
TESTING LINEAR HYPOTHESES ABOUT �

Consider the following regression

Yi = b1 + b2X2i + b3X3i + b4X4i + ei

We want to test 3 linear restrictions regarding the 4 b�s

The restrictions can be written in the following form
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The order of the matrix R is 3x4: 3 (the rows) is the
number of restrictions and 4 is the number of coe¢ cients
to be estimated



EXAMPLE 1

We want to test the following hypothesis

H0 : b2 = b3 = b4 = 0

Notice that we have three restrictions. These can be
written as follows
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Notice that the �rst equation is the �rst restriction: b2 =
0



EXAMPLE 2

We want to test the following restrictions:

b2 � b3 = 0; b4 = 0

We can write the two restrictions as follows:
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Notice that the �rst equation is the �rst restriction: b2�
b3 = 0



EXAMPLE 3

We want to test the hypothesis: b2 + b3 = 1

If b2 and b3 are labor and capital elasticities in a pro-
duction function, this formulation hypothesizes constant
returns to scale

We can write this restriction as
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GENERAL CASE

In general if we have q restrictions and k coe¢ cients to
be estimated we can write
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Thus the �rst restriction is given by

R11b1 +R12b2 + � � �+R1kbk = r1
and the qth one by

Rq1b1 +Rq2b2 + � � �+Rqkbk = rq



Under the null
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It can be shown that
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EXAMPLE 1

Assume that we have three coe¢ cients to estimate: b1; b2; b3
and we want to test the null hypothesis that b2 = 0

Since we have only one restriction:
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Further, recall that the estimated variance-covariance ma-
trix of � is given by
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EXAMPLE 2

We want to test the hypothesis: b2 + b3 = 1.

Recall thatdV ar(�) = s2(X 0X)�1

=
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In addition R� � r = �2 + �3 � 1.

Finally,
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Two other forms of the F test

ESS=(k � 1)
RSS=(N � k)

� F (k � 1; N � k);

Since r2 =ESS=TSS= 1�RSSTSS, the above equation yields

r2=k � 1
(1� r2)=N � k
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Another form of the F test:

First, regress the restricted regression. For example, let
the restriction be: b2 + b3 = 1 or b3 = 1� b2

The unrestricted regression is

yi = b1 + b2x2i + b3x3i + ei

whereas the restricted one is

yi = b1 + b2x2i � b2x3i + x3i + ei )
(yi � x3i) = b1 + b2(x2i � x3i) + ei

The F test statistic is given by
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RSSUR=(N � k)

� F (q;N � k), or
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PROOFS FROM WEEK 7 ONWARDS,

ONLY FOR EC5501

�, R�

Recall that

� � N [b; �2(X 0X)�1]

The expected value of R� is: E(R�) = Rb

Next we want to calculate the variance-covariance matrix
of R�:

V ar(R�) = E[(R� �Rb)(R� �Rb)0]
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and

(R� �Rb) � N [0; �2R(X 0X)�1R0]



Rewrite:

(R� �Rb) � N [0; �2R(X 0X)�1R0]

Under the null hypothesis, H0 : Rb = r. Thus under the
null
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�2 DISTRIBUTION

We have q estimated restrictions R� � r
(qx1)

. Each follows

the N distribution.

Their sum of squares is given by (R� � r)0
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F DISTRIBUTION

It can also be shown that the RSS divided by �2 follows
the �2(N � k)

be0be
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It can also be shown that the ratio of two �2 distributions
with q and N � k degree of freedoms divided by q

N�k
follows the F distribution with q and N � k degrees of
freedom

That is
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