
REVIEW (MULTIVARIATE LINEAR REGRESSION)

� Explain/Obtain the LS estimator (�) of the vector
of coe¢ cients (b)

� Explain/Obtain the variance-covariance matrix of �

� Both in the bivariate case (two regressors)

� and in the multivariate case (k regressors)

� Decompose the residual sum of squares

� The coe¢ cient of the multiple correlation

� Information criteria



BIVARIATE REGRESSION

Consider the following bivariate regression

Yi = b1 + b2Xi + ei; i = 1; : : : ; N

The above expression can be written in a matrix as

Y
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;
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SUM OF THE SQUARED ERRORS

The sum of the squared errors can be written as

NX
i=1

e2i = e0e =
h
e1 e2 � � � eN

i 26664
e1
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...
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37775
= e21 + e

2
2 + � � �+ e2N

The vector of the errors is given by

e
(Nx1)

= Y
(Nx1)

� X
(Nx2)

b
(2x1)



X 0X FOR THE BIVARIATE CASE

X 0X is given by
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From the above equation it follows that
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X 0Y FOR THE BIVARIATE CASE

Similarly, X 0Y is given by
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LS ESTIMATOR OF THE SLOPE COEFFICIENT

The LS estimator � is

� =

"
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=

" P
X2 �PN

i=1Xi
�P

X N

# " P
YP
XY

#
N
P
x2

=

" P
X2

P
Y �P

X
P
XY

N
P
XY �P

X
P
Y

#
N
P
x2

Thus, since N
P
xy = N

P
XY �P

X
P
Y :

�2 =
N
P
XY �P

X
P
Y

N
P
x2

=

P
xyP
x2



LS ESTIMATOR OF THE CONSTANT

� =

" P
X2
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Thus
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P
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P
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X
P
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N
P
x2

It can be shown that

�1 = Y � �2X



LS ESTIMATOR �

k VARIABLES

Consider the: i) Nx1 vector of the Y �s, ii) Nxk matrix
of the regressors (X�s), iii) Nx1 vector of the parameters
(b�s) and, iv) Nx1 vector of the errors (e�s)

Y
(Nx1)

=

26664
Y1
Y2
...
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=
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b
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The multiple regression is

Yi = b1 + b2X2i + � � �+ bkXki + ei
In a matrix form it can be written as

Y
(Nx1)

= X
(Nxk)

b
(kx1)

+ e
(Nx1)

The LS estimator of the vector b, as in the bivariate case,
is given by �

(kx1)
= (X 0X)�1

(kxk)
X 0Y
(kx1)



VARIANCE-COVARIANCE MATRIX OF THE ERRORS

2 ERRORS

Consider the 2x2 matrix ee0

ee0
(2x2)

=

"
e1
e2

# h
e1 e2

i
=

"
e21 e1e2
e1e2 e22

#

SinceE(ei) = 0, E(e2i ) = �
2 (the errors are homoskedas-

tic) and E(e1e2) = 0 (the errors are serially uncorre-
lated) the variance-covariance matrix of the vector of er-
rors is given by

E(ee0)
(2x2)

= E

"
e21 e1e2
e1e2 e22

#
=

"
�2 0
0 �2

#
= �2I

where I is the identity matrix



VARIANCE-COVARIANCE MATRIX OF THE ERRORS

N ERRORS

If we have N observations:

ee0
(NxN)

=

266664
e21 e1e2 � � � e1eN
e2e1 e22 � � � e2eN
... ... � � � ...
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Accordingly, the variance-covariance matrix of the errors,
E(ee0)
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, is
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VARIANCE-COVARIANCE MATRIX OF THE LS ESTI-
MATOR VECTOR �

BIVARIATE CASE

The 2x2 variance covariance matrix of the vector � is
de�ned as V ar(�)

(2x2)
= E[(� � b)

(2x1)
(� � b)0
(1x2)

]

Note that if � was a scalar with expected value b then
V ar(�) = E(� � b)2

Since � is a 2x1 vector:

V ar(�)
(2x2)

=

"
V ar(�1) Cov(�1; �2)

Cov(�1; �2) V ar(�2)

#

It can be shown that

V ar(�)
(2x2)

= �2(X 0X)�1



VARIANCE OF THE ESTIMATOR OF THE SLOPE CO-
EFFICIENT

Recall that

(X 0X)�1 =

" P
X2 �P

X
�P

X N

#
=N

X
x2

Thus, V ar(�)
(2x2)

= �2(X 0X)�1 is given by

V ar(�)
(2x2)

=

"
V ar(�1) Cov(�1; �2)

Cov(�1; �2) V ar(�2)

#

= �2
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�P
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X
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Moreover, the above expression implies

V ar(�2) =
�2N

N
P
x2
=

�2P
x2
;



VARIANCE OF THE ESTIMATOR OF THE CONSTANT

Since

V ar(�)
(2x2)

= �2
" P

X2 �PN
i=1Xi

�P
X N

#
=N

X
x2

It can be shown that

V ar(�1) = �
2[
1

N
+
X
2P
x2
]:



BIVARIATE CASE: COVARIANCE BETWEEN THE TWO
ESTIMATORS

V ar(�)
(2x2)

= �2
" P

X2 �PN
i=1Xi

�P
X N

#
=N

X
x2

Finally,

Cov(�1; �2) = ��2
P
X

N
P
x2
= ��2 XP

x2
:



VARIANCE-COVARIANCE MATRIX OF THE LS VEC-
TOR �-MULTIVARIATE CASE

For the multiple linear regression we also have

V ar(�)
(kxk)

= �2(X 0X)�1
(kxk)

In other words, in this case we have k2 unknowns: The
k variances and the k(k � 1) covariances.



DECOMPOSITION OF RESIDUAL SUM OF SQUARES
(RSS)

It can be shown that

TSSz }| {X
y2 =

ESSz }| {
�0X 0X� �NY 2 +

RSSz}|{be0be
TSS: total sum of squares; ESS: explained sum of squares;
RSS: residual sum of squares



R2

We de�ne the R2 of the regression (the coe¢ cient of the
multiple correlation) as

R2 =
ESS

TSS
=
TSS-RSS

TSS
= 1� RSS

TSS

The adjusted R2 (R2) is given by

R
2
= 1� RSS(N � k)

TSS(N � 1)



INFORMATION CRITERIA

Next we de�ne two information criteria:

The Schwarz and Akaike information criteria (SIC, AIC
respectively):

SIC = ln
be0be
N
+
k

N
ln(N);

AIC = ln
be0be
N
+
2k

N

the pre¤ered model is the one with the minimum infor-
mation criterion.



SUMMARY (MULTIPLE LINEAR REGRESSION)

� We obtained the least square estimator of the vector
of coe¢ cients:

� = (X 0X)�1X 0Y

� In the bivariate case this gives us:

�1 = Y � �2X;

�2 =

P
xyP
x2



� We obtained the variance-covariance matrix of �:

V ar(�) = �2(X 0X)�1

� In the bivariate case this gives us

V ar(�1) = �2[
1

N
+
X
2P
x2
];

V ar(�2) =
�2P
x2
;

Cov(�1; �2) =
��2XP
x2
;



� We decomposed the TSS:

TSSz }| {X
y2 =

ESSz }| {
�0X 0X� �NY 2 +

RSSz}|{be0be
� We de�ned the R2 of the regression:

R2 = 1� RSS

TSS

� We de�ned two information criteria:

SIC = ln
be0be
N
+
k

N
ln(N);

AIC = ln
be0be
N
+
2k

N



PROOFS FROM WEEK 7 ONWARDS

ONLY FOR THE EC5501

SUM OF THE SQUARED ERRORS

The sum of the squared errors can be written as

NX
i=1

e2i = e0e =
h
e1 e2 � � � eN

i 26664
e1
e2
...
eN

37775
= e21 + e

2
2 + � � �+ e2N

The vector of the errors is given by

e
(Nx1)

= Y
(Nx1)

� X
(Nx2)

b
(2x1)

The sum of the squared errors,
PN
i=1 e

2
i , can be written

as
NX
i=1

e2i = e0e = (Y �Xb)0(Y �Xb) =

= (Y 0 � b0X 0)(Y �Xb) =
= Y 0Y � b0X 0Y � Y 0Xb+ b0X 0Xb



SUM OF THE SQUARED ERRORS

NX
i=1

e2i = e
0e = Y 0Y � b0X 0Y � Y 0Xb+ b0X 0Xb

Next note that since Y 0
(1xN)

X
(Nx2)

b
(2x1)

is a scalar we have:

(Y 0Xb)0 = b0X 0Y = Y 0Xb. Thus

NX
i=1

e2i = e
0e = Y 0Y � 2b0X 0Y + b0X 0Xb



LS ESTIMATOR OF THE VECTOR b

NX
i=1

e2i = e
0e = Y 0Y � 2b0X 0Y + b0X 0Xb

The least squares (LS) principle is to choose the vector
of the parameters b in order to minimize

PN
i=1 e

2
i .

Thus we take the �rst derivative of e0e with respect to b
and set it equal to zero:

@(e0e)
@b

= �20X 0Y + 2X 0X� = 0

The above equation implies that the LS estimator of b,
denoted by �, is given by

X 0X� = X 0Y ) � = (X 0X)�1X 0Y

This is a system of two equations and two unknowns
(�1,�2) because X 0

(2xN)
X

(Nx2)
and X 0

(2xN)
Y

(Nx1)
.



X 0X FOR THE BIVARIATE CASE

X 0X is given by

X 0X
(2x2)

=

"
1 1 � � � 1
X1 X2 � � � XN

# 26664
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... ...
1 XN
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=

"
N

P
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X
P
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#

From the above equation it follows that

(X 0X)�1 =

"
N

PN
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X
P
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X N

#
N
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i=1Xi
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#
N
P
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X 0Y FOR THE BIVARIATE CASE

Similarly, X 0Y is given by

X 0Y
(2x1)

=

"
1 1 � � � 1
X1 X2 � � � XN

# 26664
Y1
Y2
...
YN

37775
=

" P
YP
XY

#



LS ESTIMATOR OF THE SLOPE COEFFICIENT

The LS estimator � is

� =

"
�1
�2

#
= (X 0X)�1X 0Y

=

" P
X2 �PN

i=1Xi
�P

X N

# " P
YP
XY

#
N
P
x2

=

" P
X2

P
Y �P

X
P
XY

N
P
XY �P

X
P
Y

#
N
P
x2

Thus, since N
P
xy = N

P
XY �P

X
P
Y :

�2 =
N
P
XY �P

X
P
Y

N
P
x2

=

P
xyP
x2



LS ESTIMATOR OF THE CONSTANT

� =

" P
X2

P
Y �P

X
P
XY

N
P
XY �P

X
P
Y

#
N
P
x2

Further

�1 =

P
X2

P
Y �P

X
P
XY

N
P
x2

=

P
X2Y �XP

XYP
x2

Next, in the numerator we �NYX2 to get

�1 =
Y (
P
X2 �NX2)�X(PXY �NYX)P

x2

=
Y
P
x2 �XP

xyP
x2

= Y � �2X



PROPERTIES OF THE LS RESIDUALS

From the least squares methodology we have

(X 0X)� = X 0Y

Since Y = X� + be, it follows that
(X 0X)� = X 0(X� + be)

) X 0be = 0
In other words

"
1 1 � � � 1
X1 X2 � � � XN

# 26664
be1be2
...beN

37775 =
" P beiP

Xibei
#
= 0

That is, the residuals, bei, have mean zero: P bei = 0,
and are orthogonal to the regressor Xi:

P
Xibei = 0

Recall also that Y = �1+ �2X. In other words (X;Y )
satisfy the estimated linear relationship



The predicted values for Y , denoted by bY , are given bybY = X�. Thus

bY 0be = (X�)0be = �0X 0be = 0
In other words, the vector of regression values for Y is
uncorrelated with be



EXPECTED VALUE OF THE LS ESTIMATOR �

Recall that LS vector estimator � is

� = (X 0X)�1X 0Y

Since Y = Xb+ e, it follows that

� = (X 0X)�1X 0(Xb+ e)

= (X 0X)�1X 0Xb+ (X 0X)�1X 0e

= b+ (X 0X)�1X 0e (1)

Taking expectation from both sides of the above equation
gives

E(�) = b+ (X 0X)�1X 0E(e) = b

since E(e) = 0. That is � is an unbiased estimator of b



VARIANCE-COVARIANCE MATRIX OF THE LS ESTI-
MATOR VECTOR �

BIVARIATE CASE

The 2x2 variance covariance matrix of the vector � is
de�ned as V ar(�)

(2x2)
= E[(� � b)

(2x1)
(� � b)0
(1x2)

]

Note that if � was a scalar with expected value b then
V ar(�) = E(� � b)2

Since � is a 2x1 vector:

V ar(�)
(2x2)

=

"
V ar(�1) Cov(�1; �2)

Cov(�1; �2) V ar(�2)

#



From equation (1) we have

� � b = (X 0X)�1X 0e

Hence,

E[(� � b)
(2x1)

(� � b)0
(1x2)

] = Ef(X 0X)�1X 0e[(X 0X)�1X 0e]0g

= E[(X 0X)�1X 0ee0X(X 0X)�1]

since [(X 0X)�1]0 = (X 0X)�1 and (X 0)0 = X

Next, we have

E[(� � b)
(2x1)

(� � b)0
(1x2)

] = [(X 0X)�1X 0E(ee0)X(X 0X)�1]

Using the fact that E(ee0) = �2I we get

V ar(�)
(2x2)

= �2(X 0X)�1X 0X(X 0X)�1

= �2(X 0X)�1



VARIANCE OF THE ESTIMATOR OF THE CONSTANT

Recall that

(X 0X)�1 =

" P
X2 �P

X
�P

X N

#
=N

X
x2

Thus, V ar(�)
(2x2)

= �2(X 0X)�1 is given by

V ar(�)
(2x2)

=

"
V ar(�1) Cov(�1; �2)

Cov(�1; �2) V ar(�2)

#

= �2
" P

X2 �PN
i=1Xi

�P
X N

#
=N

X
x2

Thus,

V ar(�1) = �
2
P
X2

N
P
x2
;



V ar(�1) = �
2
P
X2

N
P
x2
;

Using
P
x2 =

P
X2�NX2 ) P

X2 =
P
x2+NX

2,
we get

V ar(�1) = �2
P
x2 +NX

2

N
P
x2

= �2[
1

N
+
X
2P
x2
]:



DECOMPOSITION OF RESIDUAL SUM OF SQUARES
(RSS)

Recall that

Y = X� + be = bY + be
In other words we decompose the Y vector into:

the part explained by the regression, bY = X� (the pre-
dicted values of Y ),

and the unexplained part be (the residuals)



Thus X
Y 2 = Y 0Y = ( bY + be)0( bY + be)

= bY 0 bY + be0be =X bY 2 + NX
i=1

be2i
since bY 0be = be0 bY = 0 (from the �rst order conditions).
Note that bY 0 bY = (X�)0X� = �0X 0X�



X
Y 2 = bY 0 bY + be0be = �0X 0X� + be0be

Recall that
P
y2 =

P
Y 2 �NY 2 = N dV ar(Y ). Thus

TSSz }| {X
y2 =

ESSz }| {
�0X 0X� �NY 2 +

RSSz}|{be0be
TSS: total sum of squares; ESS: explained sum of squares;
RSS: residual sum of squares


