REVIEW (MULTIVARIATE LINEAR REGRESSION)

e Explain/Obtain the LS estimator (8) of the vector
of coefficients (b)

e Explain/Obtain the variance-covariance matrix of 3

e Both in the bivariate case (two regressors)

e and in the multivariate case (k regressors)

e Decompose the residual sum of squares

e The coefficient of the multiple correlation

e Information criteria



BIVARIATE REGRESSION

Consider the following bivariate regression

Y;=b014+bX;,4+¢;, 2=1,...,N

The above expression can be written in a matrix as

Y = X b 4+ e |,
(Nx1) (Nz2)(2x1) (Nzx1)
or
Yl 1 Xl [ €1
1./2 _ |1 Xz 21 ] 4| @
: : 2 :
YN 1 XN | EN




SUM OF THE SQUARED ERRORS

The sum of the squared errors can be written as

(&
N 61
Zef = ee=|e e --- GN] 2
i=1 '
| EN

= eitest -ty

The vector of the errors is given by

e =Y — X b
(Nz1l) (Nzl) (Nz2)(2x1)



X'X FOR THE BIVARIATE CASE

X'X is given by

1 X3
1 1 .- 1 1 X
X'Xx =
(222) !X1 Xy - XN] o
1 Xy
B N Y X
X X2

From the above equation it follows that

N fo\ilXi -
X Y X

Y X2 —yN X
22X N |
NY X2 — (X X)?
Y X2 -y N X ]
-y X N

N Y 2

(X'X)™t =




XY FOR THE BIVARIATE CASE

Similarly, X'Y is given by

Y3

1 1 ... 1 Y-

Xy = ‘
(2x1) [Xl X - XN] 5
YN

- | Sy



LS ESTIMATOR OF THE SLOPE COEFFICIENT

The LS estimator 3 is

p

[y x2 —ziilxz-” Y ]

-YX N > XY

NS x2

Y X2y Y Y XY XY
NYXY - XYY

NS 2

Thus, since NS oy = NY XY - XY Y:

 NYXY -Y XYY Yay

N Y z2 S a2



LS ESTIMATOR OF THE CONSTANT

S X2YY Y XY XY
NYXY —-YS XYY

@
|

N Y 2?2

Thus
XYY - XY XY

61 szz

It can be shown that

B1=Y — B2X



LS ESTIMATOR 3
k VARIABLES

Consider the: i) Nzl vector of the Y''s, ii) Nxk matrix
of the regressors (X''s), iii) Nx1 vector of the parameters
(b's) and, iv) Nzl vector of the errors (e's)

Y7 1 Xo Xk1
v Yz X = 1 ng Xlk2
(Nz1) : (Nzk) : = :
Y 1 Xon XEN |
b1 e
b 2 e =
(kxl) = (Nzxl) '
b | eN




The multiple regression is

Y = b1+ 0o Xp; + - + bp. Xy + €
In a matrix form it can be written as
Y = X b + e
(Nx1)  (Nzk)(kxl) (Nzxl)

The LS estimator of the vector b, as in the bivariate case,

is given by 8 = (X'X)"1X'Y
(kxl) (kxk) (k1)



VARIANCE-COVARIANCE MATRIX OF THE ERRORS

2 ERRORS

Consider the 222 matrix ee’

- [a]le e
ee. = e1 e
(222) | €2
_ 6% €1€2
| ere e3
Since E(e;) = 0, E(e%) — o2 (the errors are homoskedas-
tic) and E(ejep) = 0 (the errors are serially uncorre-

lated) the variance-covariance matrix of the vector of er-
rors is given by

E(ee’):E[ e? elezlzlgz O]:azl
(22:2) €1€2 6%

where I is the identity matrix



VARIANCE-COVARIANCE MATRIX OF THE ERRORS

N ERRORS

If we have IN observations:

e1 61;2 e1en
ese e .- ene
ce! = 2. 1 .2 2. N
(NxN) : : :
eEN€El €enes - 6%\[
Accordingly, the variance-covariance matrix of the errors,
E(e€), is
(NxN)
[ 2 eqe eten
1 122 1€N
ene e ene
E(ee) = E| 21 2 25N
(NxzN) : 2
ENE1 €ENED EN
o’ 0 0
0 o? 0
= = o°1




VARIANCE-COVARIANCE MATRIX OF THE LS ESTI-
MATOR VECTOR 3

BIVARIATE CASE

The 2x2 variance covariance matrix of the vector [ is

defined as Var(8) = E[(B8 — b)(8 — b)']
(2z2) (2z1) (1z2)

Note that if 3 was a scalar with expected value b then

Var(8) = E(8 — b)?
Since B is a 2x1 vector:

_ | Var(B1) Cov(By,02)
Varl) = | cov(Br,8)  Var(s)

It can be shown that

Var(f) = 02(X/X)_1
(222)



VARIANCE OF THE ESTIMATOR OF THE SLOPE CO-
EFFICIENT

Recall that
rvv—-1_ | X% -2 X 2
(X'X) —[_ZX > ]/Nzx
Thus, Var(8) = o?(X’'X)~1 is given by
(222)

_ Var(B81) Cov(B1,82)
V(Zzg?) B [CO’U(ﬁlaﬁz) Var(B;) ]

_ 2] TX* -~ z
— o [ Sx ] /NZ:U
Moreover, the above expression implies

o2 N o2

N Y z2 - S22’

Var(B8;) =



VARIANCE OF THE ESTIMATOR OF THE CONSTANT

Since
2 _
- T s

It can be shown that

1 X
Var(8y) = o?[ -+ SE



BIVARIATE CASE: COVARIANCE BETWEEN THE TWO
ESTIMATORS

2
A
Finally,
X X
Cov(B1, B2) = 2 2 —o°

Nz 2= Ty 2



VARIANCE-COVARIANCE MATRIX OF THE LS VEC-
TOR B-MULTIVARIATE CASE

For the multiple linear regression we also have

Var(p) = 02(X/X)_1

In other words, in this case we have k2 unknowns: The
k variances and the k(k — 1) covariances.



DECOMPOSITION OF RESIDUAL SUM OF SQUARES
(RSS)

It can be shown that

TSS ESS 55\5
S P =BX'XB— NY*+¢e

TSS: total sum of squares; ESS: explained sum of squares;
RSS: residual sum of squares



R2

We define the R? of the regression (the coefficient of the
multiple correlation) as

ESS  TSS-RSS 1 RSS

| ——— _ 22
TSS TSS TSS
The adjusted R2 (R?) is given by

B2 _ 1 _ RSS(N — k)
TSS(N — 1)




INFORMATION CRITERIA

Next we define two information criteria:

The Schwarz and Akaike information criteria (SIC, AIC
respectively):

de  k
SIC = n2° 1 "N
0 (),
de ok
AIC = In%€ 4P
"N TN

the preffered model is the one with the minimum infor-

mation criterion.



SUMMARY (MULTIPLE LINEAR REGRESSION)

e We obtained the least square estimator of the vector

of coefficients:

B=(X'X)"1X'y

e In the bivariate case this gives us:

B1 = Y — 53X,
8, — > xY
2 - 2332




e \We obtained the variance-covariance matrix of (3:

Var(B) = JZ(X/X)_1

e In the bivariate case this gives us

1 X
Var(B1) = Uz[N‘FW]a
-2
VCL’I“(52) — ZZEz’
To2x
COU(51752) — i



e We decomposed the TSS:

TSS ESS RSS
=

2 o~ —2 “J~
Zy =0 X' XB—NY + €ee

e We defined the R? of the regression:

RSS

R?=1-_—>=
TSS

e \We defined two information criteria:

ee k

SIC = | In(N),
n— + (V)
ee 2k

AIC = In

N+N



PROOFS FROM WEEK 7 ONWARDS
ONLY FOR THE ECb5501

SUM OF THE SQUARED ERRORS

The sum of the squared errors can be written
N
doef = de=
e = ee=|e ey --- GN]
1=1

p— 6%—|—e%_|__|_e%v

The vector of the errors is given by

e =Y — X b
(Nz1) (Nzl) (Nz2)(2x1)

2

The sum of the squared errors, Zij\il es, can

as

as

€1
€2

EN

be written

Y e? e'e = (Y — Xb) (Y — Xb) =

(Y = b X" (Y — Xb) =

— Y'Y -¥vVXY -Y'Xb+bX'X0b



SUM OF THE SQUARED ERRORS

N
Y e2=ce=Y'Y VXY - Y'Xb+ VX Xb

()
1=1

Next note that since Y’ X b is a scalar we have:
(1zN) (Nz2)(2x1)

(Y'Xb) =¥ X'Y =Y'Xb. Thus

N
Y e2=ce=Y'Y - 2/X'Y + VX'Xb
1=1



LS ESTIMATOR OF THE VECTOR b

N
Y e2=ee=Y'Y - 20'X'Y +¥X'Xb

(
1=1

The least squares (LS) principle is to choose the vector

N 2

of the parameters b in order to minimize ;% e?.

Thus we take the first derivative of e’e with respect to b
and set it equal to zero:

!/
a(gbe) — _2'X'Y +2X'X8 =0

The above equation implies that the LS estimator of b,

denoted by 3, is given by
X'Xp=XY = p=(X'X)"1Xy

This is a system of two equations and two unknowns

/ /
(61,52) because (2§N)(N)§2) and (2§N)(N};1)'



X'X FOR THE BIVARIATE CASE

X'X is given by

1 X3
1 1 .- 1 1 X
X'Xx =
(222) !X1 Xy - XN] o
1 Xy
B N Y X
X X2

From the above equation it follows that

N fo\ilXi -
X Y X

Y X2 —yN X
22X N |
NY X2 — (X X)?
Y X2 -y N X ]
-y X N

N Y 2

(X'X)™t =




XY FOR THE BIVARIATE CASE

Similarly, X'Y is given by

Y3

1 1 ... 1 Y-

Xy = ‘
(2x1) [Xl X - XN] 5
YN

- | Sy



LS ESTIMATOR OF THE SLOPE COEFFICIENT

The LS estimator 3 is

p

[y x2 —ziilxz-” Y ]

-YX N > XY

NS x2

Y X2y Y Y XY XY
NYXY - XYY

NS 2

Thus, since NS oy = NY XY - XY Y:

 NYXY -Y XYY Yay

N Y z2 S a2



LS ESTIMATOR OF THE CONSTANT

S X2YY Y XY XY
NYXY —-YS XYY

N Y 2?2

@
|

Further

XYY Y XY XY
N Y z2

S XY - XY XY
> a2

Next, in the numerator we :I:NYX2 to get

b1 =

5 Y(C X2 - NXY) - X(L XY — NYX)
1




PROPERTIES OF THE LS RESIDUALS

From the least squares methodology we have
(X'X)B=X"Y
Since Y = X3 + e, it follows that

(X'X)8 = X'(XB+e)

= X'e=0
In other words
T
1 1 ... 1 eo o Y €e; —0
X1 Xo - Xy : > X;e;
| eN |

That is, the residuals, e;, have mean zero: Y e; = 0,
and are orthogonal to the regressor X;: > X,e; =0

Recall also that Y = 37 + 85X In other words (X,Y")
satisfy the estimated linear relationship



The predicted values for Y, denoted by Y, are given by
Y = XB. Thus

Yie=(XB)e=pXe=0

In other words, the vector of regression values for Y is
uncorrelated with e



EXPECTED VALUE OF THE LS ESTIMATOR S

Recall that LS vector estimator (3 is
B=(X'X)"1X'y
Since Y = Xb + e, it follows that
B = (X'X)1X'(Xb+e)
= (X'X)7IX'Xb+ (X' X)X e
= b+ (X'X)"1Xe (1)

Taking expectation from both sides of the above equation

gives

EB)=b+ (X'X)"1X'E(e) = b

since E(e) = 0. That is 8 is an unbiased estimator of b



VARIANCE-COVARIANCE MATRIX OF THE LS ESTI-
MATOR VECTOR 3

BIVARIATE CASE

The 2x2 variance covariance matrix of the vector (3 is

defined as Var(8) = E[(B — b)(8 — b)']
(222) (2z1) (1x2)

Note that if 3 was a scalar with expected value b then

Var(8) = E(8 — b)?

Since B is a 2x1 vector:

_ | Var(B1) Cov(By1,82)
Vég)ﬁ)_ Cov(B1,82) Var(82)



From equation (1) we have
B—b=(X'X)"1Xe
Hence,

E[(6 - b)(8-b)] = E{(X'X)7'X'e[(X'X)7"X"e]'}
(2z1) (1z2)

= E[(X'X) 1X'ee! X (X'X)™ ]
since [(X’X)7 ) = (X'X) land (X) =X

Next, we have

E[(8 - b)(8 = b)'] = [(X'X) "1 X'B(ee) X (X'X) ]
(2z1) (1z2)

Using the fact that E(ee’) = o2] we get

Var(8) = o?(X'X)71X'X(X'X)7}!
(222)

= o2(X'X)7!



VARIANCE OF THE ESTIMATOR OF THE CONSTANT

Recall that

2 _
(X'x)"1 = l _ZZXX ]ZVX ] /NS 2?

Thus, Var(8) = 0?(X’X)~ L is given by
(222)

_ Var(B81) Cov(By, B82)
ngg)ﬁ) B [CO’U(ﬁlaﬁz) Var(B2) ]

e

Thus,




o 3 X2

Var(B1) =0 ma

Using Y a2 = Y X2 - NX° = Y X2 =Y 22+ NX2,
we get

NS 2
2
1 X
2
o [N—I— sz].

Var(B1) =




DECOMPOSITION OF RESIDUAL SUM OF SQUARES
(RSS)

Recall that
Y =XB8+e=Y +eée
In other words we decompose the Y vector into:

AN

the part explained by the regression, Y = X (the pre-
dicted values of Y'),

and the unexplained part e (the residuals)



Thus

Y ¥V? = Y'Y =(Y +&)(Y +¢)

A A

since Y’ = €'Y = 0 (from the first order conditions).
Note that Y'Y = (X8) X8 = 8/X'X}3



SN v2=Y'Y +ée=pX'Xp+ee

Recall that " ¢2 = Y Y2 — NY? = NVar(Y). Thus

TSS ESS RSS
=

R, =2 . U=
Zy =0 X'XB—-—NY + ee

TSS: total sum of squares; ESS: explained sum of squares;
RSS: residual sum of squares



