TESTING LINEAR HYPOTHESES ABOUT β

Consider the following regression

$$Y_i = b_1 + b_2 X_{2i} + b_3 X_{3i} + b_4 X_{4i} + e_i$$

We want to test 3 linear restrictions regarding the 4 b's

The restrictions can be written in the following form

$$\begin{bmatrix}
R_{11} & R_{12} & R_{13} & R_{14} \\
R_{21} & R_{22} & R_{23} & R_{24} \\
R_{31} & R_{32} & R_{33} & R_{34}
\end{bmatrix}
\underbrace{\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
b_4
\end{bmatrix}}_{(4x1)} = \underbrace{\begin{bmatrix}
r_1 \\
r_2 \\
r_3
\end{bmatrix}}_{(3x1)}$$

or

$$R b = r (3x4)(4x1) = (3x1)$$

The order of the matrix R is 3x4: 3 (the rows) is the number of restrictions and 4 is the number of coefficients to be estimated

We want to test the following hypothesis

$$H_0: b_2 = b_3 = b_4 = 0$$

Notice that we have three restrictions. These can be written as follows

$$\underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{(3x4)} \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}}_{(4x1)} = \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}}_{(3x1)}$$

Notice that the first equation is the first restriction: $b_2 = 0$

We want to test the following restrictions:

$$b_2 - b_3 = 0, b_4 = 0$$

We can write the two restrictions as follows:

$$\begin{bmatrix}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
b_4
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$
(2x1)

Notice that the first equation is the first restriction: $b_2 - b_3 = 0$

We want to test the hypothesis: $b_2 + b_3 = 1$

If b_2 and b_3 are labor and capital elasticities in a production function, this formulation hypothesizes constant returns to scale

We can write this restriction as

$$\underbrace{\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}}_{(1x4)} \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}}_{(4x1)} = \underbrace{\begin{bmatrix} 1 \end{bmatrix}}_{(1x1)}$$

GENERAL CASE

In general if we have q restrictions and k coefficients to be estimated we can write

$$R b = r (qxk)(kx1) = (qx1)$$

or

$$\begin{bmatrix}
R_{11} & R_{12} & \cdots & R_{1k} \\
R_{21} & R_{22} & \cdots & R_{2k} \\
\vdots & \vdots & \cdots & \vdots \\
R_{q1} & R_{q2} & \cdots & R_{qk}
\end{bmatrix}
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_k
\end{bmatrix} = \begin{bmatrix}
r_1 \\
r_2 \\
\vdots \\
r_q
\end{bmatrix}$$

$$(qxk) \qquad (kx1) \qquad (qx1)$$

Thus the first restriction is given by

$$R_{11}b_1 + R_{12}b_2 + \dots + R_{1k}b_k = r_1$$

and the qth one by

$$R_{q1}b_1 + R_{q2}b_2 + \dots + R_{qk}b_k = r_q$$

Under the null

$$(R\beta - r) \sim N[0, \sigma^2 R(X'X)^{-1}R']$$

$$(qx1) \qquad (qxq)$$

 $R\beta-r$ are the estimated restrictions

F DISTRIBUTION

It can be shown that

$$\frac{(R\beta - r)'[s^2R(X'X)^{-1}R']^{-1}(R\beta - r)}{\frac{(qxq)}{q}} \sim F(q, N-k)$$

Assume that we have three coefficients to estimate: b_1, b_2, b_3 and we want to test the null hypothesis that $b_2 = 0$

Since we have only one restriction:

$$Reta-r=\left[egin{array}{cccc} \mathbf{0} & \mathbf{1} & \mathbf{0} \end{array}
ight]\left[egin{array}{cccc} eta_1 \ eta_2 \ eta_3 \end{array}
ight]=eta_2$$

Further, recall that the estimated variance-covariance matrix of β is given by

$$\widehat{Var}(\beta) = s^{2}(X'X)^{-1} = \begin{bmatrix} Var(\beta_{1}) & \dots & \dots \\ \dots & Var(\beta_{2}) & \dots \\ \dots & \dots & Var(\beta_{3}) \end{bmatrix}$$

Since
$$R=\left[\begin{array}{ccc} 0 & 1 & 0 \end{array}\right]$$
, it follows that
$$Rs^2(X'X)^{-1}R'=Var(\beta_2)$$

Thus

$$(R\beta - r)'[Rs^{2}(X'X)^{-1}R']^{-1}(R\beta - r)/q$$

$$= \frac{\beta_{2}^{2}}{Var(\beta_{2})} \sim F(1, N - k)$$

Note that $\frac{\beta_2^2}{Var(\beta_2)}=(\frac{\beta_2}{\widehat{se}(\beta_2)})^2$, and recall that $\frac{\beta_2}{\widehat{se}(\beta_2)}\sim t(N-k)$

We want to test the hypothesis: $b_2 + b_3 = 1$.

Recall that

$$\widehat{Var}(\beta) = s^{2}(X'X)^{-1}$$

$$= \begin{bmatrix} Var(\beta_{1}) & \dots & \dots \\ \dots & Var(\beta_{2}) & \dots \\ \dots & \dots & Var(\beta_{3}) \end{bmatrix}$$

So we have only one restriction.

Notice that $R = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$. Thus

$$Rs^{2}(X'X)^{-1}R' = Var(\beta_{2}) + Var(\beta_{3}) + 2Cov(\beta_{2}, \beta_{3})$$
$$= Var(\beta_{2} + \beta_{3})$$

In addition $R\beta - r = \beta_2 + \beta_3 - 1$.

Finally,

$$(R\beta - r)'[Rs^{2}(X'X)^{-1}R']^{-1}(R\beta - r)/q$$

$$= \frac{(\beta_{2} + \beta_{3} - 1)^{2}}{Var(\beta_{2} + \beta_{3})} \sim F(1, N - k)$$

Two other forms of the F test

$$\frac{\mathsf{ESS}/(k-1)}{\mathsf{RSS}/(N-k)} \sim F(k-1,N-k),$$

Since $r^2 = \mathrm{ESS}/\mathrm{TSS} = 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}}$, the above equation yields

$$\frac{r^2/k-1}{(1-r^2)/N-k} \sim F(k-1,N-k)$$

Another form of the F test:

First, regress the restricted regression. For example, let the restriction be: $b_2+b_3=1$ or $b_3=1-b_2$

The unrestricted regression is

$$y_i = b_1 + b_2 x_{2i} + b_3 x_{3i} + e_i$$

whereas the restricted one is

$$y_i = b_1 + b_2 x_{2i} - b_2 x_{3i} + x_{3i} + e_i \Rightarrow$$

$$(y_i - x_{3i}) = b_1 + b_2 (x_{2i} - x_{3i}) + e_i$$

The F test statistic is given by

$$rac{(\mathsf{RSS}_R - \mathsf{RSS}_{UR})/q}{\mathsf{RSS}_{UR}/(N-k)} \sim F(q,N-k)$$
, or $rac{(e'e_R - e'e_{UR})/q}{e'e_{UR}/(N-k)} \sim F(q,N-k)$

PROOFS FROM WEEK 7 ONWARDS,

ONLY FOR EC5501

 β , $R\beta$

Recall that

$$\beta \sim N[b, \sigma^2(X'X)^{-1}]$$

The expected value of $R\beta$ is: $E(R\beta) = Rb$

Next we want to calculate the variance-covariance matrix of $R\beta$:

$$Var(R\beta) = E[(R\beta - Rb)(R\beta - Rb)']$$

$$= E[R(\beta - b)(\beta - b)'R']$$

$$= RE[(\beta - b)(\beta - b)']R'$$

$$= RVar(\beta)R' = R \sigma^{2}(X'X)^{-1}R'$$

$$= RVar(\beta)R' = R \sigma^{2}(X'X)^{-1}R'$$

Thus

$$R\beta \sim N[Rb, \sigma^2 R(X'X)^{-1}R']$$

and

$$(R\beta - Rb) \sim N[0, \sigma^2 R(X'X)^{-1}R']$$

Rewrite:

$$(R\beta - Rb) \sim N[0, \sigma^2 R(X'X)^{-1}R']$$

Under the null hypothesis, $H_0: Rb = r$. Thus under the null

$$(R\beta - r) \sim N[0, \sigma^2 R(X'X)^{-1}R']$$

$$(qx1) \qquad (qxq)$$

 $R\beta-r$ are the estimated restrictions

χ^2 DISTRIBUTION

We have q estimated restrictions $R\beta-r$. Each follows (qx1) the N distribution.

Their sum of squares is given by $(R\beta - r)'(R\beta - r)$ (1xq) (qx1)

Recall that
$$Var(R\beta - r) = \sigma^2 R(X'X)^{-1}R'$$

$$(qx1) \qquad (qxq)$$

The sum of squares, $(R\beta - r)'(R\beta - r)$, standardized (1xq) (qx1) by the variance of $R\beta - r$ is given by

$$(R\beta - r)' [\sigma^2 R(X'X)^{-1}R']^{-1} (R\beta - r) \sim \chi^2(q)$$
(1xq) (qxq) (qx1)

and it follows the $\chi^2(q)$

F DISTRIBUTION

It can also be shown that the RSS divided by σ^2 follows the $\chi^2(N-k)$

$$\frac{\widehat{e}'\widehat{e}}{\sigma^2} \sim \chi^2(N-k)$$

It can also be shown that the ratio of two χ^2 distributions with q and N-k degree of freedoms divided by $\frac{q}{N-k}$ follows the F distribution with q and N-k degrees of freedom

That is

$$\frac{(R\beta - r)'[\sigma^{2}R(X'X)^{-1}R']^{-1}(R\beta - r)}{(1xq) \qquad (qxq) \qquad (qx1)} \\
\frac{\frac{\widehat{e}'\widehat{e}}{\sigma^{2}}\frac{q}{N-k}}{(R\beta - r)'[R(X'X)^{-1}R']^{-1}(R\beta - r)} \\
= \frac{(1xq) \qquad (qxq) \qquad (qx1)}{s^{2}q} \sim F(q, N - k)$$

since $\frac{\hat{e}'\hat{e}}{N-k} = s^2$.