
POSSIBLE SPECIFICATION ERRORS

Consider the following regression

Y
(Nx1)

= X
(Nxk)

b
(kx1)

+ e
(Nx1)

Recall the assumptions regarding the errors: ei � iidN(0; �2)

Possible speci�cation errors include:

i) Non-normality: The estimator � is still BLUE (best
linear unbiased estimator; with the minimum variance)

but the inferences procedures are now only asymptotically
valid



HETEROSCEDASTICITY

Recall that homoscedasticity implies:

E(ee0)
(NxN)

= E

266664
e21 e1e2 � � � e1eN
e2e1 e22 � � � e2eN
... ... � � � ...

eNe1 eNe2 � � � e2N

377775

=

266664
�2 0 � � � 0
0 �2 � � � 0
... ... � � � ...
0 0 � � � �2

377775 = �2I
Instead, when there is heterocedasticity we have

E(ee0)
(NxN)

= E

266664
e21 e1e2 � � � e1eN
e2e1 e22 � � � e2eN
... ... � � � ...

eNe1 eNe2 � � � e2N

377775

=

266664
�21 0 � � � 0
0 �22 � � � 0
... ... � � � ...
0 0 � � � �2N

377775



AUTOCORRELATED DISTURBANCES

Recall that serially uncorrelated errors imply that

E(ee0)
(NxN)

= E

266664
e21 e1e2 � � � e1eN
e2e1 e22 � � � e2eN
... ... � � � ...

eNe1 eNe2 � � � e2N

377775

=

266664
�2 0 � � � 0
0 �2 � � � 0
... ... � � � ...
0 0 � � � �2

377775 = �2I
In other words E(eiej) = 0, for i 6= j.



When there are autocorrelated disturbances, we have

E(ee0)
(NxN)

= E

266664
e21 e1e2 � � � e1eN
e2e1 e22 � � � e2eN
... ... � � � ...

eNe1 eNe2 � � � e2N

377775

=

266664
�2 �12 � � � �1N
�21 �2 � � � �2N
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�N1 �N2 � � � �2

377775



HETEROSCEDASTICITY AND THE V ar(�)

Recall that the variance-covariance matrix of the kx1
vector of the estimators � is given by

V ar(�)
(kxk)

= E[(� � b)
(kx1)

(� � b)0
(1xk)

]

Recall also that the LS vector estimator � is

� = (X 0X)�1X 0Y

and that under homoscedastic errors

dV ar(�)
(kxk)

= E[(� � b)
(kx1)

(� � b)0
(1xk)

] = �2(X 0X)�1

Next recall that in the presence of heteroscedasticity

E(ee0) 6= �2I but



E(ee0) =

266664
�21 0 � � � 0
0 �22 � � � 0
... ... � � � ...
0 0 � � � �2N

377775 = 

It can be shwon that the variance-covariance matrix of �
is given by

E[(� � b)
(kx1)

(� � b)0
(1xk)

] = [(X 0X)�1X 0
X(X 0X)�1]

Of course 
 is unobserved since �2i , i = 1; : : : ; �2N are
unobserved

White proposed to replace �2i by the residual be2i
Thus the estimated variance-covariance matrix of �, dV ar(�)

(kxk)
,

is given by

dV ar(�)
(kxk)

= [(X 0X)�1
(kxk)

X 0
(kxN)

b

(NxN)

X
(Nxk)

(X 0X)�1
(kxk)

]

where b
 = diagfbe21; be22; � � � ; be2Ng.



TESTS FOR HETEROSCEDASTICITY

1. WHITE�s test

1st step. Run the following regression

Y = Xb+ e

and save the vector of the residuals: be = Y � X� =
Y � bY
2nd step. Regress the squared residuals, be2i , on a con-
stant, all the regressors from step 1, their squares and
their cross products

(the auxiliary regression)

Example: Suppose we have three regressors: 1; X2i and
X3i, that is k = 3



In the 2nd step we run the auxiliary regression

be2i = c1+c2X2i+c3X3i+c4X22i+c5X23i+c6X2iX3i+ui
The null hypothesis is: H0 : c2 = c3 = � � � = c6 = 0

(homoskedasticity)

The alternative hypothesis is H0 : c2; c3; � � � ; c6 6= 0

(heteroscedasticity)

White show that Nr2 from the auxiliary regression under
the null hypothesis follows (asymptotically)

the �2 distribution with q degrees of freedom where q is
the number of the regressors (apart from the constant)
in the auxiliary regression

In other words,

nr2
a� �2(q)

In our example q = 5.



If homoscedasticity is rejected there is no indication of
the form of heteroscedasticity, so one has to compute
White�s standard errors

dV ar(�) 6= s2(X 0X)�1, butdV ar(�)
(kxk)

= [(X 0X)�1
(kxk)

X 0
(kxN)

b

(NxN)

X
(Nxk)

(X 0X)�1
(kxk)

]

where b
 = diagfbe21; be22; � � � ; be2Ng
One problem with White�s test is that q might be very
large. For example, if k = 10 then q = k(k+1)=2�1 =
54



2. BREUSCH-PAGAN or GODFREY Test

The Breusch-Pagan or Godfrey test has two forms. Here
we will examine the simplest one

1st step. Run the following regression

Y = Xb+ e

and save the vector of the residuals: be = Y � X� =
Y � bY
Consider a px1 vector of variables, Zi

Z0i = [1; Z2i; : : : ; Zpi]



2nd step. Run the auxiliary regression

be2i = Z0i
(1xp)

c
(px1)

+ ui

where c is a px1 vector of parameters c0 = [c1; c2; : : : ; cp]

The null hypothesis of homoscedasticity is:

H0 : c2 = c3 = � � � cp = 0

It can be shown that Nr2 from the above regression is
asymptotically distributed as �2(p� 1):

Nr2
a� �2(p� 1)



AUTOCORRELATED DISTURBANCES

Another possible source of misspeci�cation is serial cor-
relation in the residuals

E(utut�s) = s 6= 0;
for s = �1;�2; : : : ;

When we run the following regression

Y = Xb+ e

we hope to include all relevant variables in the X matrix

One possible reason for autocorrelated disturbances is the
omission of some important variables from the X matrix

Example:

Real Relation : Yt = b1 + b2Xt + b3Yt�1 + et
Estimated one : Yt = b1 + b2Xt + vt

Notice that the relation between et and vt is

vt = b3Yt�1 + et

which is autocorrelated because Yt is autocorrelated



DURBIN-WATSON TEST FOR SERIAL CORRELATION

The Durbin-Watson test statistic is computed from the
OLS residuals: be = Y �X�
It has the following form

d =

PT
t=2(bet � bet�1)2PT

t=1 be2t
i) If the e�s are positively autocorrelated, then successive
values will be tend to be close to each other

! jet � et�1j < jetj In this case d should be small

ii) If the e�s are negatively autcorrelated, then successive
observations will be on the opposite sides of the horizontal
axis

! jet � et�1j > jetj In this case d should be big

iii) If the e�s are uncorrelated then the d should be in
between



Note that

b� ' PT
t=2 betbet�1PT
t=2 be2t�1

which is the estimated slope coe¢ cient from the following
regression

bet = a+ bbet�1 + ut
It can be shown that

d = 2(1� b�)
Thus, the above equation shows that the range of d is
from 0 (when b� = 1) to 4 (when b� = �1).
Moreover,

d < 2, for positive autocor of the e0s,
d > 2, for negative autocor of the e0s,
d ' 2, for zero autocor of the e0s.



Durbin and Watson established upper (du) and lower (dl)
bounds for the critical values.

These bounds depend only on the sample size and the
number of regressors.

They are used to test the hypothesis of zero autocorre-
lation against the alternative of positive �rst order auto-
correlation.

The testing procedure is as follows:

1. If d < dl, reject the hypothesis of nonautocorrelated
errors in favor of the hypothesis of positive �rst-order
autocorrelation.

2. If d > du do not reject the null hypothesis

3. If dl < d < du the test is inconclusive



If the value of d exceeds 2, one may wish to test the null
hypothesis against the alternative of negative �rst-order
autocorrelation.

The test is done by calculating 4 � d and comparing tis
statistic with the tabulated critical values as if one were
testing for positive autocorrelation.

There are two important quali�cations to the use of the
Durbin-Watson test. First, it is necessary to include a
constant term in the regression.

Second, it is strictly valid only for a nonstochastic X
matrix.

Thus it is not applicable when lagged values of the de-
pendent variable appear among the regressors.



BREUSCH-GODFREY test

These two authors independently built on the work of
Durbin to develop LM tests against general autoregressive
or moving average disturbance processes.

Suppose the speci�ed equation is

yi = a+ bxi + ui (1)

with

ui = cui�1 + ei; or (1� cL)ui = ei (2)

where it is assumed that jcj < 1 and that the e0s are
independently and identically distributed normal variables
with zero mean and variance �2e.

Multiplying both sides of equation (1) by 1 � cL and
substituting equation (2) gives

(1� cL)yi = a(1� c) + (1� cL)bxi + ei|{z}
(1�cL)ui

)

yi = a(1� c) + cyi�1 + bxi � cbxi�1 + ei
(3)



yi = a(1� c) + cyi�1 + bxi � cbxi�1 + ei

We want to test the hypothesis that c = 0. Equation (3)
is nonlinear in the parameters.

The test is obtained in two steps:

First, apply OLS to equation (1)

yi = a+ bxi + ui

to obtain the residuals bui.
Then regress bui on a constant, xi and bui�1.
Under the null H0, nr2 is asymptotically �2(1).



BOX�PIERCE LJUNG STATISTIC

The Box-Pierce Q statistic is based on the squares of
the �rst p autocorrelation coe¢ cients (rj) of the OLS
residuals.

The statistic is de�ned as

Q = N
Xp

j=1
r2j

where

rj =

PN
i=j+1 eiei�jPN

i=1 e
2
i

Under the hypothesis of zero autocorrelations for the
residuals, Q will have an asymptotic �2 distribution with
degrees of freedom equal to p minus the number of pa-
rameters estimated in �tting an ARMA model.



An improved small-sample performance is expected from
the revised Lung-Box statistic

Q0 = N(N + 2)
Xp

j=1
r2j=N � j

These statistics are sometimes used to test for autocorre-
lated disturbances in the type of regression equation that
we have been considering,

but this application is inappropriate because equations
such as equation (3) are not pure AR schemes but have
exogenous variables as well:

yi = a(1� c) + cyi�1 + bx� cdxi�1 + ei

The e¤ect on the distribution of Q or Q0 is unknown.



PROOFS FROM WEEK 7 ONWARDS

(ONLY FOR EC5501)



HETEROSCEDASTICITY AND THE V ar(�)

Recall that the variance-covariance matrix of the kx1
vector of the estimators � is given by

V ar(�)
(kxk)

= E[(� � b)
(kx1)

(� � b)0
(1xk)

]

since E(�) = b (see below).

Recall also that the LS vector estimator � is

� = (X 0X)�1X 0Y

Since Y = Xb+ e, it follows that

� = (X 0X)�1X 0(Xb+ e)

= (X 0X)�1X 0Xb+ (X 0X)�1X 0e

= b+ (X 0X)�1X 0e (4)

From equation (4) we have E(�) = b and

� � b = (X 0X)�1X 0e



Hence,

E[(� � b)
(kx1)

(� � b)0
(1xk)

] = Ef(X 0X)�1X 0e[(X 0X)�1X 0e]0g

= E[(X 0X)�1X 0ee0X(X 0X)�1]

since [(X 0X)�1]0 = (X 0X)�1 and (X 0)0 = X

Next, we have

E[(� � b)
(kx1)

(� � b)0
(1xk)

] = [(X 0X)�1X 0E(ee0)X(X 0X)�1]

Next recall that in the presence of heteroscedasticity

E(ee0) 6= �2I but

E(ee0) =

266664
�21 0 � � � 0
0 �22 � � � 0
... ... � � � ...
0 0 � � � �2N

377775 = 

Thus the variance-covariance matrix of � is given by

E[(� � b)
(kx1)

(� � b)0
(1xk)

] = [(X 0X)�1X 0
X(X 0X)�1]



Of course 
 is unobserved since �2i , i = 1; : : : ; �2N are
unobserved

White proposed to replace �2i by the residual be2i
Thus the estimated variance-covariance matrix of �, dV ar(�)

(kxk)
,

is given by

dV ar(�)
(kxk)

= [(X 0X)�1
(kxk)

X 0
(kxN)

b

(NxN)

X
(Nxk)

(X 0X)�1
(kxk)

]

where b
 = diagfbe21; be22; � � � ; be2Ng.



PROOF OF d = 2(1� b�)
The correlation between et and et�1 is given by

� =
E(etet�1)q

V ar(e2t )
q
V ar(e2t�1)

The sample correlation coe¢ cient is given by

b� = PT
t=2 betbet�1qPT

t=2 be2tqPTt=2 be2t�1
Notice that for a large T

TX
t=1

be2t ' TX
t=2

be2t ' TX
t=2

be2t�1
(ignoring end point di¤erences)

Thus

b� ' PT
t=2 betbet�1PT
t=2 be2t�1



which is the estimated slope coe¢ cient from the following
regression

bet = a+ bbet�1 + ut
Thus

d =

PT
t=2(bet � bet�1)2PT

t=1 be2t =

=

PT
t=2 be2t +PT

t=2 be2t�1 � 2PTt=2 betbet�1PT
t=1 be2t

'
2
PT
t=2 be2t�1 � 2PTt=2 betbet�1PT

t=2 be2t�1 =

= 2� 2
PT
t=2 betbet�1PT
t=2 be2t�1| {z }b�

= 2(1� b�)



DURBIN TESTS FOR A REGRESSION CONTAINING

LAGGED VALUES OF THE DEPENDENT VARIABLE

As has been pointed out, the Durbin-Watson test proce-
dure was derived under the assumption of a nonstochastic
X matrix, which is violated by the presence of the de-
pendent variable among the regressors.

Consider the relation

yt = b1yt�1+� � �+bryt�r+br+1x1t+� � �+br+sxst+ut;
(5)

where

ut = 'ut�1 + et

with j'j < 1, and et � N(0; �2I).



For this general case Durbin�s basic result is that under
the null hypothesis, H0 : ' = 0, the statistic

h = �

vuut N

1�N dV ar(�1)
a� N(0; 1); (6)

where dV ar(�1) is the estimated variance of �1 in the
OLS �t of equation (5)

and � =
PN
t=2 butbut�1=PNt=2 bu2t�1 is the estimate of '

from the regression of but on but�1
the but�s being the residuals from the OLS regression of
equation (5).



The test procedure is as follows. Compute h in equation
(6) and if h > 1:645 (the 10% critical value for the
normal distribution)

reject the null hypothesis at the 5% level in favor of the
hypothesis of positive, �rst-order autocorrelation.

For negative h a similar one sided test for negative auto-
correlation can be carried out.

The test breaks down if N dV ar(�1) > 1.



Durbin showed that an asymptotically equivalent proce-
dure is the following:

1. Estimate the OLS regression in equation (5) and ob-
tain the residuals bu�s
2. Estimate the OLS regression of

but on but�1, yt�1, : : : ; yt�r, x1t, : : : ; xst
3. If the coe¢ cient of but�1 in this regression is signi�-
cantly di¤erent from zero by the usual t test,

reject the null hypothesis H0 : ' = 0.

Durbin indicates that this last procedure can be extended
to test for an AR(p) disturbance rather than an AR(1)
process by simply adding additional lagged be�s to the sec-
ond regression and testing the joint signi�cance of the
coe¢ cients of the lagged residuals.



ESTIMATION WITH AUTOCORRELATED DISTRUR-
BANCES:

If one or more of the tests described in the previous analy-
sis suggest autocorrelated disturbances, what should be
done?

One procedure is to start by checking whether the auto-
correlation may not be a sign of misspeci�cation in the
original relationship.

Suppose that the correct relationship is

yt = 1 + 2xt + 3xt�1 + 4yt�1 + et; (7)

where et are white noise.

A researcher�s economic theory, however, delivers the propo-
sition that yt is in�uenced only by xt.

When this model is �tted to the data, it is not surprising
that signi�cant autocorrelation is found in the errors.



To take this autocorrelation into account in the estima-
tion of the relationship, the researcher now speci�es

yt = b1 + b2xt + ut (8)

with

ut = 'ut�1 + et or (9)

(1� 'L)ut = et

and proceeds to estimate it by, say, GLS.

The correct model in equation (7) involves �ve parame-
ters, namely four parameters and a variance,

whereas our reseacher�s speci�cation has just four para-
meters.

The researcher is thus imposing a possibly invalid restric-
tion on the parameters of the true model.



The nature of this restriction may be seen by rewriting
equation (8) in the form

(1�'L)yt = b1(1�')+b2(1�'L)xt+ et|{z}
(1�'L)ut

(10)

(We multiply both sides of equation (8) by (1�'L) and
use equation (9).

Equation (7)

yt = 1 + 2xt + 3xt�1 + 4yt�1 + et;

can be written as

(1� 4L)yt = 1 + (2 + 3L)xt + et or

(1� 4L)yt = 1 + 2(1 +
3
2
L)xt + et (11)

Comparison of the parameters in equations (10) and (11)
shows that the restriction involved in moving from the
former to the latter is

4 = �
3
2

(12)

This is known as common factor restriction.



There are two alternative estimation procedures:

(i) Non-linear least squares

(ii) COCHRANE-ORCUTT

Rewriting equation (10) we have

(1� 'L)yt = b1(1� ') + b2(1� 'L)xt + et (13)

The above equation can also be written as

(yt� b1� b2xt) = '(yt�1� b1� b2xt�1) + et: (14)

If ' were known in equation (13) the b�s could be esti-
mated by straightforward OLS.

Similarly, if the b�s were known in equation (14) ' could
be estimated by an OLS regression with the intercept
suppressed.

Cochrane and Orcutt suggest an iterative estimation pro-
cedure based on this pair of relations.



Start say, with an estimate of guess b'1 of the autocor-
relation parameter and use it to compute the di¤erences
(1� b'1L)yt and (1� b'1L)xt.
These transformed variables are then used in the OLS
regression (13):

(1� 'L)yt = b1(1� ') + b2(1� 'L)xt + et

yielding estimated coe¢ cients �(1)1 and �(2)2 .

These in turn are used to compute the variables in equa-
tion (14):

(yt � b1 � b2xt) = '(yt�1 � b1 � b2xt�1) + et:

and an OLS regression yields a new estimate b'2.



The iterations continue until a satisfactory degree of con-
vergence is reached.

The concern with iterative procedures is that they may
converge to a local minimum and not necessarily to the
global minimum.

A precaution is to �t equation (13) for a grid of ' values
in steps of 0:1 from, say, �0:9 to 0:9

and then iterate from the regression with the smallest
RSS.



GARCH HETEROSCEDASTICITY

In our analysis up to now we assume that the error term
"t has zero mean:

That is

E("t) = E("tj"t�1; "t�2; : : : ; )
= Et�1("t) = 0

constant unconditional variance:

V ar("t) = E("
2
t ) = �

2

and constant conditional (on time t� 1) variance:

ht = V ar("tj"t�1; "t�2; : : : ; )
= E("2t j"t�1; "t�2; : : :)
= Et�1("

2
t ) = E("

2
t ) = �

2

However, in many cases this is an unrealsistic.assumption.
The conditional variance is not constant but changes with
time. It depends on information up to to time t� 1.



ARCH and GARCH MODELS

The next question is what kind of formulation one should
use for ht.

Naturally, ht should be a function of q past squared er-
rors. This is an ARCH(p) process:

ht = ! + �1"
2
t�1 + � � �+ �p"2t�q

= ! +�
q
i=1�i"

2
t�i:

ARCH: Autoregressive conditional heteroscedasticity.

One can include lagged values of the conditional vari-
ance in the above expression. This is the GARCH(p; q)
process:

ht = ! + �1"
2
t�1 + � � �+ �p"2t�q +

+�1ht�1 + � � �+ �pht�p
= ! +�

q
i=1�i"

2
t�i +�

p
j=1�jht�j:

GARCH: Generalized ARCH.



The conditional variance ht must be positive at all time
t.

POSITIVITY OF THE CONDITIONAL VARIANCE

Consider the GARCH(p; q) process:

ht = ! +
qX
i=1

�i"
2
t�i +�

p
j=1�jht�j:

Su¢ cient conditions for the positivity of the conditional
variance are

! > 0; �i � 0, for i = 1; : : : ; q
�j � 0; for j = 1; : : : ; p:



One can write the error term "t as

"t =
p
htet

where et are independently and identically distributed
random variables with zero mean and unit variance:

E(et) = Et�1(et) = 0 and E(e2t ) = Et�1(e
2
t ) = 1.

This implies that

Et�1("t) =
p
htEt�1(et) = 0

and

Et�1("
2
t ) = htEt�1(e

2
t ) = ht:

Note that using the law of the iterated expectations we
have

E("2t ) = E[Et�1("
2
t )] = E(ht).



Consider the ARCH(1) process: ht = !+�1"2t�1. Tak-
ing expectations from both of this equation gives

E(ht) = ! + �1E("
2
t�1)

= ! + �1E(ht�1):

Next if 0 � �1 < 1 the ARCH(1) process is covariance
stationary and E(ht) = E(ht�1). E(ht) is then

E(ht) =
!

1� a1
:



Similarly, for the ARCH(q) process,

assuming that �qi=1�i < 1, we have

E(ht) = ! +�
q
i=1�iE("

2
t�i)

= ! +�
q
i=1�iE(ht�i)

= ! +�
q
i=1�iE(ht))

E(ht) =
!

1� �qi=1�i
:

Finally, consider the GARCH(p; q) process.

If �qi=1�i +�
p
j=1�j = �

� < 1, then

E(ht) = ! +�
q
i=1�iE("

2
t�i) + �

p
j=1�jE(ht�j)

= ! +�
q
i=1�iE(ht�i) + �

p
j=1�jE(ht�j)

= ! + [�
q
i=1�i +�

p
j=1�j]E(ht))

E(ht) =
!

1� ��
:

since E("2t�i) = E(ht�i) = E(ht)



TESTING FOR ARCH EFFECTS:

The obvious test implies the following steps:

(i) Fit y to X by OLS and obtain the residuals fb"tg:
(ii) Compute the OLS regression: b"2t=a0+a1b"2t�1+� � �+
apb"2t�p+ut
If these coe¢ cients are signi�cantly di¤erent from zero,
the assumption of conditionally homoscedastic disturbances
is rejected in favor of ARCH disturbances.

One should remember, however, that various speci�cation
errors in the original relation can give false indications of
ARCH disturbances.


