TESTING LINEAR HYPOTHESES ABOUT β

Consider the following regression

$$
Y_{i}=b_{1}+b_{2} X_{2 i}+b_{3} X_{3 i}+b_{4} X_{4 i}+e_{i}
$$

We want to test 3 linear restrictions regarding the $4 b$'s

The restrictions can be written in the following form

$$
\underbrace{\left[\begin{array}{llll}
R_{11} & R_{12} & R_{13} & R_{14} \\
R_{21} & R_{22} & R_{23} & R_{24} \\
R_{31} & R_{32} & R_{33} & R_{34}
\end{array}\right]}_{(3 x 4)} \underbrace{\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]}_{(4 x 1)}=\underbrace{\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]}_{(3 x 1)}
$$

or

$$
\underset{(3 x 4)(4 x 1)}{R} \underset{(3 x 1)}{r}
$$

The order of the matrix R is 3×4 : 3 (the rows) is the number of restrictions and 4 is the number of coefficients to be estimated

EXAMPLE 1

We want to test the following hypothesis

$$
H_{0}: b_{2}=b_{3}=b_{4}=0
$$

Notice that we have three restrictions. These can be written as follows

$$
\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{(3 x 4)} \underbrace{\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]}_{(4 x 1)}=\underbrace{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}_{(3 x 1)}
$$

Notice that the first equation is the first restriction: $b_{2}=$ 0

EXAMPLE 2

We want to test the following restrictions:

$$
b_{2}-b_{3}=0, b_{4}=0
$$

We can write the two restrictions as follows:

$$
\underbrace{\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{(2 x 4)} \underbrace{\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]}_{(4 x 1)}=\underbrace{\left[\begin{array}{l}
0 \\
0
\end{array}\right]}_{(2 x 1)}
$$

Notice that the first equation is the first restriction: $b_{2}-$ $b_{3}=0$

EXAMPLE 3

We want to test the hypothesis: $b_{2}+b_{3}=1$

If b_{2} and b_{3} are labor and capital elasticities in a production function, this formulation hypothesizes constant returns to scale

We can write this restriction as

$$
\underbrace{\left[\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right]}_{(1 x 4)} \underbrace{\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]}_{(4 x 1)}=\underbrace{[1]}_{(1 x 1)}
$$

GENERAL CASE

In general if we have q restrictions and k coefficients to be estimated we can write

$$
\underset{(q x k)(k x 1)}{R} \underset{(q x 1)}{b} \underset{(}{r}
$$

or

$$
\underbrace{\left[\begin{array}{cccc}
R_{11} & R_{12} & \cdots & R_{1 k} \\
R_{21} & R_{22} & \cdots & R_{2 k} \\
\vdots & \vdots & \cdots & \vdots \\
R_{q 1} & R_{q 2} & \cdots & R_{q k}
\end{array}\right]}_{(q x k)} \underbrace{\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right]}_{(k x 1)}=\underbrace{\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{q}
\end{array}\right]}_{(q x 1)}
$$

Thus the first restriction is given by

$$
R_{11} b_{1}+R_{12} b_{2}+\cdots+R_{1 k} b_{k}=r_{1}
$$

and the q th one by

$$
R_{q 1} b_{1}+R_{q 2} b_{2}+\cdots+R_{q k} b_{k}=r_{q}
$$

Under the null

$$
\underset{(q x 1)}{(R \beta-r)} \sim N\left[0, \sigma^{2} R\left(X_{(q x q)}^{\prime} X\right)^{-1} R^{\prime}\right]
$$

$R \beta-r$ are the estimated restrictions

F DISTRIBUTION

It can be shown that

$$
\frac{\underset{(1 x q)}{(R \beta-r)^{\prime}\left[s^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}} \begin{array}{c}
(R \beta-r) \\
(q x q)
\end{array}}{q} \sim F(q, N-k)
$$

EXAMPLE 1

Assume that we have three coefficients to estimate: b_{1}, b_{2}, b_{3} and we want to test the null hypothesis that $b_{2}=0$

Since we have only one restriction:

$$
R \beta-r=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]=\beta_{2}
$$

Further, recall that the estimated variance-covariance matrix of β is given by

$$
\begin{aligned}
\widehat{\operatorname{Var}}(\beta)= & s^{2}\left(X^{\prime} X\right)^{-1}= \\
& {\left[\begin{array}{ccc}
\operatorname{Var}\left(\beta_{1}\right) & \ldots & \cdots \\
\cdots & \operatorname{Var}\left(\beta_{2}\right) & \ldots \\
\cdots & \cdots & \operatorname{Var}\left(\beta_{3}\right)
\end{array}\right] }
\end{aligned}
$$

Since $R=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$, it follows that

$$
\operatorname{Rs}^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}=\operatorname{Var}\left(\beta_{2}\right)
$$

Thus

$$
\begin{aligned}
& (R \beta-r)^{\prime}\left[R s^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \beta-r) / q \\
= & \frac{\beta_{2}^{2}}{\operatorname{Var}\left(\beta_{2}\right)} \sim F(1, N-k)
\end{aligned}
$$

Note that $\frac{\beta_{2}^{2}}{\operatorname{Var}\left(\beta_{2}\right)}=\left(\frac{\beta_{2}}{\hat{s e}\left(\beta_{2}\right)}\right)^{2}$, and recall that $\frac{\beta_{2}}{\overline{s e}\left(\beta_{2}\right)} \sim$ $t(N-k)$

EXAMPLE 2

We want to test the hypothesis: $b_{2}+b_{3}=1$.
Recall that

$$
\begin{aligned}
\widehat{\operatorname{Var}}(\beta) & =s^{2}\left(X^{\prime} X\right)^{-1} \\
& =\left[\begin{array}{ccc}
\operatorname{Var}\left(\beta_{1}\right) & \cdots & \cdots \\
\cdots & \operatorname{Var}\left(\beta_{2}\right) & \cdots \\
\cdots & \cdots & \operatorname{Var}\left(\beta_{3}\right)
\end{array}\right]
\end{aligned}
$$

So we have only one restriction.
Notice that $R=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$. Thus

$$
\begin{aligned}
{R s^{2}}^{2}\left(X^{\prime} X\right)^{-1} R^{\prime} & =\operatorname{Var}\left(\beta_{2}\right)+\operatorname{Var}\left(\beta_{3}\right)+2 \operatorname{Cov}\left(\beta_{2}, \beta_{3}\right) \\
& =\operatorname{Var}\left(\beta_{2}+\beta_{3}\right)
\end{aligned}
$$

In addition $R \beta-r=\beta_{2}+\beta_{3}-1$.
Finally,

$$
\begin{aligned}
& (R \beta-r)^{\prime}\left[R s^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \beta-r) / q \\
= & \frac{\left(\beta_{2}+\beta_{3}-1\right)^{2}}{\operatorname{Var}\left(\beta_{2}+\beta_{3}\right)} \sim F(1, N-k)
\end{aligned}
$$

Two other forms of the F test

$$
\frac{\mathrm{ESS} /(k-1)}{\operatorname{RSS} /(N-k)} \sim F(k-1, N-k)
$$

Since $r^{2}=\mathrm{ESS} / \mathrm{TSS}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}$, the above equation yields

$$
\frac{r^{2} / k-1}{\left(1-r^{2}\right) / N-k} \sim F(k-1, N-k)
$$

Another form of the F test:

First, regress the restricted regression. For example, let the restriction be: $b_{2}+b_{3}=1$ or $b_{3}=1-b_{2}$

The unrestricted regression is

$$
y_{i}=b_{1}+b_{2} x_{2 i}+b_{3} x_{3 i}+e_{i}
$$

whereas the restricted one is

$$
\begin{aligned}
y_{i} & =b_{1}+b_{2} x_{2 i}-b_{2} x_{3 i}+x_{3 i}+e_{i} \Rightarrow \\
\left(y_{i}-x_{3 i}\right) & =b_{1}+b_{2}\left(x_{2 i}-x_{3 i}\right)+e_{i}
\end{aligned}
$$

The F test statistic is given by

$$
\begin{aligned}
\frac{\left(\mathrm{RSS}_{R}-\mathrm{RSS}_{U R}\right) / q}{} & \sim F(q, N-k), \text { or } \\
\mathrm{RSS}_{U R} /(N-k) & \sim F(q, N-k)
\end{aligned}
$$

PROOFS FROM WEEK 7 ONWARDS,

ONLY FOR EC5501

$\beta, R \beta$

Recall that

$$
\beta \sim N\left[b, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right]
$$

The expected value of $R \beta$ is: $E(R \beta)=R b$

Next we want to calculate the variance-covariance matrix of $R \beta$:

$$
\begin{aligned}
\operatorname{Var}(R \beta) & =E\left[(R \beta-R b)(R \beta-R b)^{\prime}\right] \\
& =E\left[R(\beta-b)(\beta-b)^{\prime} R^{\prime}\right] \\
& =R E\left[(\beta-b)(\beta-b)^{\prime}\right] R^{\prime} \\
& =R \operatorname{Var}(\beta) R^{\prime}=\underset{(q x k)}{R} \sigma^{2}\left(X_{(k x k)}^{\prime} X\right)^{-1} \frac{R^{\prime}}{(k x q)}
\end{aligned}
$$

Thus

$$
R \beta \sim N\left[R b, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]
$$

and

$$
(R \beta-R b) \sim N\left[0, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]
$$

Rewrite:

$$
(R \beta-R b) \sim N\left[0, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]
$$

Under the null hypothesis, $H_{0}: R b=r$. Thus under the null

$$
\underset{(q x 1)}{(R \beta-r)} \sim N\left[0, \sigma^{2} R\left(X_{(q x q)}^{\prime} X\right)^{-1} R^{\prime}\right]
$$

$R \beta-r$ are the estimated restrictions

χ^{2} DISTRIBUTION

We have q estimated restrictions $R \beta-r$. Each follows (qx1) the N distribution.

Their sum of squares is given by $(R \beta-r)^{\prime}(R \beta-r)$
$(1 x q) \quad(q x 1)$

Recall that $\operatorname{Var}(R \beta-r)=\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}$
($q x 1$)
($q x q$)

The sum of squares, $(R \beta-r)^{\prime}(R \beta-r)$, standardized (1xq) ($q x 1$) by the variance of $R \beta-r$ is given by

$$
\underset{(1 x q)}{(R \beta-r)^{\prime}}\left[\sigma_{(q x q)}^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} \underset{(q x 1)}{(R \beta-r)} \sim \chi^{2}(q)
$$

and it follows the $\chi^{2}(q)$

F DISTRIBUTION

It can also be shown that the RSS divided by σ^{2} follows the $\chi^{2}(N-k)$

$$
\frac{\hat{e}^{\prime} \widehat{e}}{\sigma^{2}} \sim \chi^{2}(N-k)
$$

It can also be shown that the ratio of two χ^{2} distributions with q and $N-k$ degree of freedoms divided by $\frac{q}{N-k}$ follows the F distribution with q and $N-k$ degrees of freedom

That is

$$
\begin{aligned}
& (R \beta-r)^{\prime}\left[\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \beta-r) \\
& \frac{(q x q)}{\frac{\hat{e}^{\widehat{e}}}{\sigma^{2}} \frac{q}{N-k}} \\
& (R \beta-r)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \beta-r) \\
& =\frac{(1 x q)(q x q)}{s^{2} q} \sim F(q, N-k)
\end{aligned}
$$

since $\frac{\hat{e}^{\prime} \widehat{e}}{N-k}=s^{2}$.

