X 0tyt

where t = k; k + 1; : : : ; N .

Xt is the t � k matrix of the regressors for the �rst t
sample points

and yt is the t � 1 vector of the �rst t observations on
the dependent variable.

The standard errors of the various coe¢ cients may be
computed at each stage of the recursion,

except at the �rst step, since RSS is zero when t = k.

Graphs may be prepared showing the evolution of each
coe¢ cient, plus and minus two standard errors.

Visual inspection of the graphs may suggest parameter
constancy, or its reverse.



ONE-STEP AHEAD PREDICTION ERRORS

By using all data up to and including period t � 1, the
one step ahead prediction of yt is

x0t�t�1 = �1;t�1 + �2;t�1x2t + � � �+ �k;t�1xkt
where �0t�1 = [�1;t�1 �2;t�1 � � ��k;t�1].

The one-step ahead prediction error is thus

vt = yt � x0t�t�1 (2)

where t = k + 1; k + 2; : : : ; N .

The variance of vt can be seen to be

�2[1 + x0t|{z}
1�k

(X 0t�1Xt�1)
�1| {z }

k�k

xt|{z}
k�1

]: (3)



The scaled recursive residuals are de�ned as

wt =
vtvuut[1 + x0t|{z}

1�k
(X 0t�1Xt�1)

�1| {z }
k�k

xt|{z}
k�1

]
;

t = k + 1; k + 2; : : : ; N .

Under our assumptions wt � N(0; �2).



CUSUM test

The �rst test statistic, based on the scaled recursive resid-
uals, is the CUSUM quantity

Wt =
tX

j=k+1

wj=s

where s2 =RSSN=N�k, with the RSSN being the resid-
ual sum of squares calculated from the full sample regres-
sion.

Wt is a cumulative sum, and it is plotted against t.

With constant parameters, E(Wt) = 0, but with non-
constant parameters Wt will tend to diverge from the
zero mean value line.



The signi�cance of the departure from the zero line may
be assessed by reference to a pair of straight lines that
pass through the points

k � a
p
N � k and

N � 3a
p
N � k;

where � is a parameter depending on the signi�cance
level of a chosen for the test.

The correspondence for some conventional signi�cance
level is

0:01; a = 1:143

0:05; a = 0:948

0:10; a = 0:850.



CUSUMQ test

The second test statistic is based on the cumulative sums
of squared residuals, namely,

St =

Pt
j=k+1w

2
jPN

j=k+1w
2
j

, t = k + 1; : : : ; N

Under the null hypothesis the squared w�s are indepen-
dent �2(1) variables.

The numerator thus has an expected value of t� k,

and the denominator an expected value of N � k.

The mean value line, giving an approximate expected
value of the test statistic under the null hypothesis, is

E(St) =
t� k
N � k

;

which goes from 0 at t = k to unity at t = N .



The signi�cance of departures from the expected value
line is assessed

by reference to a pair of lines drawn parallel to the E(St)
line

at a distance c0 above and below.

Values of c0 for various sample sizes and signi�cance lev-
els are tabulated in Appendix D8 in JD book.



Ramsey Reset Test

Ramsey has argued that various speci�cation errors (omit-
ted variables, incorrect functional form, correlation be-
tween X and e) give rise to a nonzero e vector.

Thus the null and alternative hypotheses are

H0 : e � N(0; �2I);
H1 : e � N(�; �2I):

The test of H0 is based on an augmented regression:

y = Xb+ Za+ e:

The test for the speci�cation error is then a = 0.

Ramsey�s suggestion is that Z should contain powers of
the predicted values of the dependent variable:

Z = [by^2 by^3 by^4];
where by = X� and ^ denotes element by element expo-
nentiation:

by^i = [byi1 byi2 : : : byiN ]0.



Chow test:

Split the data into two subperiods. Estimate the regres-
sion over the whole period

and then for the two sub-periods separately (3 regres-
sions).

Obtain the RSS for each regression.

The restricted regression is now the regression for the
whole period

while the unrestricted regression comes into two parts:
one for each of the subsamples



The test statistic

whole periodz }| {
RSS � (

period 1z }| {
RSS1 +

period 2z }| {
RSS2 )

(RSS1 +RSS2)
�N � 2k

k
� F (k;N�2k);

since the number of restrictions is equal to the number of
coe¢ cients that are estimated for each of the regression,
i.e.k

The number of regressors in the unrestricted regression
is 2k

The test is one of how much the residual sum of squares
for the whole sample, RSS (the restricted regression)

is bigger than the sum of the residual sum of squares
for the two sub-samples, RSS1 + RSS2, unrestricted
regression.



Dummy variables:

Note that it is also possible to use a dummy variables
approach to calculate the Chow test.

The unrestricted regression will include dummy variables
for the intercept and for all the slope coe¢ cients.

Suppose that we have two regressors x2t and x3t. The
unrestricted regression would be given by

yt = b1+b2x2t+b3x3t+b4Dt+b5Dtx2t+b6Dtx3t+et;

where Dt = 1 for t 2 N1 (t = 1; 2; : : : ; N1) and zero
otherwise.



In other words, Dt takes the value one for observations
in the �rst sub-sample and zero for observations in the
second sub-sample.

In particular, the estimated slope coe¢ cient of x3t for
the �rst sub-period is �3 + �6

whereas for the second sub-sample is �3.

The Chow test viewed in this way would then be the
standard F -test of the joint restriction:

H0 : b4 = b5 = b6.



Example:

Consider the following regression for the standard CAPM
b for the returns on a stock

rgt = a+ brMt + et;

where rgt and rMt are excess returns on Glaxo shares
and on a market portfolio.

Suppose that you are interested in estimating beta using
monthly data from 1980 to 1991, to aid a stock selection
decision.

Another researcher expresses concern that the October
1987 stock market crash fundamentally altered the risk-
return relationship.

Test this conjecture using a Chow test.



The model for each sub-period is

1981M1� 1987M10

brgt = 0:24 + 1:2rMt, N = 82, RSS1 = 0:03555

1987M11� 1992M12

brgt = 0:68 + 1:53rMt, N = 62, RSS2 = 0:00336

1981M1� 1992M12

brgt = 0:39 + 1:37rMt, N = 144, RSS = 0:0434

The null hypothesis is H0 : a1 = a2 and b1 = b2

where subscripts 1 and 2 denote the parameters for the
�rst and second sub-samples, respectively.



The test statistic will be given by

RSSz }| {
0:0434� (

RSS1+RSS2z }| {
0:03555 + 0:00336)

0:03555 + 0:00336
�

N�2kz }| {
144� 4
2

= 7:698:

The test statistic should be compared with the 5%,

F (2; 140) = 3:06.

H0 is rejected at the 5% level and hence it is concluded
that the restriction that the coe¢ cients are the same in
the two periods cannot be employed.

(See Chris Brooks: "Introductory Econometrics for Fi-
nance", Example 4.4)



Predictive failure test:

A problem with Chow test is that it is necessary to have
enough data to do the regression on both sub-samples,

i.e. N1 > k and N2 > k.

This may not hold in the situation where the total number
of observations available is small.

Even more likely is the situation where the researcher
would like to examine the e¤ect of splitting the sample
at some point very close to the start or very close to the
end of the sample.



An alternative formulation of a test for the stability is the
predictive failure test, which requires estimation for the
full sample and one of the sub-samples only.

The predictive failure test works by estimating the re-
gression over a �long�sub-period (i.e. most of the data
and then using those coe¢ cients estimates for predicting
values of y for the other period.

The null hypothesis for this test is that the prediction
errors for all the forecasted observations are zero.

(See the test above)



Example:

Suppose that the researcher decided to determine the sta-
bility of the estimated model for stock returns over the
whole sample in the previous example by using a predic-
tive failure test of the last two years of observations.

The following model would be estimated:

1981M1� 1992M12

brgt = 0:39 + 1:37rMt, N = 144, RSS = 0:0434

1981M1� 1990M12

brgt = 0:32 + 1:31rMt, N = 120, RSS1 = 0:0420



The test statistic would be given by

RSSz }| {
0:0434� (

RSS1z }| {
0:0420)

0:0420
�

N1�2z }| {
120� 2
N2

= 0:164:

Since F (24; 118) = 1:66 at the 5% the null hypothesis
would not be rejected.

(See Chris Brooks: "Introductory Econometrics for Fi-
nance", Example 4.5)



Dummy variables:

An alternative way to test for predictive failure is using a
regression containing dummy variables.

A separate dummy variable would be used for each ob-
servation that was in the prediction sample.

The unrestricted regression will then be the one that in-
cludes the dummy variables, which will be estimated using
all N observations,

and will have k +N2 regressors.

The restricted regression would then be the original re-
gression containing the explanatory variables but none of
the dummy variables.



In the context of our example suppose that the last three
observations in the sample are used for a predictive failure
test.

The unrestricted regression will include three dummy vari-
ables, one for each of the observations in N2:

rgt = a+ brMt + 
1D1t + 
2D2t + 
3D3t + et;

where D1t = 1 for observation N � 2, D2t = 1 for
observation N � 1 and D3t = 1 for observation N .

In this case k = 2 and N2 = 3.

The null hypothesis for the predictive failure test in this
regression is that the coe¢ cients on all of the dummy
variables are zero:

H0 : 
1 = 
2 = 
3 = 0.



Both approaches to conducting the predictive failure test
described above are equivalent.

A major advantage of the dummy variables approach is
that one can examine the signi�cances of the coe¢ cients
on the individual dummy variables to see which part of
the joint hypothesis is causing a rejection.



Hansen test:

A di¢ culty with the Chow test is the arbitrary nature
of the partitioning of the data set. One such partitioning
might reject the null hypothesis and another fail to reject.

This di¢ culty does not apply to the Hansen test, which
is �ts the linear equation to all N observations.

Recall that the equation with the k regressors is

yt = b1 + b2x2t + � � �+ bkxkt + et or

yt =

[1 x2t���xkt]z}|{
x0t b|{z}

[b1 b2���bk]0
+ et:



Recall that the OLS �t gives the conditions

NX
t=1

xitbet = 0, i = 1; : : : ; k;

NX
t=1

(be2t � b�2) = 0 or b�2 =
NX
t=1

be2t
N

.

Next de�ne

fit =

(
xitet i = 1; : : : ; kbe2t � b�2 i = k + 1

where
NX
t=1

fit = 0, i = 1; : : : ; k + 1.



The Hansen test statistics are based on cumulative sums
of the fit, namely,

Sit =
tX
j=1

fij:

He develops tests for the stability of each parameter in-
dividually and for the joint stability of all parameters.

The individual test statistics are

Li =
1

NVi

NX
t=1

S2it, i = 1; : : : ; k + 1;

where Vi =
NX
j=1

f2ij.



For the joint stability test let

ft = [f1t � � � fk+1t]0;
st = [S1t � � �Sk+1t]0:

The joint stability test is then

Lc =
1

N

NX
t=1

s0t|{z}
1�(k+1)

V|{z}
(k+1)�(k+1)

�1 st|{z}
(k+1)�1

where

V|{z}
(k+1)�(k+1)

=
NX
t=1

ftf
0
t:



Under the null hypothesis the cumulative sums will tend
to be distributed around zero.

Thus �large�values of the test statistics suggest rejection
of the null.

The distribution theory is nonstandard, and only asymp-
totic critical values are available.

These are tabulated in Appendix D7 in JD book.

The 5% critical value for the individual coe¢ cient test is
0:470.



Numerical Example:

We have three variables:

yt: log of per capita real expenditure in gasoline and oil

x2t: log of the real price index for gasoline and oil

x3t: log or per capita real disposable personal income

The �rst oil shock hit in 1973:4, so we chose a sample
period from 1959:1 to 1973:3 a periods for which it might
seem reasonable to postulate parameter constancy.

The �rst 51 observations were used for estimation and
the remaining 8 reserved for the Chow forecast test.



The simple speci�cation

y = b1 + b2x2t + b3x3t + et

was employed.

1. The speci�cation passes the Chow test (see equation
1): the F statistic is only 0:18.

2. The one-step forecasts in the column "forecast" take
the form:

byt = x0t|{z}
(1�3)

�|{z}
(3�1)

where � is the coe¢ cient vector esti-

mated from all 51 observations.



The forecast standard error SE is given by

s
vuuuut1 + x0t|{z}

(1�3)
( X 0|{z}
(3�51)

X|{z}
(51�3)

)�1

| {z }
(3�3)

xt|{z}
(3�1)

where s is the standard error of the regression

and X is the the matrix of regressors for the 51 sample
points



3. The column headed instab contains the Hansen sta-
tistics for testing the stability of individual coe¢ cients:

The hypothesis of stability is rejected for all three co-
e¢ cients, and, not surprisingly, the joint stability test
decisively rejects the null of parameter constancy.

4. We have a very low value of the Durbin-Watson sta-
tistic. This indicates substantial autocorrelation in the
disturbance term.



Recursive Residuals:

5a. Figure 4.3 shows the recursive residuals (see equation
2) along with two standard error bands (see equation 3)

A point on the graph lying outside the standard error
bands is equivalent to a t statistic [vt=s:e(vt)] being nu-
merically greater than two and thus suggestive of para-
meter inconstancy.

There is one such point in 1966, and a number of similar
points from 1968 to 1970.

5b. Figure 4.4 is an alternative way of showing the same
information as that given by Figure 4.3.



The one-step Chow test for parameter constancy through
the �rst j observations is based on

Fm =
RSSj �RSSj�1

RSSj�1=(j � k � 1)
� F (1; j � k � 1);

j = m+ 1; : : : ; N

where m is the number of observations used in the initial
recursion: m = 1; : : : ; N � 1:

Dividing the F statistic in the above expression by the
5% critical value from F (1; j � k � 1) gives the series
plotted in Figure 4.4.

Any point lying above the horizontal line at 1 implies
rejection of parameter constancy, whereas points below
do not lead to rejection.

As in �gure 4.3 there is one rejection in 1966 and a group
of rejections in 1968 through 1970.



CUSUM tests:

6. The three panels in �gure 4.5 show the recursively
estimated coe¢ cients, with two standard error bands.

As might be anticipated there are dramatic changes in
the late 1960s, especially in the constant (C1), and the
price elasticity, (C2).

In the �rst half of the sample, the price elasticity is not
signi�cantly di¤erent from zero, and its point estimate is
positive.

Only when data from the 1970s are included does the
price elasticity turn negative, and signi�cantly so.

The income elasticity, (C3) is positive and reasonably
stable.



7. The CUSUM tests reported in Figure 4.6 con�rm the
message of the previous �ndings.

8. Finally, the Ramsey RESET test, using just by2, gives
F = 47:2, which is a very strong indicator of speci�ca-
tion error.



Normality test:

(See Chris Brooks: "Introductory Econometrics for Fi-
nance", Section 4.9)

On of the most commonly applied tests for normality is
the Bera-Jarque (BJ) BJ test.

In a normally distributed random variable the entire dis-
tribution is characterized by the �rst two moments-the
mean and the variance.

The standardized third and fourth moments of a distrib-
ution are known as its skewness and kurtosis.

Skewness measures the extent to which a distribution is
not symmetric about its mean value

and kurtosis measures how fat the tails of the distribution
are.



A normal distribution is not skewed and is de�ned to have
a coe¢ cient of kurtosis of 3.

In other words, the coe¢ cient of excess kurtosis, that is
the coe¢ cient of kurtosis minus 3, is zero for the normal
distribution.

A normal distribution is symmetric and said to be mesokur-
tic.

A skewed distribution will have one tail longer than the
other.

A leptokurtic distribution is one which has fatter tails and
is more peaked at the mean than a normally distributed
random variable with the same mean and variance.

A platykurtic distribution will be less peaked in the mean,
will have thinner tails, and more of the distribution in the
shoulders than a normal.

In practice, a leptokurtic distribution is far more likely to
characterize �nancial (and economic) time series.



JB test statistic:

The coe¢ cients of skewness and kurtosis are

sk =
E(e3)

(�2)
3
2

, k =
E(e4)

(�2)2
.

Bera and Jarque (1981) test whether the coe¢ cient of
skewness and the coe¢ cient of excess kurtosis are jointly
zero

(the normality assumption).



The BJ test statistic is given by

JB = N [
csk2
6
+
(bk � 3)2
24

];

where N is the sample size and csk, bk are the sample
skweness and kurtosis.

The test statistic asymptotically follows a �2(2) under
the null hypothesis that the distribution of the series is
symmetric and mesokurtic.

The null hypothesis of normality would be rejected if the
residuals from the model were either signi�cantly skewed
or leptokurtic



Non-normality:

For sample sizes that are su¢ ciently large, violation of
the normality assumption is virtually inconsequential.

Appealing to the central limit theorem, the test statis-
tics will asymptotically follow the appropriate distribu-
tions even in the absence of normality.

It is, of course, possible to employ an estimation method
that does not assume normality, but another distribution

i.e. the t-distribution.



In economic or �nancial modelling it is quite often the
case that one or two very extreme residuals cause a re-
jection of the normality assumption.

Such observations would appear in the tails of the distri-
bution, and would therefore lead e4, which enters in the
de�nition of the kurtosis, to be very large.

Such observations that do not �t in with the pattern of
the remainder of the data are known as outliers.

If this is the case, one way to improve the chances of
error normality is to use dummy variables or some other
method to e¤ectively remove these observations.



Outliers:

In the time series context, suppose that a monthly model
of asset returns from 1980-1990 had been estimated, and
the residuals plotted, and that a particularly large outlier
has been observed for October 1987.

A new variable could be de�ned as

D87M10t = 1 during October 1987 and zero otherwise.

The dummy variable would then be used just like any
other variable in the regression model, e.g.

yt = b0 + b1x1t + b2x2t + b3D87M10t + et



This type of dummy variable that takes the value one
for only a single observation has an e¤ect exactly equiv-
alent to knocking out that observation from the sample
altogether, by forcing the residual for that observation to
zero.

The estimated coe¢ cient on the dummy variable will be
equal to the residual that the dummied observation would
have taken if the dummy variable had not been included.

However,many econometricians would argue that dummy
variables to remove outlying residuals can be used to arti-
�cially improve the characteristics of the model-in essence
fudging the results.

Removing outlying observations will reduce standard er-
rors, reduce the RSS, and therefore increase r2, thus im-
proving the apparent �t of the model of the data.

The removal of observations is also hard to reconcile with
the notion in statistics that each data point represents a
useful piece of information.



The other side of this argument is that outliers can have a
serious e¤ect on coe¢ cient estimates, since by de�nition,
OLS will receive a big penalty, in the form of an increased
RSS, for points that are a long way from the �tted line.
Consequently, OLS will try extra hard to minimize the
distances of points that would have otherwise been a long
way away from the line.

In �gure (see transparencies) one point is a long way from
the rest. If this point is included in the estimation sample,
the �tted line will have a positive slope. If this observation
were removed, the �tted line will have a negative and
larger slope. OLS could not select this line if the outlier
is included since the observation is a long way from the
others and hence when the residual is squared, it would
lead to a big increase in the RSS.

Note that outliers could be detected by plotting y against
x only in the context of a bivariate regression. In the case
where there are more explanatory variables, outliers are
easiest identi�ed by plotting the residuals over time.



So it can been seen that a trade-o¤ potentially exists
between the need to remove outlying observations that
could have an undue impact on the OLS estimates and
cause residual non-normality on the one hand, and the
notion that each data point represents a useful piece of
information on the other. the latter is coupled with the
fact that removing observations at will could arti�cially
improve the �t of the model.

A sensible way to proceed is by introducing dummy vari-
ables to the model only if there is both a statistical need
to do so and a theoretical justi�cation for their inclusion.
Dummy variables may be justi�ably used to remove ob-
servations corresponding to �one-o¤�or extreme events
that are considered highly unlikely to be repeated, and
the information content of which is deemed of no rel-
evance for the data as a whole. Examples may include
stock market crashes, �nancial panics, government crises,
and so on.


