REVIEW (MULTIVARIATE LINEAR REGRESSION)

- Explain/Obtain the LS estimator (β) of the vector of coefficients (b)
- Explain/Obtain the variance-covariance matrix of β
- Both in the bivariate case (two regressors)
- and in the multivariate case (k regressors)
- Decompose the residual sum of squares
- The coefficient of the multiple correlation
- Information criteria

Consider the following bivariate regression

$$
Y_{i}=b_{1}+b_{2} X_{i}+e_{i}, i=1, \ldots, N
$$

The above expression can be written in a matrix as

$$
\underset{(N x 1)}{Y}=\underset{(N x 2)(2 x 1)}{X}+\underset{(N x 1)}{e}
$$

or

$$
\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{N}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

SUM OF THE SQUARED ERRORS

The sum of the squared errors can be written as

$$
\begin{aligned}
\sum_{i=1}^{N} e_{i}^{2} & =e^{\prime} e=\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{N}
\end{array}\right]\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right] \\
& =e_{1}^{2}+e_{2}^{2}+\cdots+e_{N}^{2}
\end{aligned}
$$

The vector of the errors is given by

$$
\underset{(N x 1)}{e}=\underset{(N x 1)}{Y}-\underset{(N x 2)(2 x 1)}{P_{(N 1)}^{b}}
$$

$X^{\prime} X$ FOR THE BIVARIATE CASE

$X^{\prime} X$ is given by

$$
\begin{aligned}
\underset{(2 x 2)}{X^{\prime} X} & =\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
X_{1} & X_{2} & \cdots & X_{N}
\end{array}\right]\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{N}
\end{array}\right] \\
& =\left[\begin{array}{cc}
N & \sum X \\
\sum X & \sum X^{2}
\end{array}\right]
\end{aligned}
$$

From the above equation it follows that

$$
\begin{aligned}
\left(X^{\prime} X\right)^{-1} & =\left[\begin{array}{cc}
N & \sum_{i=1}^{N} X_{i} \\
\sum X & \sum X^{2}
\end{array}\right]^{-1} \\
& =\frac{\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right]}{N \sum X^{2}-\left(\sum X\right)^{2}} \\
& =\frac{\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right]}{N \sum x^{2}}
\end{aligned}
$$

$X^{\prime} Y$ FOR THE BIVARIATE CASE

Similarly, $X^{\prime} Y$ is given by

$$
\begin{aligned}
X_{(2 x 1)}^{X^{\prime} Y} & =\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
X_{1} & X_{2} & \cdots & X_{N}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{N}
\end{array}\right] \\
& =\left[\begin{array}{c}
\sum Y \\
\sum X Y
\end{array}\right]
\end{aligned}
$$

LS ESTIMATOR OF THE SLOPE COEFFICIENT

The LS estimator β is

$$
\begin{aligned}
\beta & =\left[\begin{array}{c}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
& =\frac{\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right]\left[\begin{array}{c}
\sum Y \\
\sum X Y
\end{array}\right]}{N \sum x^{2}} \\
& =\frac{\left[\begin{array}{c}
\sum X^{2} \sum Y-\sum X \sum X Y \\
N \sum X Y-\sum X \sum Y
\end{array}\right]}{N \sum x^{2}}
\end{aligned}
$$

Thus, since $N \sum x y=N \sum X Y-\sum X \sum Y$:

$$
\beta_{2}=\frac{N \sum X Y-\sum X \sum Y}{N \sum x^{2}}=\frac{\sum x y}{\sum x^{2}}
$$

LS ESTIMATOR OF THE CONSTANT

$$
\beta=\frac{\left[\begin{array}{c}
\sum X^{2} \sum Y-\sum X \sum X Y \\
N \sum X Y-\sum X \sum Y
\end{array}\right]}{N \sum x^{2}}
$$

Thus

$$
\beta_{1}=\frac{\sum X^{2} \sum Y-\sum X \sum X Y}{N \sum x^{2}}
$$

It can be shown that

$$
\beta_{1}=\bar{Y}-\beta_{2} \bar{X}
$$

LS ESTIMATOR β

k VARIABLES

Consider the: i) $N x 1$ vector of the Y^{\prime} s, ii) $N x k$ matrix of the regressors (X 's), iii) $N x 1$ vector of the parameters (b 's) and, iv) $N x 1$ vector of the errors (e 's)
$\underset{(N x 1)}{Y}=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{N}\end{array}\right], \underset{(N x k)}{X}=\left[\begin{array}{cccc}1 & X_{21} & \cdots & X_{k 1} \\ 1 & X_{22} & \cdots & X_{k 2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_{2 N} & \cdots & X_{k N}\end{array}\right]$,
$\underset{(k x 1)}{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{K}\end{array}\right], \underset{(N x 1)}{e}=\left[\begin{array}{c}e_{1} \\ e_{2} \\ \vdots \\ e_{N}\end{array}\right]$

The multiple regression is

$$
Y_{i}=b_{1}+b_{2} X_{2 i}+\cdots+b_{k} X_{k i}+e_{i}
$$

In a matrix form it can be written as

$$
\underset{(N x 1)}{Y}=\underset{(N x k)(k x 1)}{X} \underset{(N x 1)}{b}+\underset{(}{e}
$$

The LS estimator of the vector b, as in the bivariate case, is given by $\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$
${ }_{(k x 1)}^{(k x k) \quad(k x 1)}$

VARIANCE-COVARIANCE MATRIX OF THE ERRORS

2 ERRORS

Consider the $2 x 2$ matrix $e e^{\prime}$

$$
\begin{aligned}
\begin{array}{c}
e e^{\prime} \\
(2 x 2)
\end{array} & =\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
e_{1}^{2} & e_{1} e_{2} \\
e_{1} e_{2} & e_{2}^{2}
\end{array}\right]
\end{aligned}
$$

Since $E\left(e_{i}\right)=0, E\left(e_{i}^{2}\right)=\sigma^{2}$ (the errors are homoskedastic) and $E\left(e_{1} e_{2}\right)=0$ (the errors are serially uncorrelated) the variance-covariance matrix of the vector of errors is given by

$$
\underset{(2 x 2)}{E\left(e e^{\prime}\right)}=E\left[\begin{array}{cc}
e_{1}^{2} & e_{1} e_{2} \\
e_{1} e_{2} & e_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right]=\sigma^{2} I
$$

where I is the identity matrix

VARIANCE-COVARIANCE MATRIX OF THE ERRORS

N ERRORS

If we have N observations:

$$
\underset{(N x N)}{\left(e^{\prime}\right.}=\left[\begin{array}{cccc}
e_{1}^{2} & e_{1} e_{2} & \cdots & e_{1} e_{N} \\
e_{2} e_{1} & e_{2}^{2} & \cdots & e_{2} e_{N} \\
\vdots & \vdots & \cdots & \vdots \\
e_{N} e_{1} & e_{N} e_{2} & \cdots & e_{N}^{2}
\end{array}\right]
$$

Accordingly, the variance-covariance matrix of the errors, $E\left(e e^{\prime}\right)$, is
($N x N$)

$$
\begin{aligned}
\underset{(N x N)}{E\left(e e^{\prime}\right)} & =E\left[\begin{array}{cccc}
e_{1}^{2} & e_{1} e_{2} & \cdots & e_{1} e_{N} \\
e_{2} e_{1} & e_{2}^{2} & \cdots & e_{2} e_{N} \\
\vdots & \vdots & \cdots & \vdots \\
e_{N} e_{1} & e_{N} e_{2} & \cdots & e_{N}^{2}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & \sigma^{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \sigma^{2}
\end{array}\right]=\sigma^{2} I
\end{aligned}
$$

VARIANCE-COVARIANCE MATRIX OF THE LS ESTIMATOR VECTOR β

BIVARIATE CASE

The $2 x 2$ variance covariance matrix of the vector β is defined as $\operatorname{Var}(\beta)=E\left[(\beta-b)(\beta-b)^{\prime}\right]$
(2x2)
(2x1) (1x2)
Note that if β was a scalar with expected value b then $\operatorname{Var}(\beta)=E(\beta-b)^{2}$

Since β is a $2 x 1$ vector:

$$
\underset{(2 x 2)}{\operatorname{Var}(\beta)}=\left[\begin{array}{cc}
\operatorname{Var}\left(\beta_{1}\right) & \operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) \\
\operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) & \operatorname{Var}\left(\beta_{2}\right)
\end{array}\right]
$$

It can be shown that

$$
\underset{(2 x 2)}{\operatorname{Var}(\beta)}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
$$

VARIANCE OF THE ESTIMATOR OF THE SLOPE COEFFICIENT

Recall that

$$
\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{cc}
\sum X^{2} & -\sum_{N} X \\
-\sum X &
\end{array}\right] / N \sum x^{2}
$$

Thus, $\operatorname{Var}(\beta)=\sigma^{2}\left(X^{\prime} X\right)^{-1}$ is given by (2x2)

$$
\begin{aligned}
\underset{(2 x 2)}{\operatorname{Var}(\beta)} & =\left[\begin{array}{cc}
\operatorname{Var}\left(\beta_{1}\right) & \operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) \\
\operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) & \operatorname{Var}\left(\beta_{2}\right)
\end{array}\right] \\
& =\sigma^{2}\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right] / N \sum x^{2}
\end{aligned}
$$

Moreover, the above expression implies

$$
\operatorname{Var}\left(\beta_{2}\right)=\frac{\sigma^{2} N}{N \sum x^{2}}=\frac{\sigma^{2}}{\sum x^{2}},
$$

VARIANCE OF THE ESTIMATOR OF THE CONSTANT

Since

$$
\underset{(2 x 2)}{\operatorname{Var}(\beta)}=\sigma^{2}\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right] / N \sum x^{2}
$$

It can be shown that

$$
\operatorname{Var}\left(\beta_{1}\right)=\sigma^{2}\left[\frac{1}{N}+\frac{\bar{X}^{2}}{\sum x^{2}}\right] .
$$

BIVARIATE CASE: COVARIANCE BETWEEN THE TWO ESTIMATORS

$$
\underset{(2 x 2)}{\operatorname{Var}(\beta)}=\sigma^{2}\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right] / N \sum x^{2}
$$

Finally,

$$
\operatorname{Cov}\left(\beta_{1}, \beta_{2}\right)=-\sigma^{2} \frac{\sum X}{N \sum x^{2}}=-\sigma^{2} \frac{\bar{X}}{\sum x^{2}} .
$$

VARIANCE-COVARIANCE MATRIX OF THE LS VECTOR β-MULTIVARIATE CASE

For the multiple linear regression we also have

$$
\underset{(k x k)}{\operatorname{Var}(\beta)}=\sigma_{(k x k)}^{2}\left(X^{\prime} X\right)^{-1}
$$

In other words, in this case we have k^{2} unknowns: The k variances and the $k(k-1)$ covariances.

DECOMPOSITION OF RESIDUAL SUM OF SQUARES (RSS)

It can be shown that

$$
\overbrace{\sum y^{2}}^{\text {TSS }}=\overbrace{\beta^{\prime} X^{\prime} X \beta-N \bar{Y}^{2}}^{\text {ESS }}+\overbrace{\hat{e}^{\widehat{e}} \widehat{\widehat{e}}}^{\text {RSS }}
$$

TSS: total sum of squares; ESS: explained sum of squares; RSS: residual sum of squares
R^{2}

We define the R^{2} of the regression (the coefficient of the multiple correlation) as

$$
R^{2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

The adjusted $R^{2}\left(\bar{R}^{2}\right)$ is given by

$$
\bar{R}^{2}=1-\frac{\operatorname{RSS}(N-k)}{\operatorname{TSS}(N-1)}
$$

INFORMATION CRITERIA

Next we define two information criteria:

The Schwarz and Akaike information criteria (SIC, AIC respectively):

$$
\begin{aligned}
\mathrm{SIC} & =\ln \frac{\bar{e}^{\prime} \hat{e}}{N}+\frac{k}{N} \ln (N), \\
\mathrm{AIC} & =\ln \frac{\widehat{e}^{\prime} \widehat{e}}{N}+\frac{2 k}{N}
\end{aligned}
$$

the preffered model is the one with the minimum information criterion.

SUMMARY (MULTIPLE LINEAR REGRESSION)

- We obtained the least square estimator of the vector of coefficients:

$$
\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

- In the bivariate case this gives us:

$$
\begin{aligned}
& \beta_{1}=\bar{Y}-\beta_{2} \bar{X}, \\
& \beta_{2}=\frac{\sum x y}{\sum x^{2}}
\end{aligned}
$$

- We obtained the variance-covariance matrix of β :

$$
\operatorname{Var}(\beta)=\sigma^{2}\left(X^{\prime} X\right)^{-1}
$$

- In the bivariate case this gives us

$$
\begin{aligned}
\operatorname{Var}\left(\beta_{1}\right) & =\sigma^{2}\left[\frac{1}{N}+\frac{\bar{X}^{2}}{\sum x^{2}}\right] \\
\operatorname{Var}\left(\beta_{2}\right) & =\frac{\sigma^{2}}{\sum x^{2}} \\
\operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) & =\frac{-\sigma^{2} \bar{X}}{\sum x^{2}}
\end{aligned}
$$

- We decomposed the TSS:

$$
\overbrace{\sum y^{2}}^{\text {TSS }}=\overbrace{\beta^{\prime} X^{\prime} X \beta-N \bar{Y}^{2}}^{\mathrm{ESS}}+\overbrace{e^{\prime} \widehat{e}^{\mathrm{E}}}^{\mathrm{RSS}}
$$

- We defined the R^{2} of the regression:

$$
R^{2}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

- We defined two information criteria:

$$
\begin{aligned}
\mathrm{SIC} & =\ln \frac{\hat{e}^{\prime} \hat{e}}{N}+\frac{k}{N} \ln (N) \\
\mathrm{AIC} & =\ln \frac{\widehat{e}^{\prime} \hat{e}}{N}+\frac{2 k}{N}
\end{aligned}
$$

PROOFS FROM WEEK 7 ONWARDS

ONLY FOR THE EC5501

SUM OF THE SQUARED ERRORS

The sum of the squared errors can be written as

$$
\begin{aligned}
\sum_{i=1}^{N} e_{i}^{2} & =e^{\prime} e=\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{N}
\end{array}\right]\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right] \\
& =e_{1}^{2}+e_{2}^{2}+\cdots+e_{N}^{2}
\end{aligned}
$$

The vector of the errors is given by

$$
\underset{(N x 1)}{e}=\underset{(N x 1)}{Y}-\underset{(N x 2)(2 x 1)}{X_{(N 1)}^{b}}
$$

The sum of the squared errors, $\sum_{i=1}^{N} e_{i}^{2}$, can be written as

$$
\begin{aligned}
\sum_{i=1}^{N} e_{i}^{2} & =e^{\prime} e=(Y-X b)^{\prime}(Y-X b)= \\
& =\left(Y^{\prime}-b^{\prime} X^{\prime}\right)(Y-X b)= \\
& =Y^{\prime} Y-b^{\prime} X^{\prime} Y-Y^{\prime} X b+b^{\prime} X^{\prime} X b
\end{aligned}
$$

SUM OF THE SQUARED ERRORS

$$
\sum_{i=1}^{N} e_{i}^{2}=e^{\prime} e=Y^{\prime} Y-b^{\prime} X^{\prime} Y-Y^{\prime} X b+b^{\prime} X^{\prime} X b
$$

Next note that since $Y^{\prime} \quad X \quad b$ is a scalar we have: $(1 x N)(N x 2)(2 x 1)$
$\left(Y^{\prime} X b\right)^{\prime}=b^{\prime} X^{\prime} Y=Y^{\prime} X b$. Thus

$$
\sum_{i=1}^{N} e_{i}^{2}=e^{\prime} e=Y^{\prime} Y-2 b^{\prime} X^{\prime} Y+b^{\prime} X^{\prime} X b
$$

LS ESTIMATOR OF THE VECTOR b

$$
\sum_{i=1}^{N} e_{i}^{2}=e^{\prime} e=Y^{\prime} Y-2 b^{\prime} X^{\prime} Y+b^{\prime} X^{\prime} X b
$$

The least squares (LS) principle is to choose the vector of the parameters b in order to minimize $\sum_{i=1}^{N} e_{i}^{2}$.

Thus we take the first derivative of $e^{\prime} e$ with respect to b and set it equal to zero:

$$
\frac{\partial\left(e^{\prime} e\right)}{\partial b}=-2^{\prime} X^{\prime} Y+2 X^{\prime} X \beta=0
$$

The above equation implies that the LS estimator of b, denoted by β, is given by

$$
X^{\prime} X \beta=X^{\prime} Y \Rightarrow \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

This is a system of two equations and two unknowns $\left(\beta_{1}, \beta_{2}\right)$ because $\underset{(2 x N)(N x 2)}{X^{\prime}} \underset{(2 x N)(N x 1)}{X}$ and $\underset{X^{\prime}}{Y}$.

$X^{\prime} X$ FOR THE BIVARIATE CASE

$X^{\prime} X$ is given by

$$
\begin{aligned}
\underset{(2 x 2)}{X^{\prime} X} & =\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
X_{1} & X_{2} & \cdots & X_{N}
\end{array}\right]\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{N}
\end{array}\right] \\
& =\left[\begin{array}{cc}
N & \sum X \\
\sum X & \sum X^{2}
\end{array}\right]
\end{aligned}
$$

From the above equation it follows that

$$
\begin{aligned}
\left(X^{\prime} X\right)^{-1} & =\left[\begin{array}{cc}
N & \sum_{i=1}^{N} X_{i} \\
\sum X & \sum X^{2}
\end{array}\right]^{-1} \\
& =\frac{\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right]}{N \sum X^{2}-\left(\sum X\right)^{2}} \\
& =\frac{\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right]}{N \sum x^{2}}
\end{aligned}
$$

$X^{\prime} Y$ FOR THE BIVARIATE CASE

Similarly, $X^{\prime} Y$ is given by

$$
\begin{aligned}
X_{(2 x 1)}^{X^{\prime} Y} & =\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
X_{1} & X_{2} & \cdots & X_{N}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{N}
\end{array}\right] \\
& =\left[\begin{array}{c}
\sum Y \\
\sum X Y
\end{array}\right]
\end{aligned}
$$

LS ESTIMATOR OF THE SLOPE COEFFICIENT

The LS estimator β is

$$
\begin{aligned}
\beta & =\left[\begin{array}{c}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
& =\frac{\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right]\left[\begin{array}{c}
\sum Y \\
\sum X Y
\end{array}\right]}{N \sum x^{2}} \\
& =\frac{\left[\begin{array}{c}
\sum X^{2} \sum Y-\sum X \sum X Y \\
N \sum X Y-\sum X \sum Y
\end{array}\right]}{N \sum x^{2}}
\end{aligned}
$$

Thus, since $N \sum x y=N \sum X Y-\sum X \sum Y$:

$$
\beta_{2}=\frac{N \sum X Y-\sum X \sum Y}{N \sum x^{2}}=\frac{\sum x y}{\sum x^{2}}
$$

LS ESTIMATOR OF THE CONSTANT

$$
\beta=\frac{\left[\begin{array}{c}
\sum X^{2} \sum Y-\sum X \sum X Y \\
N \sum X Y-\sum X \sum Y
\end{array}\right]}{N \sum x^{2}}
$$

Further

$$
\begin{aligned}
\beta_{1} & =\frac{\sum X^{2} \sum Y-\sum X \sum X Y}{N \sum x^{2}} \\
& =\frac{\sum X^{2} \bar{Y}-\bar{X} \sum X Y}{\sum x^{2}}
\end{aligned}
$$

Next, in the numerator we $\pm N \overline{Y X}^{2}$ to get

$$
\begin{aligned}
\beta_{1} & =\frac{\bar{Y}\left(\sum X^{2}-N \bar{X}^{2}\right)-\bar{X}\left(\sum X Y-N \overline{Y X}\right)}{\sum x^{2}} \\
& =\frac{\bar{Y} \sum x^{2}-\bar{X} \sum x y}{\sum x^{2}}=\bar{Y}-\beta_{2} \bar{X}
\end{aligned}
$$

PROPERTIES OF THE LS RESIDUALS

From the least squares methodology we have

$$
\left(X^{\prime} X\right) \beta=X^{\prime} Y
$$

Since $Y=X \beta+\hat{e}$, it follows that

$$
\begin{aligned}
\left(X^{\prime} X\right) \beta & =X^{\prime}(X \beta+\widehat{e}) \\
& \Rightarrow X^{\prime} \widehat{e}=0
\end{aligned}
$$

In other words

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
X_{1} & X_{2} & \cdots & X_{N}
\end{array}\right]\left[\begin{array}{c}
\widehat{e}_{1} \\
\widehat{e}_{2} \\
\vdots \\
\widehat{e}_{N}
\end{array}\right]=\left[\begin{array}{c}
\sum \widehat{e}_{i} \\
\sum X_{i} \widehat{e}_{i}
\end{array}\right]=0
$$

That is, the residuals, \widehat{e}_{i}, have mean zero: $\sum \widehat{e}_{i}=0$, and are orthogonal to the regressor $X_{i}: \sum X_{i} \widehat{e}_{i}=0$

Recall also that $\bar{Y}=\beta_{1}+\beta_{2} \bar{X}$. In other words (\bar{X}, \bar{Y}) satisfy the estimated linear relationship

The predicted values for Y, denoted by \widehat{Y}, are given by $\widehat{Y}=X \beta$. Thus

$$
\widehat{Y}^{\prime} \hat{e}=(X \beta)^{\prime} \hat{e}=\beta^{\prime} X^{\prime} \widehat{e}=0
$$

In other words, the vector of regression values for Y is uncorrelated with \hat{e}

EXPECTED VALUE OF THE LS ESTIMATOR β

Recall that LS vector estimator β is

$$
\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

Since $Y=X b+e$, it follows that

$$
\begin{align*}
\beta & =\left(X^{\prime} X\right)^{-1} X^{\prime}(X b+e) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} X b+\left(X^{\prime} X\right)^{-1} X^{\prime} e \\
& =b+\left(X^{\prime} X\right)^{-1} X^{\prime} e \tag{1}
\end{align*}
$$

Taking expectation from both sides of the above equation gives

$$
E(\beta)=b+\left(X^{\prime} X\right)^{-1} X^{\prime} E(e)=b
$$

since $E(e)=0$. That is β is an unbiased estimator of b

VARIANCE-COVARIANCE MATRIX OF THE LS ESTIMATOR VECTOR β

BIVARIATE CASE

The $2 x 2$ variance covariance matrix of the vector β is defined as $\operatorname{Var}(\beta)=E\left[(\beta-b)(\beta-b)^{\prime}\right]$
$(2 x 2) \quad(2 x 1) \quad(1 x 2)$

Note that if β was a scalar with expected value b then $\operatorname{Var}(\beta)=E(\beta-b)^{2}$

Since β is a $2 x 1$ vector:

$$
\underset{(2 x 2)}{\operatorname{Var}(\beta)}=\left[\begin{array}{cc}
\operatorname{Var}\left(\beta_{1}\right) & \operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) \\
\operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) & \operatorname{Var}\left(\beta_{2}\right)
\end{array}\right]
$$

From equation (1) we have

$$
\beta-b=\left(X^{\prime} X\right)^{-1} X^{\prime} e
$$

Hence,

$$
\begin{aligned}
\underset{(2 x 1)}{E\left[(\beta-b)(\beta-b)^{\prime}\right]} & =E\left\{\left(X^{\prime} X\right)^{-1} X^{\prime} e\left[\left(X^{\prime} X\right)^{-1} X^{\prime} e\right]^{\prime}\right\} \\
& =E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} e e^{\prime} X\left(X^{\prime} X\right)^{-1}\right]
\end{aligned}
$$

$$
\text { since }\left[\left(X^{\prime} X\right)^{-1}\right]^{\prime}=\left(X^{\prime} X\right)^{-1} \text { and }\left(X^{\prime}\right)^{\prime}=X
$$

Next, we have

$$
\left.\underset{(2 x 1)}{\left.E(\beta-b)(\beta-b)^{\prime}\right]}\right]=\left[\left(X^{\prime} X\right)^{-1} X^{\prime} E\left(e e^{\prime}\right) X\left(X^{\prime} X\right)^{-1}\right]
$$

Using the fact that $E\left(e e^{\prime}\right)=\sigma^{2} I$ we get

$$
\begin{aligned}
\underset{(2 x 2)}{\operatorname{Var}(\beta)} & =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

VARIANCE OF THE ESTIMATOR OF THE CONSTANT

Recall that

$$
\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{cc}
\sum X^{2} & -\sum_{N} X \\
-\sum X & N
\end{array}\right] / N \sum x^{2}
$$

Thus, $\operatorname{Var}(\beta)=\sigma^{2}\left(X^{\prime} X\right)^{-1}$ is given by (2x2)

$$
\begin{aligned}
\underset{(2 x 2)}{\operatorname{Var}(\beta)} & =\left[\begin{array}{cc}
\operatorname{Var}\left(\beta_{1}\right) & \operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) \\
\operatorname{Cov}\left(\beta_{1}, \beta_{2}\right) & \operatorname{Var}\left(\beta_{2}\right)
\end{array}\right] \\
& =\sigma^{2}\left[\begin{array}{cc}
\sum X^{2} & -\sum_{i=1}^{N} X_{i} \\
-\sum X & N
\end{array}\right] / N \sum x^{2}
\end{aligned}
$$

Thus,

$$
\operatorname{Var}\left(\beta_{1}\right)=\sigma^{2} \frac{\sum X^{2}}{N \sum x^{2}},
$$

$$
\operatorname{Var}\left(\beta_{1}\right)=\sigma^{2} \frac{\sum X^{2}}{N \sum x^{2}},
$$

Using $\sum x^{2}=\sum X^{2}-N \bar{X}^{2} \Rightarrow \sum X^{2}=\sum x^{2}+N \bar{X}^{2}$, we get

$$
\begin{aligned}
\operatorname{Var}\left(\beta_{1}\right) & =\sigma^{2} \frac{\sum x^{2}+N \bar{X}^{2}}{N \sum x^{2}} \\
& =\sigma^{2}\left[\frac{1}{N}+\frac{\bar{X}^{2}}{\sum x^{2}}\right] .
\end{aligned}
$$

DECOMPOSITION OF RESIDUAL SUM OF SQUARES (RSS)

Recall that

$$
Y=X \beta+\widehat{e}=\widehat{Y}+\widehat{e}
$$

In other words we decompose the Y vector into:
the part explained by the regression, $\widehat{Y}=X \beta$ (the predicted values of Y),
and the unexplained part \widehat{e} (the residuals)

Thus

$$
\begin{aligned}
\sum Y^{2} & =Y^{\prime} Y=(\widehat{Y}+\widehat{e})^{\prime}(\widehat{Y}+\widehat{e}) \\
& =\widehat{Y}^{\prime} \widehat{Y}+\hat{e}^{\prime} \widehat{e}=\sum \widehat{Y}^{2}+\sum_{i=1}^{N} \widehat{e}_{i}^{2}
\end{aligned}
$$

since $\hat{Y}^{\prime} \hat{e}=\hat{e}^{\prime} \widehat{Y}=0$ (from the first order conditions).
Note that $\widehat{Y}^{\prime} \widehat{Y}=(X \beta)^{\prime} X \beta=\beta^{\prime} X^{\prime} X \beta$

$$
\sum Y^{2}=\hat{Y}^{\prime} \widehat{Y}+\hat{e}^{\prime} \widehat{e}=\beta^{\prime} X^{\prime} X \beta+\hat{e}^{\prime} \widehat{e}
$$

Recall that $\sum y^{2}=\sum Y^{2}-N \bar{Y}^{2}=N \widehat{\operatorname{Var}}(Y)$. Thus

$$
\overbrace{\sum y^{2}}^{\text {TSS }}=\overbrace{\beta^{\prime} X^{\prime} X \beta-N \bar{Y}^{2}}^{\text {ESS }}+\overbrace{\hat{e}^{\prime} \widehat{e}}^{\text {RSS }}
$$

TSS: total sum of squares; ESS: explained sum of squares; RSS: residual sum of squares

