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The first example is a simple variation of the wage equation introduced in Chapter
2 for obtaining the effect of education on hourly wage:

wage = B, + Bieduc + Brexper + u, (3.1)

where exper is years of labor market experience. Thus, wage is determined by the two
explanatory or independent variables, education and experience, and by other unob-
served factors, which are contained in u. We are still primarily interested in the effect
of educ on wage, holding fixed all other factors affecting wage; that is, we are interest-
ed in the parameter f3,.

Compared with a simple regression analysis relating wage to educ, equation (3.1)
effectively takes exper out of the error term and puts it explicitly in the equation.
Because exper appears in the equation, its coefficient, 3,, measures the ceteris paribus
effect of exper on wage, which is also of some interest.

Not surprisingly, just as with simple regression, we will have to make assumptions
about how u in (3.1) is related to the independent variables, educ and exper. However,
as we will see in Section 3.2, there is one thing of which we can be confident: since
(3.1) contains experience explicitly, we will be able to measure the effect of education
on wage, holding experience fixed. In a simple regression analysis—which puts exper
in the error term-—we would have to assume that experience is uncorrelated with edu-
cation, a tenuous assumption.

As a second example, consider the problem of explaining the effect of per student
spending (expend) on the average standardized test score (avgscore) at the high school
level. Suppose that the average test score depends on funding, average family income
(avginc), and other unobservables:

avgscore = By + Biexpend + B.avginc + u. (.2;.2)

The coefficient of interest for policy purposes is fB;, the ceteris paribus effect of expend
on avgscore. By including avgine explicitly in the model, we are able to control for its
effect on avgscore. This is likely to be important because average family income tends
to be correlated with per student spending: spending levels are often determined by both
property and local income taxes. In simple regression analysis, avginc would be in-
cluded in the error term, which would likely be correlated with expend, causing the
OLS estimator of 3, in the two-variable model to be biased.

In the two previous similar examples, we have shown how observable factors other
than the variable of primary interest [educ in equation (3.1) and expend in equation
(3.2)] can be included in a regression model. Generally, we can write a model with two
independent variables as

¥ = Bot Buixyt Byt _ (33) |

where [, is the intercept, 3, measures the change in y with respect to x,, holding other
factors fixed, and 8, measures the change in y with respect to x,, holding other factors
fixed.
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Multiple regression analysis is also useful for generalizing functional relationships
between variables. As an example, suppose family consumption (cons) is a quadratic
function of family income (inc):

cons = By + Biinc + Byinc® + u,

where u contains other factors affecting consumption. In this model, consumption
depends on only one observed factor, income; so it might seem that it can be handled
in a simple regression framework. But the model falls outside simple regression
because it contains two functions of income, inc and inc? (and therefore three parame-
ters, Bo, Bi> and Bo). Nevertheless, the consumption function is easily written as a
regression model with two independent variables by letting x, = inc and x, = inc’. i

Mechanically, there will be no difference in using the method of ordinary least =
squares (introduced in Section 3.2) to estimate equations as different as (3.1)and (3.4).
Each equation can be written as (3.3), which is all that matters for computation. There 1
is, however, an important difference in how one interprets the parameters. In equation 3
(3.1), B, is the ceteris paribus effect of educ on wage. The parameter B, has no such
interpretation in (3.4). In other words, it makes no sense to measure the effect of incon
cons while holding inc? fixed, because if inc changes, then so must inc?! Instead, the
change in consumption with respect to the change in income—the marginal propen-
sity to consume—is approximated by

Acons
e =~ B, + 2B,inc.

See Appendix A for the calculus needed to derive this equation. In other words, the mar- =
ginal effect of income on consumption depends on 3, as well as on B, and the level of
income. This example shows that, in any particular application, the definitions of the
independent variables are crucial. But for the theoretical development of multiple §
regression, we can be vague about such details. We will study examples like this more
completely in Chapter 6.

In the model with two independent variables, the key assumption about how i
related to x, and x, is

E(ulx;.x,) = 0.

The interpretation of condition (3.5) is similar to the interpretation of Assumption 3
SLR.3 for simple regression analysis. It means that, for any values of x, and x, in {h ;
population, the average unobservable is equal to zero. As with simple regression, th
important part of the assumption is that the expected value of u is the same for all com- &
binations of x, and x,; that this common value is zero is no assumption at all as long & ;
the intercept B, is included in the model (see Section 2.1).

How can we interpret the zero conditional mean assumption in the previous exait
ples? In equation (3.1), the assumption is E(uleduc,exper) = 0. This implies that other 4
factors affecting wage are not related on average to educ and exper. Therefore, if Wwe S
think innate ability is part of «, then we will need average ability levels to be the same &
across all combinations of education and experience in the working population. Thi
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may or may not be true, but, as we will see in Section 3.3, this is the question we need

to ask in order to determine whether the method of ordinary least squares produces
unbiased estimators.

The example measuring student performance [equation (3.2)] is similar to the wage

equation. The zero conditional mean assumption is E(u|expend,avginc) = 0, which

means that other factors affecting test

scores—school or student characteris-

tics—are, on average, unrelated to per stu-

simple model to explain city murder rates (murdrate) in terms dent funding and average family income.

the probability of conviction (prbconv) and average sentence

When applied to the quadratic consump-
tion function in (3.4), the zero conditional

murdrate = B, + Biprbconv + B.avgsen + u. | mean assumption has a slightly different

iihat are some factors contained in u? Do you think the key
miption (3.5) is likely to hold? i

s

interpretation. Written literally, equation

(3.5) becomes E(ulinc,inc?) = 0. Since inc®

.. isknown when inc is known, including inc?

in the expectation is redundant: E(u| inc,inc®)

— 0 is the same as E(ulinc) = 0. Nothing is wrong with putting inc” along with inc in the
expectation when stating the assumption, but E(uinc) = 0 is more concise.

The Model with k Independent Variables

Once we are in the context of multiple regression, there is no. need to stop with two
independent variables. Multiple regression analysis allows many observed factors to
affect y. In the wage example, we might also include amount of job training, years of
tenure with the current employer, measures of ability, and even demographic variables
like number of siblings or mother’s education. In the school funding example, addi-
tional variables might include measures of teacher quality and school size.

The general multiple linear regression model (also called the multiple regression
model) can be written in the population as

y= Byt Bix; + Boxta Bx, .l FBEE U (3.6)

where 3, is the intercept, B, is the parameter associated with x;, B, is the parameter
associated with x,, and so on. Since there are k independent variables and an intercept,
equation (3.6) contains k + 1 (unknown) population parameters. For shorthand pur-
poses, we will sometimes refer to the parameters other than the intercept as slope para-
meters, even though this is not always literally what they are. [See equation (3.4),
where neither 3, nor 3, is itself a slope, but together they determine the slope of the
relationship between consumption and income. ]

The terminology for multiple regression is similar to that for simple regression and
is given in Table 3.1. Just as in simple regression, the variable u is the error term or
disturbance. It contains factors other than x,, X,, ..., X, that affect y. No matter how
many explanatory variables we include in our model, there will always be factors we
cannot include, and these are collectively contained in i.

When applying the general multiple regression model, we must know how to interpret
the parameters. We will get plenty of practice now and in subsequent chapters, but it is
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e Jét] + Bl-"i ar }éz-x:- (3.14)

The-intercept BO in equation (3.14) is the predicted value of y when x; = 0 and x, = 0.
Sometimes, setting x, and x, both equal to zero is an interesting scenario; in other cases,
it will not make sense. Nevertheless, the intercept is always needed to obtain a predic-
tion of y from the OLS regression line, as (3.14) makes clear.

The estimates £, and j3, have partial effect, or ceteris paribus, interpretations.
From equation (3.14), we have

Ay = BAx, + BAx,,
so we can obtain the predicted change in y given the changes in x, and x,. (Note how

the intercept has nothing to do with the changes in y.) In particular, when x, is held
fixed, so that Ax, = 0, then

A9 = B,Ax,,

holding x, fixed. The key point is that, by including x, in our model, we obtain a coef-
ficient on x, with a ceteris paribus interpretation. This is why multiple regression analy-
sis is so useful. Similarly,

Ay = Ezﬁxza
holding x, fixed.

EXAMPLE 3.1
(Determinants of College GPA)

The variables in GPAT.RAW include college grade point average (col/GPA), high school GPA
(hsGPA), and achievement test score (ACT) for a sample of 141 students from a large uni-
versity; both college and high school GPAs are on a four-point scale. We obtain the fol-
lowing OLS regression line to predict college GPA from high school GPA and achievement
test score:

colGPA = 129 + 453 hsGPA + .0094 ACT. (3.15)

How do we interpret this equation? First, the intercept 1.29 is the predicted college GPA if
hsGPA and ACT are both set as zero. Since no one who attends college has either a zero
high school GPA or a zero on the achievement test, the intercept in this equation is not, by
itself, meaningful. :

More interesting estimates are the slope coefficients on hsGPA and ACT. As expected,
there is a positive partial relationship between colGPA and hsGPA: holding ACT fixed,
another point on hsGPA is associated with .453 of a point on the college GPA, or almost
half a point. In other words, if we choose two students, A and B, and these students
have the same ACT score, but the high school GPA of Student A is one point higher than
the high school GPA of Student B, then we predict Student A to have a college GPA .453
higher than that of Student B. (This says nothing about any two actual people, but it is our
best prediction.)
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The sign on ACT implies that, while holding hsGPA fixed, a change in the ACT score of
10 points—a very large change, since the average score in the sample is about 24 with a
standard deviation less than three—affects colGPA by less than one-tenth of a point. This
is a small effect, and it suggests that, once high school GPA is accounted for, the ACT score
is not a strong predictor of college GPA. (Naturally, there are many other factors that con-
tribute to GPA, but here we focus on statistics available for high school students.) Later,
after we discuss statistical inference, we will show that not only is the coefficient on ACT
practically small, it is also statistically insignificant.

If we focus on a simple regression analysis relating colGPA to ACT only, we obtain

colGPA = 2.40 + 0271 ACT;

Part 1 Regression Analysis with Cross-Sectional Data

thus, the coefficient on ACT is almost three times as large as the estimate in (3.15). But this
equation does not allow us to compare two people with the same high school GPA; it cor-
responds to a different experiment. We say more about the differences between multiple
and simple regression later.

" The case with more than two independent variables is similar. The OL.S regression
line is

i Bo"" JBAM‘l + BT .o+ B
Written in terms of changes,
A9 = Bilx, + Bohxy + . BiAx;. (317)

The coefficient on x, measures the change in $ due to a one-unit increase in x,, holding
all other independent variables fixed. That is,

A = BiAx, ' (318)

holding x,, X3, ..., X% fixed. Thus, we have controlled the variables x,, X3, ..., X When
estimating the effect of x, on y. The other coefficients have a similar interpretation.
The following is an example with three independent variables.

(Hourly Wage Equation)

Using the 526 observations on workers in WAGE1.RAW, we include educ (years of educa-
tion), exper (years of labor market experience), and tenure (years with the current em-
ployer) in an equation explaining log(wage). The estimated equation is

logA(wage) = 284 + 092 educ + 0041 exper + 022 tenure. -' (3;19)

As in the simple regression case, the coefficients have a percentage interpretation. The only
difference here is that they also have a ceteris paribus interpretation. The coefficient .092
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means that, holding exper and tenure fixed, another year of education is predicted to
increase log(wage) by .092, which translates into an approximate 9.2 percent [100(.092)]
increase in wage. Alternatively, if we take two people with the same levels of experience
and job tenure, the coefficient on educ is the proportionate difference in predicted wage
when their education levels differ by one year. This measure of the return to education at
least keeps two important productivity factors fixed; whether it is a good estimate of the
ceteris paribus return to another year of education requires us to study the statistical prop-
erties of OLS (see Section 3.3).

On the Meaning of “Holding Other Factors Fixed” in
Multiple Regression

The partial effect interpretation of slope coefficients in multiple regression analysis can
cause some confusion, so we attempt to prevent that problem now.

In Example 3.1, we observed that the coefficient on ACT measures the predicted dif-
ference in colGPA, holding hsGPA fixed. The power of multiple regression analysis is
that it provides this ceteris paribus interpretation even though the data have not been
collected in a ceteris paribus fashion. In giving the coefficient on ACT a partial effect
interpretation, it may seem that we actually went out and sampled people with the same
high school GPA but possibly with different ACT scores. This is not the case. The data
are a random sample from a large university: there were no restrictions placed on the
sample values of AsGPA or ACT in obtaining the data. Rarely do we have the luxury of
holding certain variables fixed in obtaining our sample. If we could collect a sample of
individuals with the same high school GPA, then we could perform a simple regression
analysis relating colGPA to ACT. Multiple regression effectively allows us to mimic this
situation without restricting the values of any independent variables.

The power of multiple regression analysis is that it allows us to do in nonexperi-
mental environments what natural scientists are able to do in a controlled laboratory set-
ting: keep other factors fixed.

Changing More than One Independent Variable
Simultaneously

Sometimes, we want to change more than one independent variable at the same time to
find the resulting effect on the dependent variable. This is easily done using equation
(3.17). For example, in equation (3.19), we can obtain the estimated effect on wage when
an individual stays at the same firm for another year: exper (general workforce experi-
ence) and renure both increase by one year. The total effect (holding educ fixed) is

Alog{wage) = .0041 Aexper + 022 Atenure = 0041 + .022 = .0261,

or about 2.6 percent. Since exper and tenure each increase by one year, we just add the
coefficients on exper and renure and multiply by 100 to turn the effect into a percent.

OLS Fitted Values and Residuals

After obtaining the OLS regression line (3.11), we can obtain a fitted or predicted value
for each observation. For observation i, the fitted value is simply
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(Determinants of College GPA)

From the grade point average regression that we did earlier, the equation with R* is
colGPA = 1.29 + .453 hsGPA + 0094 ACT
n = 141, R* = .176.

This means that hsGPA and ACT together explain about 17.6 percent of the variation in col-
lege GPA for this sample of students. This may not seem like a high percentage, but we
must remember that there are many other factors—including family background, person-
ality, quality of high school education, affinity for college—that contribute to a student’s
college performance. If hsGPA and ACT explained almost all of the variation in colGFA, then
performance in college would be preordained by high schaol performance!

EXAMPLE 3.5
(Explaining Arrest Records)

CRIME1.RAW contains data on arrests during the year 1986 and other information on
2,725 men born in either 1960 or 1961 in California. Each man in the sample was arrest-
ed at least once prior to 1986. The variable narr86 is the number of times the man was
arrested during 1986: it is zero for most men in the sample (72.29 percent), and it varies
from O to 12. (The percentage of men arrested once during 1986 was 20.51.) The variable
pcnv is the- proportion (not percentage) of arrests prior to 1986 that led to conviction,
avgsen is average sentence length served for prior convictions (zero for most people),
ptime86 is months spent in prison in 1986, and gemp86 is the number of quarters during
which the man was employed in 1986 (from zero to four).
A linear model explaining arrests is

narr86 = B, + Bipcnv + PBravgsen + Bsptime86 + Bigemp86 + u,

where pcnv is a proxy for the likelihood for being convicted of a crime and avgsen is a mea-
sure of expected severity of punishment, if convicted. The variable ptime86 captures the
incarcerative effects of crime: if an individual is in prison, he cannot be arrested for a crime
outside of prison. Labor market opportunities are crudely captured by gemp86.

First, we estimate the model without the variable avgsen. We obtain

natr86 = 712 — .150 pcnv — .034 ptime86 — .104 gemp86
n = 2,725, R* = .0413.

This equation says that, as a group, the three variables pcnv, ptime86, and gemp86 explain
about 4.1 percent of the variation in narr86.

Each of the OLS slope coefficients has the anticipated sign. An increase in the propor-
tion of convictions lowers the predicted number of arrests. If we increase pcnv by .50 (a
large increase in the probability of conviction), then, holding the other factors fixed,
Anafr86 = —.150(,50) = —.075. This may seem unusual because an arrest cannot change
by a fraction. But we can use this value to obtain the predicted change in expected arrests
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for a large group of men. For example, among 100 men, the predicted fall in arrests when
pcnv increases by .50 is —7.5.

Similarly, a longer prison term leads to a lower predicted number of arrests. In fact, if
ptime86 increases from O to 12, predicted arrests for a particular man fall by .034(12) =
.408. Another quarter in which legal employment is reported lowers predicted arrests by
.104, which would be 10.4 arrests among 100 men.

If avgsen is added to the model, we know that R? will increase. The estimated equation is

nafr86 = 707 — .151 pcnv + 0074 avgsen — .037 ptime86 — .103 gemp86
n = 2,725, R* = .0422.

Thus, adding the average sentence variable increases RZ from .0413 to .0422, a practically
small effect. The sign of the coefficient on avgsen is also unexpected: it says that a longer
average sentence length increases criminal activity.

Example 3.5 deserves a final word of caution. The fact that the four explanatory
variables included in the second regression explain only about 4.2 percent of the varia-
tion in narr86 does not necessarily mean that the equation is useless. Even though these
variables collectively do not explain much of the variation in arrests, it is still possible
that the OLS estimates are reliable estimates of the ceteris paribus effects of each inde-
pendent variable on narr86. As we will see, whether this is the case does not directly
depend on the size of R*. Generally, a low R? indicates that it is hard to predict individ-
ual outcomes on y with much accuracy, something we study in more detail in Chapter
6. In the arrest example, the small R” reflects what we already suspect in the social sci-
ences: it is generally very difficult to predict individual behavior.

Regression Through the Origin

Sometimes, an economic theory or common sense suggests that 8, should be zero, and
so we should briefly mention OLS estimation when the intercept is zero. Specifically,
we now seek an equation of the form

5= B+ Bota o+ e

where the symbol “~" over the estimates is used to distinguish them from the OLS esti-
mates obtained along with the intercept [as in (3.11)]. In (3.30), when x, = 0, x, = 0,
.., x, = 0, the predicted value is zero. In this case, B, ..., B, are said to be the OLS esti-
mates from the regression of y on x,, X,, ..., X through the origin.

The OLS estimates in (3.30), as always, minimize the sum of squared residuals, but
with the intercept set at zero. You should be warned that the properties of OLS that
we derived earlier no longer hold for regression through the origin. In particular, the
OLS residuals no longer have a zero sample average. Further, if R? is defined as
1 — SSR/SST, where SST is given in (3.24) and SSR is now 2 0i— Bixy — - —

i=1
Bwx)?, then R? can actually be negative. This means that the sample average, ¥,
“explains” more of the variation in the y, than the explanatory variables. Either we
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Using the data in GPA2.RAW on 4,137 college students, the following equation
Was estimated by OLS:

colgpa = 1.392 — .0135 hsperc + .00148 sat
n = 4,137, R*= 273,

where colgpa is measured on a four-point scale, hsperc is the percentile in the high
school graduating class (defined so that, for example, hsperc = 5 means the fop five
percent of the class), and sat is the combined math and verbal scores on the student
achievement test.
(i) Why does it make sense for the coefficient on Asperc to be negative?
(ii) What is the predicted college GPA when hsperc = 20 and sat = 10507
(iii) Suppose that two high school graduates, A and B, graduated in the same
percentile from high school, but Student A’s SAT score was 140 points
higher (about one standard deviation in the sample). What is the pre-
dicted difference in college GPA for these two students? Is the differ-
ence large?
(iv) Holding hsperc fixed, what difference in SAT scores leads to a predicted
colgpa difference of .50, or one-half of a grade point? Comment on
your answer.

@! The data in WAGE2.RAW on working men was used to estimate the following

equation:
edic = 10.36 — .094 sibs + .131 meduc + 210 feduc
n =722, R*= 214,

where educ is years of schooling, sibs is number of siblings, meduc is mother’s years
of schooling, and feduc is father’s years of schooling.

(i) Does sibs have the expected effect? Explain. Holding meduc and feduc
fixed, by how much does sibs have to increase to reduce predicted years
of education by one year? (A noninteger answer is acceptable here.)

(ii) Discuss the interpretation of the coefficient on medic.

(ili) Suppose that Man A has no siblings, and his mother and father each
have 12 years of education. Man B has no siblings, and his mother and
father each have 16 years of education. What is the predicted difference
in years of education between B and A?

@ The following model is a simplified version of the multiple regression model used

by Biddle and Hamermesh (1990) to study the tradeoff between time spent sleeping and 4

working and to look at other factors affecting sleep:

sleep = By + Bytotwrk + Beduc + Biage + u,

where sleep and fotwrk (total work) are measured in minutes per week and educ and

age are measured in years. (See also Problem 2.12.)

|
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(i) If adults trade off sleep for work, what is the sign of B3,?
(i) What signs do you think B, and B, will have?
(iii) Using the data in SLEEP75.RAW, the estimated equation is

sléep = 3638.25 — .148 rotwrk — 11.13 educ + 2.20 age
n = 706, R* = .113.

If someone works five more hours per week, by how many minutes is
sleep predicted to fall? Is this a large tradeoff?
(iv) Discuss the sign and magnitude of the estimated coefficient on educ.
(v) Would you say totwrk, educ, and age explain much of the variation in
sleep? What other factors might affect the time spent sleeping? Are
these likely to be correlated with totwrk?

@ The median starting salary for new law school graduates is determined by
log(salary) = By + B.LSAT + B,GPA + Bslog(libvol) + Bailog(cost)
+ Bsrank + u,

where LSAT is the median LSAT score for the graduating class, GPA is the median col-
lege GPA for the class, libvol is the number of volumes in the law school library, cost
is the annual cost of attending law school, and rank is a law school ranking (with rank
= 1 being the best).

(i) Explain why we expect Bs = 0.

(i) What signs do you expect for the other slope parameters? Justify your

answers.
(iii) Using the data in LAWSCHS5.RAW, the estimated equation is

log(sdlary) = 8.34 + 0047 LSAT + .248 GPA + .095 log(libvol)
+ ,038 log(cost) — .0033 rank
n = 136, R* = .842.

What is the predicted ceteris paribus difference in salary for schools with
a median GPA different by one point? (Report your answer as a percent.)
(iv) Interpret the coefficient on the variable log(libvol).
(v) Would you say it is better to attend a higher ranked law school? How
much is a difference in ranking of 20 worth in terms of predicted start-
ing salary?

@ In a study relating college grade point average to time spent in various activities,
you distribute a survey to several students. The students are asked how many hours they
spend each week in four activities: studying, sleeping, working, and leisure. Any activ-
ity is put into one of the four categories, so that for each student, the sum of hours in
the four activities must be 168.

(i) In the model

GPA = B, + Bystudy + B,sleep + Bswork + Bjleisure + u,

does it make sense to hold sleep, work, and leisure fixed, while chang-
ing study?
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(ii) Explain why this model violates Assumption MLR.4.
(iii) How could you reformulate the model so that its parameters have a use-
ful interpretation and it satisfies Assumption MLR.4?

3.6 Consider the multiple regression model containing three independent variables,
under Assumptions MLR.1 through MLR.4:

y=Bo+ Bx;t Baxy + Baxs T u.

You are interested in estimating the sum of the parameters on x; and x,; call this 8, =
B, + B,. Show that 6, = B, + j3, is an unbiased estimator of 6;.

37 Which of the following can cause OLS estimators to be biased?
(i) Heteroskedasticity.
(ii) Omitting an important variable.
(iii) A sample correlation coefficient of .95 between two independent vari-
ables both included in the model.

Suppose that average worker productivity at manufacturing firms (avgprod)
(l

€pends on two factors, average hours of training (avgtrain) and average worker

ability (avgabil):
avgprod = B, + Bavgtrain + B,avgabil + u.

Assume that this equation satisfies the Gauss-Markov assumptions. If grants have been
e workers have less than average ability, s0 that avgtrain and

given to firms whos i
lated, what is the likely bias in f, obtained from the simple

avgabil are negatively corre
regression of avgprod on avgtrain?

n describes the median housing price in a community in

The following equatio
the average number of rooms

terms of amount of pollution (nox for nitrous oxide) and
in houses in the community (rooms):
log(price) = Bo + B,log(nox) + Byrooms + u.

(i) What are the probable signs of B; and B,? What is the interpretation of

B.? Explain.
(i) Why might nox [or more precisely, log(nox)] and rooms be negatively
correlated? If this is the case, does the simple regression of log(price)
on log(nox) produce an upward or downward biased estimator of 3,?
(iti) Using the data in HPRICE2.RAW, the following equations were esti-
mated:

log(pfice) = 11.71 — 1.043 log(nox), n = 506, R* = .264.

log(pfice) = 9.23 — 718 log(nox) + 306 rooms, n = 506, R> = 514.

Is the relationship between the simple and multiple regression estimates of
the elasticity of price with respect to nox what you would have predicted,
given your answer in part (ii)? Does this mean that —.71 8 is definitely closer

to the frue elasticity than —1.0437
3.10 Suppose that the population model determining y is
y=PB+Bx t Boxs + Baxs + U,
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and this model satisifies the Gauss-Markov assumptions. However, we estimate the
model that omits x;. Let 3,, B,, and 3, be the OLS estimators from the regression of y
on x, and x,. Show that the expected value of 3, (given the values of the independent
variables in the sample) is

E@)=B; + Bt—

where the 7,; are the OLS residuals from the regression of x, on x,. [Hint: The formula
for B, comes from equation (3.22). Plug y; = B, + Bix;, + Bux; + Baxy + w;into this
equation. After some algebra, take the expectation treating x;; and #;, as nonrandom.]

3.11 The following equation represents the effects of tax revenue mix on subsequent
employment growth for the population of counties in the United States:

growth = B, + Bsharey, + Byshare; + Bashareg + other factors,

where growth is the percentage change in employment from 1980 to 1990, share; is the
share of property taxes in total tax revenue, share; is the share of income tax revenues,
and shareg is the share of sales tax revenues. All of these variables are measured in
1980. The omitted share, shareg, includes fees and miscellaneous taxes. By definition,
the four shares add up to one. Other factors would include expenditures on education,
infrastructure, and so on (all measured in 1980).

(i) Why must we omit one of the tax share variables from the equation?

(ii) Give a careful interpretation of ;.

3.12 (i) Consider the simple regression model y = B, + B,x + u under the first four
Gauss-Markov assumptions. For some function g(x), for example g(x) = x>
or g(x) = log(1 + x*), define z; = g(x;). Define a slope estimator as

B = (2 (z;— 2)));)/(2 (z;— z‘)x,-).

Show that f3, is linear and unbiased. Remember, because E(u/x) = 0, you can
treat both x; and z; as nonrandom in your derivation.
Add the homoskedasticity assumption, MLLR.5. Show that

Var(B) = 02(2 (o~ z)i) / (2 - z)x)

Show directly that, under the Gauss-Markov assumptions, Var(,B1 =
Var(,B ), where ]31 is the OLS estimator. [Hint: The Cauchy-Schwartz
inequality in Appendix B implies that

n 2 n n
(n" E} @ = Dx — f)) =< (n" PR 5)2) (n" > - x)z);
i= i=1 i=1

notice that we can drop % from the sample covariance.]
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3.13 A problem of interest to health officials (and others) is to determine the effects of
smoking during pregnancy on infant health. One measure of infant health is birth
weight; a birth weight that is too low can put an infant at risk for contracting various
illnesses. Since factors other than cigarette smoking that affect birth weight are likely
to be correlated with smoking, we should take those factors into account. For example,
higher income generally results in access to better prenatal care, as well as better nutri-
tion for the mother. An equation that recognizes this is

bwght = B, + Bicigs + B, faminc + u.

T R S ST .

(i) What is the most likely sign for 8,?

(ii) Do you think cigs and faminc are likely to be correlated? Explain why
the correlation might be positive or negative.

(iii) Now, estimate the equation with and without faminc, using the data in
BWGHT.RAW. Report the results in equation form, including the sam-

3 ple size and R-squared. Discuss your results, focusing on whether
adding faminc substantially changes the estimated effect of cigs on
a bwght.

]

3.14 Use the data in HPRICEL.RAW to estimate the model
price = By + Bisqrft + Bybdrms + u,

where price is the house price measured in thousands of dollars.
(i) Write out the results in equation form.
(ii) What is the estimated increase in price for a house with one more bed-
room, holding square footage constant?
(iiiy What is the estimated increase in price for a house with an additional
bedroom that is 140 square feet in size? Compare this to your answer in
part (ii).
(iv) What percentage of the variation in price is explained by square footage
and number of bedrooms?
(v) The first house in the sample has sqrft = 2,438 and bdrms = 4. Find the
predicted selling price for this house from the OLS regression line.
(vi) The actual selling price of the first house in the sample was $300,000
8 (so price = 300). Find the residual for this house. Does it suggest that
B the buyer underpaid or overpaid for the house?

3,15 The file CEOSAL2.RAW contains data on 177 chief executive officers, which can
be used to examine the effects of firm performance on CEO salary.

(i) Estimate a model relating annual salary to firm sales and market value.
Make the model of the constant elasticity variety for both independent
variables. Write the results out in equation form.

(i) Add profits to the model from part (i). Why can this variable not be
included in logarithmic form? Would you say that these firm perfor-
mance variables explain most of the variation in CEO salaries?
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(iii) Add the variable ceoten to the model in part (ii). What is the estimated per-
centage return for another year of CEO tenure, holding other factors fixed?

(iv) Find the sample correlation coefficient between the variables
log(mktval) and profits. Are these variables highly correlated? What
does this say about the OLS estimators?

3.16 Use the data in ATTEND.RAW for this exercise.
(i) Obtain the minimum, maximum, and average values for the variables
atndrte, priGPA, and ACT.
(ii) Estimate the model

atndrte = By + B,priGPA + B,ACT + u,

and write the results in equation form. Interpret the intercept. Does it have a
useful meaning?
Discuss the estimated slope coefficients. Are there any surprises?
What is the predicted atndrte if priGPA = 3.65 and ACT = 207 What
do you make of this result? Are there any students in the sample with
these values of the explanatory variables?

(v) If Student A has priGPA = 3.1 and ACT = 21 and Student B has
priGPA = 2.1 and ACT = 26, what is the predicted difference in their
attendance rates?

3.17 Confirm the partialling out interpretation of the OLS estimates by explicitly doing
the partialling out for Example 3.2. This first requires regressing educ on exper and
tenure and saving the residuals, 7,. Then, regress log(wage) on #,. Compare the coeffi-
cient on 7, with the coefficient on educ in the regression of log(wage) on educ, exper,
and fenure.

3.18 Use the data set in WAGE2.RAW for this problem. As usual, be sure all of the fol-
lowing regressions contain an intercept.
(i) Run a simple regression of IQ on educ to obtain the slope coefficient,
say 8.
(i) Run the simple regression of log (wage) on educ, and obtain the slope
coefficient, B3,.
(i) Run the multiple regression of log (wage) on educ and IQ, and obtain
the slope coefficients, B, + f,, respectively.
(iv) Verify that B, = B, + 5.3,

3A.1 Derivation of the First Order Conditions in Equation (3.13)

The analysis is very similar to the simple regression case. We must characterize the
solutions to the problem

min > (3 = by — byxyy = ... = bxa).
b B B ¥ o it i)
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By our choice of the critical value ¢, rejection of Hy will occur for 5% of all random
samples when Hj is true.

The rejection rule in (4.7) is an example of a one-tailed test. In order to obtain c,
we only need the significance level and the degrees of freedom. For example, for a 5%
level test and with n — k — 1 = 28 degrees of freedom, the critical value is ¢ = 1.701.
If 5, < 1.701, then we fail to reject Hy in favor of (4.6) at the 5% level. Note that a neg-
ative value for 75, no matter how large in absolute value, leads to a failure in rejecting
H, in favor of (4.6). (See Figure 4.2 on the preceding page.)

The same procedure can be used with other significance levels. For a 10% level test
and if df = 21, the critical value is ¢ = 1.323. For a 1% significance level and if df =
21, ¢ = 2.518. All of these critical values are obtained directly from Table G.2. You
should note a pattern in the critical values: as the significance level falls, the critical
value increases, so that we require a larger and larger value of 75, in order to reject H,,.
Thus, if H, is rejected at, say, the 5% level, then it is automatically rejected at the 10%
level as well. It makes no sense to reject the null hypothesis at, say, the 5% level and
then to redo the test to determine the outcome at the 10% level.

As the degrees of freedom in the 7 distribution gets large, the ¢ distribution ap-
proaches the standard normal distribution. For example, when n — k — 1 = 120, the
5% critical value for the one-sided alternative (4.7) is 1.658, compared with the stan-
dard normal value of 1.645. These are close enough for practical purposes; for degrees
of freedom greater than 120, one can use the standard normal critical values.

 EXAMPLE 4.1

(Hourly Wage Equation)
Using the data in WAGE1.RAW gives the estimated equation
log(Wage) = .284 + .092 educ + .0041 exper + .022 tenure
(.104)  (.007) (.0017) (.003)
n = 526, R*> = 316,

where standard errors appear in parentheses below the estimated coefficients. We will fol-
low this convention throughout the text. This equation can be used to test whether the
return to exper, controlling for educ and tenure, is zero in the population, against the alter-
native that it is positive. Write this as Hg: Bexper = 0 VErsus Hy: Beyper = 0. (In applications,
indexing a parameter by its associated variable name is a nice way to label parameters, since
the numerical indices that we use in the general model are arbitrary and can cause confu-
sion.) Remember that B,,,., denotes the unknown population parameter. It is nonsense to
write “Hy: .0041 = 0” or "Hg: Bexper = 0.”

Since we have 522 degrees of freedom, we can use the standard normal critical values.
The 5% critical value is 1.645, and the 1% critical value is 2.326. The t statistic for ﬁme, is

tg = .0041/.0017 = 2.41,
exper

and so B,_,xpe,, or exper, is statistically significant even at the 1% level. We also say that
",éeme, is statistically greater than zero at the 1% significance level.”

The estimated return for another year of experience, holding tenure and education
fixed, is not especially large. For example, adding three more years increases log(wage) by




&),

124 Part 1 Regression Analysis with Cross-Sectional Data

S R B 2

3(.0041) = .0123, so wage is only about 1.2% higher. Nevertheless, we have persuasively
shown that the partial effect of experience is positive in the population. J

Y i " a— — - R T—

The one-sided alternative that the parameter is less than zero,

H: <0,

also arises in applications. The rejection rule for alternative (4.8) is just the mirror image
of the previous case. Now, the critical value comes from the left tail of the distribu-
tion. In practice, it is easiest t0 think of the rejection rule as

it TS T S A —:n.—_--'\":_! réj < S

where c is the critical value for the alterna-
tive H,: ;> 0. For simplicity, we always
assume ¢ is positive, since this is how crit-
ical values are reported in ¢ tables, and so

Let community loan approval rates be determined by
E the critical value —c is a negative number.
§
£
{

3 ??
i apprate = By + Bypercmin + Bavginc + !
' Bsavgwith + Biavgdebt + u, §

- where percmin is the percent minority in the community, avginc
' is average income, avgwilth is average wealth, and avgdebt is
some measure of average debt obligations. How do you state the &
null hypothesis that there is no difference in loan rates across
neighborhoods due to racial and ethnic composition, when aver- i
age income, average wealth, and average debt have been con- !
trolled for? How do you state the alternative that there is i
E

£

For example, if the significance level is
5% and the degrees of freedom is 18, then
¢ = 1.734, and so Hy: B; = Ois rejected in
favor of H,: B; << 0 at the 5% level if 15, <
—1.734. 1t is important fo remember that,
to reject H, against the negative alternative =
(4.8), we must get a negative 7 statistic. A
positive ¢ ratio, no matter how large, pro-
vides no evidence in favor of (4.8). The rejection rule is illustrated in Figure 4.3. i

T ——— TS T = S T T T T

TN

discrimination against minorities in loan approval rates?
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EXAMPLE 4.2

(Student Performance and School Size)

There is much interest in the effect of school size on student performance. (See, for exarn- ¥
ple, The New York Times Magazine, 5/28/95.) One claim is that, everything else being 3
equal, students at smaller schools fare better than those at larger schools. This hypothesis. =
is assumed to be true even after accounting for differences in class sizes across schools.
The file MEAP93.RAW contains data on 408 high schools in Michigan for the year 1993,
We can use these data to test the null hypothesis that school size has no effect on stan-
dardized test scores, against the alternative that size has a negative effect. Performance is
measured by the percentage of students receiving a passing score on the Michigan =
Educational Assessment Program (MEAP) standardized tenth grade math test (math10).
School size is measured by student enroliment (enrolf). The null hypothesis is Ho! Benron =
0, and the alternative is Hq: Benron < 0. For now, we will control for two other factors, aver-
age annual teacher compensation (totcomp) and the number of staff per one thousand &
students (staff). Teacher compensation is a measure of teacher quality, and staff size is a g
rough measure of how much attention students receive. ;
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5% rejection rule for the alternative H,: f; <0

Area = .05

7

Z
~

rejection  _1.734
region

The estimated equation, with standard errors in parentheses, is

maihl0 = 2.274 + .00046 totcomp + .048 staff — .00020 enroll
(6.113)  (.00010) (.040) (.00022)
n = 408, R* = .0541.

The coefficient on enroll, —.00020, is in accordance with the conjecture that larger schools
hamper performance: higher enroliment leads to a lower percentage of students with a
passing tenth grade math score. (The coefficients on totcomp and staff also have the signs
we expect.) The fact that enroll has an estimated coefficient different from zero could just
be due to sampling error; to be convinced of an effect, we need to conduct a t test.

Since n — k — 1 = 408 — 4 = 404, we use the standard normal critical value. At the
5% level, the critical value is —1.65; the t statistic on enroll must be fess than —1.65 to
reject Hy at the 5% level.

The t statistic on enroll is —.00020/.00022 = —.91, which is larger than —1.65: we fail
to reject Hq in favor of H, at the 5% level. In fact, the 15% critical value is —1.04, and since
—.91 > —1.04, we fail to reject H, even at the 15% level. We conclude that enrolf is not
statistically significant at the 15% level.
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When a specific alternative is not stated, it is usually considered to be two-sided. In
the remainder of this text, the default will be a two-sided alternative, and 5% will be the
default significance level. When carrying out empirical econometric analysis, it i
always a good idea to be explicit about the alternative and the significance level. If Hy
is rejected in favor of (4.10) at the 5% level, we usually say that “x;is statistically sig-
nificant, or statistically different from zero, at the 5% level” If H, is not rejected, we
say that “x;is statistically insignificant at the 5% level.”

" EXAMPLE 4.3 1

(Determinants of College GPA)

We use GPAT.RAW to estimate a model explaining college GPA (co/GPA), with the average &
number of lectures missed per week (skipped) as an additional explanatory variable. The &
estimated model is

colGPA = 139 + 412 hsGPA + 015 ACT — .083 skipped
0.33)  (.094) (011) (.026)
n = 141, R = 234.

We can easily compute t statistics to see which variables are statistically significant, usinga &
two-sided alternative in each case. The 5% critical value is about 1.96, since the degrees of
freedom (141 — 4 = 137) is large enough to use the standard normal approximation. The 3
1% critical value is about 2.58.

The t statistic on hsGPA is 4.38, which is significant at very small significance levels. Thus,
we say that “hsGPA is statistically significant at any conventional significance level.” The t =
statistic on ACT is 1.36, which is not statistically significant at the 10% level against a two-
sided alternative. The coefficient on ACT is also practically small: a 10-point increase in ACT, &
which is large, is predicted to increase colGPA by only .15 point. Thus, the variable ACT Is ._
practically, as well as statistically, insignificant. ;

The coefficient on skipped has a t statistic of —.083/.026 = —3.19, so skipped is statisti-
cally significant at the 1% significance level (3.19 > 2.58). This coefficient means that anoth-
er lecture missed per week lowers predicted colGPA by about .083. Thus, holding hsGPA and
ACT fixed, the predicted difference in colGPA between a student who misses no lectures per 2
week and a student who misses five lectures per week is about .42. Remember that this says
nothing about specific students, but pertains to average students across the population.

In this example, for each variable in the model, we could argue that a one-sided after- 3
native is appropriate. The variables hsGPA and skipped are very significant using a two-tailed
test and have the signs that we expect, so there is no reason to do a one-tailed test. On the ,_
other hand, against a one-sided alternative (Bs > 0), ACT is significant at the 10% level but ¥
not at the 5% level. This does not change the fact that the coefficient on ACT is pretty small i

—

Testing Other Hypotheses About f;

Although Hy: B; = 0 is the most common hypothesis, we sometimes want to test }'
whether B;is equal to some other given constant. Two common examples are 3; = 1 and
B, = —1. Generally, if the null is stated as
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larger enrollments are correlated with other factors that cause higher crime: larger schools
might be located in higher crime areas. We could control for this by collecting data on crime
rates in the local city.

For a two-sided alternative, for example Hy: ;= —1, H;: B; # —1, we still com-
pute the ¢ statistic as in (4.13): t = (B; + 1)/se(B,) (notice how subtracting —1 means
adding 1). The rejection rule is the usual one for a two-sided test: reject Hy if |1 > ¢,
where c is a two-tailed critical value. If H, is rejected, we say that * Q, is statistically dif-
ferent from negative one” at the appropriate significance level.

| EXAMPLE 4.5

(Housing Prices and Air Pollution)

For a sample of 506 communities in the Boston area, we estimate a model relating medi-
an housing price (price) in the community to various community characteristics: nox is the
amount of nitrogen oxide in the air, in parts per million; dist is a weighted distance of the
community from five employment centers, in miles; rooms is the average number of rooms
in houses in the community; and stratio is the average student-teacher ratio of schools in
the community. The population model is

log(price) = By + Bilog(nox) + B,log(dist) + Byrooms + PBystratio + u.

Thus, B, is the elasticity of price with respect to nox. We wish to test Hy: B, = —1 against
the alternative H;: B, # —1. The t statistic for doing this test is t = (B, + 1)/se(B,).
Using the data in HPRICE2.RAW, the estimated model is

log(pfice) = 11.08 — 954 log(nox) — .134 log(dist) + .255 rooms — .052 stratio
0.32) (117) (.043) (.019) (.006)
n = 506, R* = .581.

The slope estimates all have the anticipated signs. Each coefficient is statistically different
from zero at very small significance levels, including the coefficient on log(nox). But we do
not want to test that 8, = 0. The null hypothesis of interest is Hy: B; = —1, with corre-
sponding t statistic (—.954 + 1).117 = .393. There is little need to look in the t table for
a critical value when the t statistic is this small: the estimated elasticity is not statistically dif-
ferent from —1 even at very large significance levels. Controlling for the factors we have
included, there is little evidence that the elasticity is different from —1.

Computing p-Values for t Tests

So far, we have talked about how to test hypotheses using a classical approach: after
stating the alternative hypothesis, we choose a significance level, which then deter-
mines a critical value. Once the critical value has been identified, the value of the ¢ sta-
tistic is compared with the critical value, and the null is either rejected or not rejected
at the given significance level.
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If the alternative is H;: B; < 0, it makes sense to compute a p-value if Bj < 0 (and
hence t < 0): p-value = P(T < 1) = P(T > |f]) because the f distribution is symmetric

about zero. Again, this can be obtained as one-half of the p-value for the two-tailed test.
Because you will quickly become

familiar with the magnitudes of t statistics
: SpeEe 6 e‘ e B il ol B . that lead to statistical significance, espe-
1 u I e rssanmoeanoam =0 3 - 3 .
| and p—val{te = ,086 for tesg‘;cing Ho: B; = 0 against H1:}8;31 #0 1 aually- Tor 1.drge sarigle: e, _lt =
| What is the p-value for testing Ho: B; = 0 against Hy: By > 07 | gl\xfays cruc.1al to report p-values for ¢ st
: _ _ I tistics. But it does not hurt to report them.
. - Further, when we discuss F testing in
values, because critical values
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Section 4.5, we will see thatitis important to compute p-
for F tests are not so easily memorized.
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3 A Reminder on the Language of Classical Hypothesis Testing

e the language “we fail to reject Hy at the x%
9% level” We can use Example 4.5 to illustrate

why the former statement is preferred. In this example, the estimated elasticity of price
with respect to nox is — 954, and the 7 statistic for testing Ho: Buox = ~1 is t = 393
therefore, we cannot reject Ho. But there are many other values for B, (more than we &
can count) that cannot be rejected. For example, the f statistic for Hy: Buox = —-215 8
(—.954 + 9117 = — 462, and so this null is not rejected either. Clearly B = —1 &
and B, = —-9 cannot both be true, so it makes no sense (0 sy that we “accept” either 3

of these hypotheses. All we can say is that the data do not allow us to reject either of 3

these hypotheses at the 59 significance level.

When H, is not rejected, we prefer to us
level ” rather than “Hyis accepted at the X

Economic, or Practical, versus Statistical Significance

Since we have emphasized statistical significance throughout this section, NOW is a
good time to remember that we should pay attention to the magnitude of the coefficient
estimates in addition to the size of the ¢ statistics. The statistical significance of a var-
able x;is determined entirely by the size of 15, whereas the economic significance o

practical significance of a variable is related to the size (and sign) of 3. ‘
d by dividing the estimate =

Recall that the 7 statistic for testing Hy: B;=01is define .
by its standard error: 3, = B/se(;). Thus, t5, can indicate statistical significance either =8
because f3;is “large” or because se() is “small.” It is important in practice to distin- 8
guish between these reasons for statistically significant statistics. Too much focus on 3

statistical significance can lead to the false conclusion that a variable is “important” for 3
explaining y even though its estimated effect is modest.

[Participation Rates in 401 (k) Plans]

"

In Example 3.3, we used the data on 401(k) plans to estimate a model describing participa: =
tion rates in terms of the firm's match rate and the age of the plan. We now include a mea- 8
sure of firm size, the total number of firm employees (totemp). The estimated equation is
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prdre = 80.29 + 5.44 mrate + 269 age — 00013 totemp
(0.78) (0.52) (.045) (.00004)
n = 1,534, R* = .100.

The smallest ¢ statistic in absolute value is that on the variable totemp: t = —.0001 3/.00004
= —3.25. and this is statistically significant at very small significance levels. (The two-tailed
p-value for this t statistic is about .001.) Thus, all of the variables are statistically significant
at rather small significance levels.

How big, in a practical sense, is the coefficient on totemp? Holding mrate and age fixed,
if a firm grows by 10,000 employees, the participation rate falls by 10,000(.00013) = 1.3
percentage points. This is a huge increase in number of employees with only a modest
effect on the participation rate. Thus, while firm size does affect the participation rate, the
effect is not practically very large.

The previous example shows that it is especially important to interpret the magni-
tude of the coefficient, in addition to looking at ¢ statistics, when working with large
samples. With large sample sizes, parameters can be estimated very precisely: standard
errors are often quite small relative to the coefficient estimates, which usually results in i
statistical significance. S
Some researchers insist on using smaller significance levels as the sample size ? '.
increases, partly as a way to offset the fact that standard errors are getting smaller. For %’
example, if we feel comfortable with a 5% level when n is a few hundred, we might use \-' :
the 1% level when n is a few thousand. Using a smaller significance level means that eco-
nomic and statistical significance are more likely to coincide, but there are no guaran- *“? :
tees: in the the previous example, even if we use a significance level as small as 1 G .
(one-tenth of one percent), we would still conclude that fotemp is statistically significant.
Most researchers are also willing to entertain larger significance levels in applica-
tions with small sample sizes, reflecting the fact that it is harder to find significance
with smaller sample sizes (the critical values-are larger in magnitude, and the estima-
tors are less precise). Unfortunately, whether or not this is the case can depend on the
researcher’s underlying agenda.

(Effect of Job Training Grants on Firm Scrap Rates)

The scrap rate for a manufacturing firm is the number of defective items out of every 100
items produced that must be discarded. Thus, a decrease in the scrap rate reflects higher
productivity.

We can use the scrap rate to measure the effect of worker training on productivity. For
a sample of Michigan manufacturing firms in 1987, the following equation is estimated:

log(§crap) = 13.72 — .028 hrsemp — 1.21 log(sales) + 1.48 log(employ)

491) (.019) (0.41) (0.43)
n =30, R* = 431.
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(This regression uses a subset of the data in JTRAIN.RAW.) The variable hrsemp is annual
hours of training per employee, sales is annual firm sales (in dollars), and employ is number
of firm employees. The average scrap rate in the sample is about 3.5, and the average
hrsemp is about 7.3.

The main variable of interest is hrsemp. One more hour of training per employee lowers
log(scrap) by 028, which means the scrap rate is about 2.8% lower. Thus, if hrsemp
increases by 5—each employee is trained 5 more hours per year—the scrap rate is esti-
mated to fall by 5(2.8) = 14%. This seems like a reasonably large effect, but whether the
additional training is worthwhile to the firm depends on the cost of training and the ben-
ofits from a lower scrap rate. We do not have the numbers needed to do a cost benefit
analysis, but the estimated effect seems nontrivial. :

What about the statistical significance of the training variable? The statistic on hrsemp
is —.028/.019 = —1.47, and now you probably recognize this as not being large enough =
in magnitude to conclude that hrsemp is statistically significant at the 59% level. In fact, with ;
30 — 4 = 26 degrees of freedom for the one-sided alternative, Hy: Brrsemp < 0, the 5% crit- 3
ical value is about —1.71. Thus, using a strict 5% level test, we must conclude that hrsemp 4
is not statistically significant, even using a one-sided alternative.

Because the sample size is pretty small, we might be more liberal with the significance
level. The 10% critical value is —1.32, and so hrsemp is significant against the one-sided
alternative at the 10% level. The p-value is easily computed as P(Tos < — 1.47) = .077.This 3
may be a low enough p-value to conclude that the estimated effect of training is not just 48
due to sampling error, but some economists would have different opinions on this.

Remember that large standard errors can also be a result of multicollinearity (high

correlation among sOme of the independent variables), even if the sample size seems 3 '

fairly large. As we discussed in Section 3.4, there is not much we can do about this
problem other than to collect more data or change the scope of the analysis by dropping =
certain independent variables from the model. As in the case of a small sample size, it =
can be hard to precisely estimate partial effects when some of the explanatory variables
are highly correlated. (Section 4.5 contains an example.) :

We end this section with some guidelines for discussing the economic and statisti- =
cal significance of 2 variable in a multiple regression model: :

1. Check for statistical significance. If the variable is statistically significant, dis-
cuss the magnitude of the coefficient to get an idea of its practical or economic
importance. This latter step can require some care, depending on how the inde-

pendent and dependent variables appear in the equation. (In particular, what ai¢ 5
the units of measurement? Do the variables appear in logarithmic form?) '
_ If a variable is not statistically significant at the usual levels (10%, 5%, or 1%):
you might still ask if the variable has the expected effect on y and whether that
effect is practically large. If it is large, you should compuic a p-value for the £
statistic. For small sample sizes, you can sometimes make a case for p-values as =
large as .20 (but there are no hard rules). With large p-values, that is, small  sta-
tistics, we are treading on thin ice because the practically large estimates may be
due to sampling error: a different random sample could result in a very different 4
estimate.
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use a simple rule of thumb for a 95% confidence interval: EJ- plus or minus two of its
standard errors. For small degrees of freedom, the exact percentiles should be obtained
from the 1 tables.

It is easy to construct confidence intervals for any other level of confidence. For =
example, a 90% Cl is obtained by choosing ¢ to be the 95" percentile in the £, ;-1 dis-
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wribution, When df = n — k— 1 =25,¢ = 171, and so the 90% Cl is f; = 1.71-se(B)).

which is necessarily narrower than the 95% CI. For 2 99% CI, ¢ is the 99.5" percentile
in the £, distribution. When df = 25, the 99% CI is roughly fB; = 2.79-se( B), which is
inevitably wider than the 95% CI.

Many modern regression packages save us from doing any calculations by report-
ing a 95% Cl along with each coefficient and its standard error. Once a confidence inter-

val is constructed, it is easy 1o carry out iwo-tailed hypotheses tests. If the null

hypothesis is Ho: B; = @5 then H, is rejected against H: B; # a;at (say) the 5% signif- 1
icance level if, and only if, a;is not in the 95% confidence interval.

EXAMPLE 4.8
(Hedonic Price Model for Houses)

A model that explains the price of a good in terms of the good's characteristics is called an
hedonic price model. The following equation is an hedonic price model for housing prices;

the characteristics are square footage (sqrft), number of bedrooms (bdrms), and number of

bathrooms (bthrms). Often, price appears in logarithmic form, as do some of the explana-
tory variables. Using n = 19 observations on houses that were sold in Waltham, 8
Massachusetts, in 1990, the estimated equation (with standard errors in parentheses below
the coefficient estimates) is

log(price) = 746 + .634 log(sqrft) — 066 bdrms + .158 bthrms
(1.15) (.184) (.059) (.075)
n = 19, R* = .806.

Since price and sqrft both appear in logarithmic form, the price elasticity with respect o %
square footage is 634, so that, holding number of bedrooms and bathrooms fixed, a 1% &
increase in square footage increases the predicted housing price by about 634%. \We can
construct a 95% confidence interval for the population elasticity using the fact that the esti- '_
Cated modelhasn —k—1=19-3~-1= 15 degrees of freedom. From Table G.2,we &
find the 97.5t" percentile in the t,s distribution: ¢ = 2 131. Thus, the 95% confidence inter-
val for Bogsqarn 1S 634 + 2.131(.184), or (.242,1.026). Since zero is excluded from this con- &
fidence interval, we reject Ho: Biogtsary = © against the two-sided alternative at the 5% level,

The coefficient on bdrms is negative, which seems counterintuitive, However, it is impor- 8
tant to remember the ceteris paribus nature of this coefficient: it measures the effect of 8
another bedroom, holding size of the house and number of bathrooms fixed. If two hous:
es are the same size put one has more bedrooms, then the house with more bedrooms has &
smaller bedrooms; more pedrooms that are smaller is not necessarily a good thing. In any =
case, we can see that the 95% confidence interval for Buarms is fairly wide, and it contains 8
the value zero: —.066 * 2.131(.059) or (—-.192,.060), Thus, bdrms does not have a statis- v
tically significant ceteris paribus effect on housing price. ;
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Given size and number of bedrooms, one more bathroom is predicted to increase hous-
ing price by about 15.8%. (Remember that we must multiply the coefficient on bthrms by
100 to turn the effect into a percent) The 95% confidence interval for Buenms is
(—.002,.318). In this case, zero is barely in the confidence interval, so technically speaking
Bocnems is NOt statistically significant at the 5% level against a two-sided alternative. Since it
is very close to being significant, we would probably conclude that number of bathrooms
has an effect on log(price).

You should remember that a confidence interval is only as good as the underlying
assumptions used to construct it. If we have omitted important factors that are correlat-
ed with the explanatory variables, then the coefficient estimates are not reliable: OLS is
biased. If heteroskedasticity is present—for instance, in the previous example, if the
variance of log(price) depends on any of the explanatory variables—then the standard
error is not valid as an estimate of sd(BJ-) (as we discussed in Section 3.4), and the con-
fidence interval computed using these standard errors will not truly be a 95% CI. We
have also used the normality assumption on the errors in obtaining these Cls, but, as we
will see in Chapter 5, this is not as important for applications involving hundreds of
observations.

4.4 TESTING HYPOTHESES ABOUT A SINGLE LINEAR
COMBINATION OF THE PARAMETERS

The previous two sections have shown how to use classical hypothesis testing or confi-
dence intervals to test hypotheses about a single f3;at a time. In applications, we must
often test hypotheses involving more than one of the population parameters. In this sec-
tion, we show how to test a single hypothesis involving more than one of the B;. Section
4.5 shows how to test multiple hypotheses.

To illustrate the general approach, we will consider a simple model to compare the
returns to education at junior colleges and four-year colleges; for simplicity, we refer to
the latter as “universities.” [Kane and Rouse (1995) provide a detailed analysis of the
returns to two- and four-year colleges.] The population includes working people with a
high school degree, and the model is

log(wage) = By + Byijc + Byuniv + Bsexper + i, (4.17)

where jc is number of years attending a two-year college and univ is number of years
at a four-year college. Note that any combination of junior college and four-year col-
lege is allowed, including je = 0 and univ = 0.

The hypothesis of interest is whether one year at a junior college is worth one year
at a university: this is stated as

Ho: By = By (4.18)

Under H,, another year at a junior college and another year at a university lead to the
same ceteris paribus percentage increase in wage. For the most part, the alternative of
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interest is one-sided: a year at a junior college is worth less than a year at a university.
This is stated as

The hypotheses in (4.18) and (4.19) concern fwo parameters, B, and B,, a situation
we have not faced yet. We cannot simply use the individual ¢ statistics for B, and Byto
test H,. However, conceptually, there is no difficulty in constructing a statistic for test-
ing (4.18). In order to do so, we rewrite the null and alternative as Hy: B; — B = 0 and =
H;: B — B, <0, respectively. The ¢ statistic is based on whether the estimated differ- 3
ence f; — B, is sufficiently less than zero to warrant rejecting (4.18) in favor of (4.19).
To account for the sampling error in our estimators, we standardize this difference by
dividing by the standard error:

Lis .GIA_ Bi
se(B; — Bz)

Once we have the 7 statistic in (4.20), testing proceeds as before. We choose a signifi--
cance level for the test and, based on the df, obtain a critical value. Because the alter- %

native is of the form in (4.19), the rejection rule is of the form t < —¢, where cisa

positive value chosen from the appropriate distribution. Or, we compute the f statistic
and then compute the p-value (see Section 4.2).

The only thing that makes testing the equality of two different parameters morc dif- 'f
ficult than testing about a single f3;is obtaining the standard error in the denominator of
(4.20). Obtaining the numerator is trivial once we have peformed the OLS regression.
Using the data in TWOYEAR.RAW, which comes from Kane and Rouse (1995), we =
estimate equation (4. 17):

log(wWage) = 1472 + 0667 jc + 0769 univ -+ 0049 exper
(.021) (0068) (.0023) (:0002) (4
n= 6763, R*= 222.

It is clear from (4.21) that jc and univ have both economically and statistically signifi-
cant effects on wage. This is certainly of interest, but we are more concerned about test-
ing whether the estimated difference in the coefficients is statistically significant. The ..
difference is estimated as B, — B, = —.0102, so the return to a year at a junior college
is about one percentage point Jess than a year at a university. Economically, this is not
a trivial difference. The difference of —.0102 is the numerator of the ¢ statistic in (4.20).

Unfortunately, the regression results in equation (4.21) do not contain enough in-
formation to obtain the standard error of B, — B.. It might be tempting to claim that
se(B,— B = se(Br) — se(f3,), but this is not true. In fact, if we reversed the roles of
B, and B,, we would wind up with a negative standard error of the difference using the =
difference in standard errors. Standard errors must always be positive because they are =
estimates of standard deviations. While the standard error of the difference -
B — j3, certainly depends on se(fB;) and se(f3,), it does so in a somewhat complicated =
way. To find se(B, — B,), we first obtain the variance of the difference. Using the results &
on variances in Appendix B, we have 4
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Var(B, — B,) = Var(B)) + Var(B,) — 2 Cov(B,.53,). (4.22)

Observe carefully how the two variances are added together, and twice the covariance
is then subtracted. The standard deviation of f3, — 132 is just the square root of (4.22),
and, since [se(B,)]? is an unbiased estimator of Var(,Bl) and similarly for [se(,@z)]2 we
have

se(B, — Bo) = {Ise(BIP + [se(BIP — 2512172, (4.23)

where s, denotes an estimate of Cov(f3,.3,). We have not displayed a formula for
Cov(B,,3,). Some regression packages have features that allow one to obtain s,,, in
which case one can compute the standard error in (4.23) and then the ¢ statistic in (4.20).
Appendix E shows how to use matrix algebra to obtain s,,.

We suggest another route that is much simpler to compute, less likely to lead to
an error, and readily applied to a variety of problems. Rather than trying to compute
56(31 é—.) from (4.23), it is much easier to estimate a different model that directly
delivers the standard error of interest. Define a new parameter as the difference between
B, and B,: 6, = B; — B,. Then, we want to test

H,: 6, = 0 against H;: 6; <0. (4.24)

The ¢ statistic in (4.20) in terms of 6, is just t = élfse(él). The challenge is finding
se(d)).

We can do this by rewriting the model so that 6, appears directly on one of the inde-
pendent variables. Since 6, = B; — 3,, we can also write B; = 6, + B,. Plugging this
into (4.17) and rearranging gives the equation

log(wage) = By + (6; + Byjc + Byuniv + Bsexper + u (4.25)
= By + 0, jc + B:(je + univ) + Bsexper + u. i
The key insight is that the parameter we are interested in testing hypotheses about, 6,
now multiplies the variable jc. The intercept is still B, and exper still shows up as being
multiplied by ;. More importantly, there is a new variable multiplying S, namely
je + univ. Thus, if we want to directly estimate 6, and obtain the standard error ,, then
we must construct the new variable jc + univ and include it in the regression model in
place of univ. In this example, the new variable has a natural interpretation: it is fotal
years of college, so define totcoll = jc + univ and write (4.25) as

log(wage) = By + 6, jc + Batotcoll + Biexper + u. (4.26)

The parameter 8, has disappeared from the model, while 6, appears explicitly. This
model is really just a different way of writing the original model. The only reason we
have defined this new model is that, when we estimate it, the coefficient on jc is 91,
and, more importantly, se(él) is reported along with the estimate. The ¢ statistic that we
want is the one reported by any regression package on the variable jc (not the variable
totcoll).
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When we do this with the 6,763 observations used earlier, the result is

* &n | : log(wage) = 1.472 — 0102 jc + 0769 torcoll + .0049 exper
g (021) (0069)  (.0023) (.0002) (4:27)
o n=6,763, R>= 222. /

E The only number in this equation that we could not get from (4.21) is the standard error
8 for the estimate —.0102, which is .0069. The ¢ statistic for testing (4.18) is — .0102/.0069
= —1.48. Against the one-sided alternative (4.19), the p-value is about .070, so there is
some, but not strong, evidence against (4.1 8).

The intercept and slope estimate on exper, along with their standard errors, are the
same as in (4.21). This fact must be true, and it provides one way of checking whether
the transformed equation has been properly estimated. The coefficient on the new vari-
able, rotcoll, is the same as the coefficient on univ in (4.21), and the standard error is
also the same. We know that this must happen by comparing (4.17) and (4.25).

It is quite simple to compute a 95% confidence interval for 8, = B, — B,. Using the
standard normal approximation, the CI is obtained as usual: 6, = 1.96 se(6,), which in
this case leads to —.0102 + .0135.

The strategy of rewriting the model so that it contains the parameter of interest
works in all cases and is easy to implement. (See Problems 4.12 and 4.14 for other
examples.)

4.5 TESTING MULTIPLE LINEAR RESTRICTIONS:
THE F TEST

The ¢ statistic associated with any OLS coefficient can be used to test whether the cor-
responding unknown parameter in the population is equal to any given constant (which 8
is usually, but not always, zero). We have just shown how to test hypotheses about a sin 5
gle linear combination of the §B; by rearranging the equation and running a regressio
using transformed variables. But so far, we have only covered hypotheses involving
single restriction. Frequently, we wish to test multiple hypotheses about the underlyin
parameters Bo, By, .... By We begin with the leading case of testing whether a set 0
independent variables has no partial effect on a dependent variable.

Testing Exclusion Restrictions

We already know how to test whether a particular variable has no partial effect on the 8
= 8 dependent variable: use the t statistic. Now, we want to test whether a group of variable F
' has no effect on the dependent variable. More precisely, the null hypothesis is that a sef 3
of variables has no effect on y, once another set of variables has been controlled. 1

As an illustration of why testing significance of a group of variables is useful, Wes
consider the following model that explains major league baseball players’ salaries: 3

log(salary) = By + Byyears + B,gamesyr + Bsbavg +

© dorwnsyr - Harbisyr v ug
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where salary is the 1993 total salary, years is years in the league, gamesyr is aver-
age games played per year, bavg is career batting average (for example, bavg = 250),
hrunsyr is home runs per year, and rbisyr is runs batted in per year. Suppose we want
to test the null hypothesis that, once years in the league and games per year have been
controlled for, the statistics measuring performance—bavg, hrunsyr, and rbisyr—have
no effect on salary. Essentially, the null hypothesis states that productivity as measured
by baseball statistics has no effect on salary.
In terms of the parameters of the model, the null hypothesis is stated as

Ho: By = 0,8, =0, B5= 0. (4.29)

The null (4.29) constitutes three exclusion restrictions: if (4.29) is true, then bavg,
hrunsyr, and rbisyr have no effect on log(salary) after years and gamesyr have been con-
trolled for and therefore should be excluded from the model. This is an example of a set
of multiple restrictions because we are putting more than one restriction on the para-
meters in (4.28); we will see more general examples of multiple restrictions later. A test
of multiple restrictions is called a multiple hypotheses test or a joint hypotheses test.

What should be the alternative to (4.29)? If what we have in mind is that “perfor-
mance statistics matter, even after controlling for years in the league and games per
year.” then the appropriate alternative is simply

H,: H, is not true! (4.30)

The alternative (4.30) holds if at least one of B;, By, or s is different from zero. (Any
or all could be different from zero.) The test we study here is constructed to detect any
violation of H,. It is also valid when the alternative is something like H,: 85 > 0, or
B.> 0, or Bs > 0, but it will not be the best possible test under such alternatives. We
do not have the space or statistical background necessary to cover tests that have more
power under multiple one-sided alternatives.

How should we proceed in testing (4.29) against (4.30)? It is tempting to test (4.29)
by using the ¢ statistics on the variables bavg, hrunsyr, and rbisyr to determine whether
each variable is individually significant. This option is not appropriate. A particular ¢
statistic tests a hypothesis that puts no restrictions on the other parameters. Besides, we

“would have three outcomes to contend with—one for each ¢ statistic. What would con-
stitute rejection of (4.29) at, say, the 5% level? Should all three or only one of the three
 statistics be required to be significant at the 5% level? These are hard questions, and
fortunately we do not have to answer them. Furthermore, using separate ¢ statistics to
test a multiple hypothesis like (4.29) can be very misleading. We need a way to test the
exclusion restrictions jointly.

To illustrate these issues, we estimate equation (4.28) using the data in MLB1.RAW.
This gives

log(sﬁicu}-') = 11.10 + .0689 years + .0126 gamesyr
(0.29)  (.0121) (.0026) e
+ .00098 bavg + .0144 hrunsyr + .0108 rbisyr '5(4_'_31.)'-'
(.00110) (.0161) (.0072) e
n = 353, SSR = 183.186, R* = 6278,
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where SSR is the sum of squared residuals. (We will use this later.) We have left sev-
eral terms after the decimal in SSR and R-squared to facilitate future comparisons.
Equation (4.31) reveals that, while years and gamesyr are statistically significant, none
of the variables bavg, hrunsyr, and rbisyr has a statistically significant ¢ statistic against
a two-sided alternative, at the 5% significance level. (The 7 statistic on rbisyr is the clos-
est to being significant; its two- sided p-value is .134.) Thus, based on the three 7 statis-
tics, it appears that we cannot reject H,,.

This conclusion turns out to be wrong. In order to see this, we must derive a test of
multiple restrictions whose distribution is known and tabulated. The sum of squared
residuals now turns out to provide a very convenient basis for testing multiple hypothe-
ses. We will also show how the R-squared can be used in the special case of testing for
exclusion restrictions.

Knowing the sum of squared residuals in (4.31) tells us nothing about the truth of
the hypothesis in (4.29). However, the factor that will tell us something is how much

“ho SSR increases when we drop the variables bavg, hrunsyr, and rbisyr from the

model. Remember that, because the OLS estimates are chosen to minimize the sum of

squared residuals, the SSR_always increases when variables are dropped from the

model; this is an algebraic fact. '_].“_hg_qu_qsti‘on is whether this increase is large enough,
relative to the SSR in the model with all of the variables, to warrant rejecting the null

hypothesis.
The model without the three variables in question is simply

log(salary) = By + Biyears + B.gamesyr + u. (4.32):_.‘,

In the context of hypothesis testing, equation (4.32) is the restricted model for testing
(4.29); model (4.28) is called the unrestricted model. The restricted model always has

fewer parameters than the unrestricted model.
When we estimate the restricted model using the data in MLB1.RAW, we obtain

log(sdlary) = 1122 + 0713 years + .0‘202 gamesyr
Gl S (:0123) (.0013)
n = 353, SSR = 198.311, Re=1 5971

As we surmised, the SSR: from (4.33) is greater than the SSR from (4.31), and the R- 4
squared from the restricted model is less than the R-squared from the unrestricted
model., What we need to decide is whether the increase in the SSR in going from the 4
unrestricted model to the restricted model (183.186 to 198.311) is large enough to war-
rant rejection of (4.29). As with all testing, the answer depends on the significance level y
of the test. But we cannot carry out the test at a chosen significance level until we have
a statistic whose distribution is known, and can be tabulated, under H,. Thus, we need
a way to combine the information in the two SSRs to obtain a test statistic with a known
distribution under Hy.

Since it is no more difficult, we might as well derive the test for the general case.
Write the unrestricted model with k independent variables as 3

y=Bo+ Bxit .. + B, T u;
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for the OLS estimators that are derived using calculus. The formulas for the O
estimators in the multiple regression model are similar to those in Key Concept
for the single-regressor model. These formulas are incorporated into modern 5@

tical software. In the multiple regression model, the formulas are best expressed

discussed using matrix notation, so their presentation is deferred to Section 16:15
The definitions and terminology of OLS in multiple regression are SUmil
rized in Key Concept 5.3.

Application to Test Scores
and the Student-Teacher Ratio

In Section 4.2, we used OLS to estimate the intercept and slope coefficient oftl
regression relating test sCoOres (TestScore) to the student-teacher ratio (STR), usi

our 420 observations for California school districts; the estimated OLS regressi

line, reported in Equation (4.7), 1s
——
TestScore = 698.9 — 2.28 x STR.

Our concern has been that this relationship 1s
teacher ratio might be picking up the effect of having many English learners
districts with large classes. That is, it is possible that the OLS estimator is sub)
to omitted variable bias.

We are now in a position to address this concern by using OLS to estin
multiple regression in which the dependent variable is the test score (Y) and the
are two regressors: the student-teacher ratio (X, and the percentage of En
learners in the school district (X,;) for our 420 districts (=1, .- ->» 420). The
mated OLS regression line for this multiple regression is

e ——
TestScore = 686.0 — 1.10°X STR — 0.65 X PctEL,

where PctEL is the percentage of students in the district who are English lear
ers. The OLS estimate of the intercept ( B, is 686.0, the OLS estimate of the ¢0
ficient on the student-teacher ratio (B is —1.10, and the OLS estimate of the
coefficient on the percentage English learners (B,) is —0.65. E
The estimated effect on test SCOres of a change in the student-teacher:
in the multiple regression is approximately half as large as when the studt
teacher ratio is the only regressor: in the single-regressor equation (Equd
(5.9)), a unit decrease in the STR 1s estimated to increase test sCOXes b
points, but in the multiple regression equation (Equation (5.10)), it is est
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Ihe'_standard error of,@-, SE([E;,-).

the f-statistic, v
i ﬁ;{ﬁ;; : (5.14)
te the p-value, ; Conc ept

pvalue = 20( %), 615 9.6

s the value of the t-statistic actually computed. Reject the
at the 5% significance level if the p-value is less than 0.05 or,
dy if | 14> 1.96.

ard error and (typically) the t-statistic and p-value testing 8 = 0
:d automatically by regression software.

0» s
Application to Test Scores
and the Student-Teacher Ratio

Can we reject the null hypothesis that a change in the student-teacher ratio has
o effect on test scores, once we control for the percentage of English learners in
the district? What is a 95% confidence interval for the effect on test scores of a
change in the student-teacher ratio, controlling for the percentage of English

" learners? We are now able to find out. The regression of test scores against STR
nd PeEL, estimated by OLS, was given in Equation (5.10) and is restated here
with standard errors in parentheses below the coefficients:

e —
TestScore = 686.0 — 1.10 X STR — 0.650 X PctEL. (5.16)
(8.7) (0.43) (0.031)

To test the hypothesis that the true coefficient on STR is 0, we first need to
compute the t-statistic in Equation (5.14). Because the null hypothesis says that
the true value of this coefficient is zero, the t-statistic is ¢ = ( -1.10-0)/0.43 =
2 54. The associated p-value is 20(—2.54) = 1.1%; that is, the smallest signifi-
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A 95% two-sided confidence interval for the coefficient f; is an interval that &
contains the true value of B; with a 95% probability; that is, it contains the true
value of f;in 95% of all possible randomly drawn samples. Equivalently, it is also |
the set of values of f; that cannot be rejected by a 5% two-sided hypothesis test.

When the sample size is large, the 95% confidence interval is:

95% confidence interval for f; = B - 1.96SE(B), B; + 1.96SE(B)). 61

A 90% confidence interval is obtained by replacing 1.96 in Equation (5.17) wi
1.645.

cance level at which we can reject the null hypothesis is 1.1%. Because the p-value
;s less than 5%, the null hypothesis can be rejected at the 5% significance level (but
not quite at the 1% significance level). 9
A 95% confidence interval for the population coefficient on STR
~1.10 + 1.96 X 0.43 = (-1.95, —(.26); that is, we can be 95% confident that *
the true value of the coefficient is between —~1.95 and —0.26. Interpreted in n:'
context of the superintendent’s interest in decreasing the student-teacher ratio
by 2, the 95% confidence interval for the effect on test scores of this reductid;_'
js (~1.95 X 2, =0.26 X 2) = (=3.90, —0.52).

Adding expenditures per pupil to the equation Your analysis of the rmzl

tiple regression in Equation (5.16) has persuaded the superintendent that, based
on the evidence so far, reducing class size will help test scores in her district. No
however, she moves on to a More nuanced question. If she is to hire more teatis
ers, she can pay for those teachers either through cuts elsewhere in the budget '
new computers, reduced maintenance, etc.), or by asking for an increase in hef
budget, which taxpayers do not favor. What, she asks, is the effect on test SCOIeS
of reducing the student-teacher ratio, holding expenditures per pupil (and the p
centage of English learners) constant? ;

This question can be addressed by estimating a regression of test scores on
student-teacher ratio, total spending per pupil, and the percentage of Eng
learners. The OLS regression line 1s
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—
TestScore = 649.6 — 0.29 X STR + 3.87 X Expn — 0.656 X PitEL, (5.18)
(15.5) (0.48) (1.59) (0.032) '

where Expn is total annual expenditures per pupil in the district in thousands
of dollars.

The result is striking. Holding expenditures per pupil and the percentage of
English learners constant, changing the student-teacher ratio is estimated to have a
very small effect on test scores: the estimated coefficient on STR is =1.10 in Equa-
tion (5.16) but, after adding Expn as a regressor in Equation (5.18), it is only —0.29.
Moreover, the t-statistic for testing that the true value of the coefficient is zero is
now ¢ = (—0.29 — 0)/0.48 = —0.60, so the hypothesis that the population value of
this coefficient is indeed zero cannot be rejected even at the 10% significance level
(]1-0.60| < 1.645). Thus Equation (5.18) provides no evidence that hiring more
teachers improves test scores if overall expenditures per pupil are held constant.

Note that the standard error on STR increased when Expn was added, from
0.43 in Equation (5.16) to 0.48 in Equation (5.18). This illustrates the general
point that a correlation between regressors (the correlation between STR and
Expn is —0.62) can make the OLS estimators less precise (see Appendix 5.2 for
further discussion).

What about our angry taxpayer? He asserts that the population values of both
the coefficient on the student-teacher ratio (B;) and the coefficient on spending
per pupil (B,) are zero, that is, he hypothesizes that both f; = 0 and f; = 0.
Although it might seem that we can reject this hypothesis because the t-statistic
testing B, = 0 in Equation (5.18) is t = 3.87/1.59 = 2.43, this reasoning is flawed.
The taxpayer’s hypothesis is a joint hypothesis, and to test it we need a new tool,
the F-statistic.

Tests of Joint Hypotheses

This section describes how to formulate joint hypotheses on multiple regression
coefficients and how to test them using an F-statistic.

Testing Hypotheses on Two

or More Coefficients

Joint null hypotheses. Consider the regression in Equation (5.18) of the test
score against the student-teacher ratio, expenditures per pupil, and the percentage
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5.5 Provide an example of a regression that arguably would have a high value
R? but would produce biased and inconsistent estimators of the regression
coefficient(s). Explain why the R2is likely to be high. Explain why the O
estimators would be biased and inconsistent.

Exercises

The first seven exercises refer to the table of estimated regressions below, cotil=
puted using data for 1998 from the CPS. The data set consists of information
on 4,000 full-time full-year workers. The highest educational achievement for

Results of Regressions of Average Hourly Earnings on Gender and Education Binary '
Variables and other characteristics using 1998 data from the Current Population

Dependent variable: Average Hourly Earnings (AHE).

Regressor (1) (2)

{Coﬂege (Xy) (g ;?)

Female (X5) -2.62
(0.20)

Age (X3) 0.29

Northeast (X,)

Midwest (X5)

South (X)

Intercept 12.69
(0.14)

Summary Statistics and Joint Tests

F-Statistic for regional effects =0

6.27
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each worker was either a high school diploma or a bachelor’s degree. The
worker’s ages ranged from 2534 years. The data set also contained information
on the region of the country where the person lived, marital status, and num-
ber of children. For the purposes of this exercises let

AHE = average hourly earnings (in 1998 dollars)

College = binary variable (1 if college, 0 if high school)

Female = binary variable (1 if female, 0 if male)

Age = age (in years)

Ntheast = binary variable (1 if Region = Northeast, 0 otherwise)
Midwest = binary variable (1 if Region = Midwest, 0 otherwise)
South = binary variable (1 if Region = South, 0 otherwise)

West = binary variable (1 if Region = West, 0 otherwise)

5.1 Add“*” (5%) and “**” (1%) to the table to indicate statistical significance of
the coefficients.

5.2 Compute R? for each of the regressions.

5.3 Using the regression results in column (1):

*a. Do workers with college degrees earn more, on average, than work-

ers with only high school degrees? How much more? Is the earnings
difference estimated from this regression statistically significant at the
5% level?

Do men earn more than women on average? How much more? Is the
earnings difference estimated from this regression statistically signifi-
cant at the 5% level?

5.4 Using the regression results in column (2):

a. [s age an important determinant of earnings? Explain.
b. Sally is 29-year-old female college graduate. Betsy is a 34-year-old
femaie college graduate. Predict Sally’s and Betsy’s earnings and con-

struct a 95% confidence interval for the expected difference between
their earnings.

5.5 Using the regression results in column (3):

*a. Do there appear to be important regional differences?

b. Why is the regressor West omitted from the regression? What would
happen if it was included?
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*¢. Juanitaisa 28-year-old female college graduate from the South.
Molly is a 28-year-old female college graduate from the West.
Jennifer is a 28-year-old female college graduate from the Midwest.

ci. Construct a 95% confidence interval for the difference in
expected earnings between Juanita and Molly.

cii. Calculate the expected difference in ecarnings between Juanita 2
Jennifer.

ciii. Explain how you would construct 2 95% confidence interval for
the difference in expected earnings between Juanita and Jennifer. ;
(Hint: What would happen if you included West and excluded
Miduwest from the regression?)

5.6 The regression shown in column (2) was estimated again, this time usi
data from 1992. (4,000 observations selected at random from the Mar
1993 CPS, converted into 1998 dollars using the consumer price ind:
The results are

AFIE = 077 + 5.29College — 2.59 Female + 0.40Age, SER = 5.85, R2 =020
(0.98) (0.20) (0.18) (0.03) 3

Comparing this regression to the regression for 1998 shown in column (-.,
was there a statistically significant change in the coefficient on Collegez

Evaluate the following statement: “In all of the regressions, the coeffic
on Female is negative, large, and statistically significant. This provides s
statistical evidence of gender discrimination in the U.S. labor market.”
Consider the regression model ¥; = Bo + By Xy + BaXoi Wi Use “Appro
#2” from Section 5.8 to transform the regression so that you can use &
statistic to test

a. ﬁl = B?_;

b. B, + af, =0, where a is a constant;

18
7

c. By + By =1. (Hint: You must redefine the dependent variable in the 3
regression.) '

Appendix 5.3 shows two formulas for the rule-of-thumb F-statistic, Eq
tions (5.38) and (5.39). Show that the two formulas are equivalent.
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sample, the median district income is 13.7 (that is, $13,700 per person), and 1
ranges from 5.3 ($5,300 per person) to 55.3 ($55,300 per person).

Figure 6.2 shows a scatterplot of fifth-grade test scores against district income =
for the California data set, along with the OLS regression line relating these two
variables. Test scores and average income are strongly positively correlated, with
a correlation coefficient of 0.71; students from affluent districts do better on th
tests than students from poor districts. But this scatterplot has a peculiarity: m
of the points are below the OLS line when income is very low (under $10,000)
or very high (over $40,000), but are above the line when income is betwe
$15,000 and $30,000. There seems to be some curvature in the relationshi
between test scores and income that is not captured by the linear regression.

In short, it seems that the relationship between district income and test scores
is not a straight line. Rather, it is nonlinear. A nonlinear function is a function
with a slope that is not constant: the function f(X) is linear if the slope of f(X}
s the same for all values of X, but if the slope depends on the value of X, th
f(X) is nonlinear.

If a straight line is not an adequate description of the relationship between
trict income and test scores, what is? Imagine drawing a curve that fits the points
in Figure 6.2. This curve would be steep for low values of district income, then s
would flatten out as district income gets higher. One way to approximate such
curve mathematically is to model the relationship as a quadratic function. That is;
we could model test scores as a function of income and the square of income.

A quadratic population regression model relating test scores and income
written mathematically as

TestScore; = P + PyIncome; + B, Income? + u;,

where g, By, and p, are coefficients, Income; is the income in the i™ districts
Tncome?, is the square of income in the i district, and u; is an error term that,
usual, represents all the other factors that determine test scores. Equation (6.
called the quadratic regression model because the population regression ful
tion, E(TestScore;| Income;) = Bo + ByIncome; + B,Income}, is a quadratic function
the independent variable, Income. .

If you knew the population coefficients Sy, By, and B, in Equation (6.1), ¥
could predict the test score of a district based on its average income. But thi
population coefficients are unknown and therefore must be estimated using a saii=
ple of data.

At first, it might seem difficult to find the coefficients of the quadratic fun
tion that best fits the data in Figure 6.2. If you compare Equation (6.1) with
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. Scatterplot of Test Score vs. District Income with a Linear OLS Regression Function
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multiple regression model in Key Concept 5.2, however, you will see that Equa-
tion (6.1) is in fact a version of the multiple regression model with two regres-
sors: the first regressor is Income, and the second regressor is Income?. Thus, after
defining the regressors as Incorme and Income?, the nonlinear model in Equation
(6.1) is simply a multiple regression model with two regressors!

Because the quadratic regression model is a variant of multiple regression, its
unknown population coefficients can be estimated and tested using the OLS
methods described in Chapter 5. Estimating the coefficients of Equation (6.1)
using OLS for the 420 observations in Figure 6.2 yields

—— 5 —2
TestScore = 607.3 + 3.85Income — 0.0423Income”, R* = 0.554, (6.2)
(2.9) (0.27) (0.0048)

where (as usual) standard errors of the estimated coefficients are given in paren-
theses. The estimated regression function (6.2) is plotted in Figure 6.3, super-
imposed over the scatterplot of the data. The quadratic function captures the
curvature in the scatterplot: it is steep for low values of district income but flattens
out when district income is high. In short, the quadratic regression function seems
to fit the data better than the linear one.

We can go one step beyond this visual comparison and formally test the
hypothesis that the relationship between income and test scores is linear, against
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Below we show an example of a regression result output from EViews (the case of
Microfit is similar).

Reading the EViews multiple regression results output

N n=noof obs.
\ M(’- A ) Nama of the ¥ variable
Estimated Shows the method
foaffr:dsnj of estimation
ﬁl' 2--&
Dependent Variable: LOG (IMP)
gthod: Least Squares
- 02/18/04 Time: 15:30
~1980:1 1988:2
I ations: 34
Variabte. Coetlicient Std, Error [-Statistic Prob.

Constant e 'Y
c\u.wm 0.344368  1.834867 j 0.0761
___—¥1L0G(GDP) 1926036  0.168856  11.41174 | 0.0000

X LOG(CPI) 0.274276 0.137400

0.966057 Mean dependent var
963867 S.D. dependent var
0.026313 Akaike info criterion
21464 Schwarz criterion
F-statistic
Prob( st

A-squared

Xz

t-statistics for
estimated coefts

D-W stat.
(see Chapter T)

F-statistic for overall significance
and prob limit.

Hypothesis testing
Testing individual coefficients

As in simple regression analysis, in multiple regression a single test of hypothesis on a
regression coefficientis carried out as a normal £ test. We can again have one-tail tests (if
there is some prior belief/theory for the sign of the coefficient) or two-tail tests, carried
out in the usual way (B - ﬁ)/sﬁ follows t,,_g), and we can immediately make a decision
about the significance or not of the fs using the criterion |t-stat| > |t-crit| having the
t-statistic provided immediately by either Microfit or EViews (note that especially for
large samples we can use the ‘rule of thumb’ |t-stat| > 2).

Testing linear restrictions

Sometimes in economics we need to test whether there are particular relationships
between the estimated coefficients. Take for example a production function of the
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First we need to construct/generate the dependent variable. In order to do that we
have to type the following command in the EViews command line:

genr lnwage = log (wage)

Then, in order to estimate the multiple regression model, we have to select from the
EViews toolbar Quick/Estimate Equation and type into the Equation Specification
box the required model as:

lnwage ¢ educ exper tenure

The results from this equation are shown in Table 5.1.

We can also save the equation (named unrestrict01) and save the regression results
(by clicking on the ‘freeze’ button) at an output table (named TableO1 in the file). As
may be seen from the equation, all three variables have positive coefficients. These are
all above the ‘rule of thumb’ critical t.value of 2, hence all are significant. S0, it may
be said that wages will increase as education, experience and tenure increases. Despite
the significance of these three variables, the adjusted R? is quite low (0.145) as there
are probably other variables that affect wages.

A Wald test of coefficient restrictions

Let's now assume that we want to test whether the effect of the tenure variable is the
same with that of experience (exper variable). Referring to the estimation equation, we
can see that the coefficient of exper is C(3) and the coefficient of tenure is C(4).

In order to test the hypothesis that the two effects are equal we need to conduct a
Wald test in EViews. This can be done by clicking on View/Coefficient Tests/Wald-
Coefficient Restrictions, in the regression results output and then by typing the
restriction as:

cC3)y=C#) (5.77)

Lo e
e —

s " -—-——-.__,________‘
Table 5.1 Results from the wage equation

Dependent Variable: LNWAGE
Method: Least Squares

Date: 02/02/04 Time: 11:10
Sample: 1 900

Included observations: 900

Variable Coefficient Std. Error t-Statistic Prob.

C 5.528329 0.112795 49.01237 0.0000
EDUC 0.073117 0.006636 11.01871 0.0000
EXPER 0.015358 0.003425 4.483631 0.0000
TENURE 0.012964 0.002631 4.927939 0.0000
R-squared 0.148647 Mean dependent var 6.786164
Adjusted R-squared 0.145797 S.D. dependent var 0.420312
S.E. of regression 0.388465 Akaike info criterion 0.951208
Sum squared resid 135.2110 Schwarz criterion 0.972552
Log likelihood —424.0434 F-statistic 52.14758

Durbin—Watson stat 1.750376 Prob(F-statistic) 0.000000

e
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(c) Estimate a regression that includes only cig and comment on your results.

(d) Present all three regressions summarized in a table and comment on your results,
especially by comparing the changes in the estimated effects and the R? of the three
different models. What does the F statistic suggest about the joint significance of
the explanatory variables in the multiple regression case?

(e) Test the hypothesis that the effect of cig is two times bigger than the respective
effect of fam_inc using the Wald test.

Exercise 5.2

Use the data from the file wage.wfl and estimate an equation which includes as
determinants of the logarithm of the wage rate the variables, educ, exper and tenure.

(a) Comment on your results.
(b) Conduct a test of whether another year of general workforce experience (captured
by exper) has the same effect on log(wage) as another year of education (captured
oy educ). State dearly your wall and Aternative iypotheses and yous testricted and
unrestricted odels. Use the Wald fest to dneck for that ypothesis.

Q) T Riarl 2 TR R ARTI TR AR RS T TNR SRORTRIT TRt e otmneni on
A RSSRUSN

D) THUSHRIR 2 THRREL RN e wd RAOE TR TLRARDE THDAICK 0 BN \
XRSK KT Teure A ne THodel, COmImEDt on Jous 1Redds.

Use the data in the file money_uk.wfl to estimate the parameters «, and?
equation below:

In(M/P)t =a+pInY; +yInRe +ut

(a) Briefly outline the theory behind the aggregate demand for money. Rel
discussion to the specification of the equation given above. In particulat
first the meaning of the dependent variable and then the interpretation of

(b) Perform appropriate tests of significance on the estimated parameters in
investigate each of the following propositions: (i) that the demand f0
increases with the level of real income, (ii) the demand for money is incom
and (iii) the demand for money is inversely related to the rate of interest.

e

-

( xercis@

The file living.xls contains data for a variety of economic and social mea
sample of 20 different countries, where:

Y =GNP per capita, 1984 $US;
X2 =average % annual inflation rate (1973-84);
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X3 =% of labour force in agriculture;
X4 =life expectancy at birth, 1984 (years);
X5 =number enrolled in secondary education as % of age group.

(a) Insert the data in EViews or Microfit.
) Estimate the regression coefficients in each of the following equations:

Y = B1 + BaXor + it

Yt = B1 + B2Xot + B3 X3t + 1t

Yt = B1 + B2Xor + B3 X3t + BaXar + 1t

Yt = B1 + B2Xat + B3 X3t + BaXar + BsXse + Ut

* (c) How robust are the estimated coefficients? By this we mean, to what extent do the
- estimated values of each B; change as further explanatory variables are added to the
right-hand side of the equation?

(d) Assuming Y to be an index of economic development, carry out tests of significance
on all slope coefficients in the final regression equation model. State clearly the null
and alternative hypotheses for each case and give reasons for setting them like that.

. Exercise 5.5

. The file Cobb_Douglas_us.wfl contains data for output (Y), labour (L) and stock of
. capital (K) for the United States. Estimate a Cobb-Douglas type regression equation
- and check for constant returns to scale using the Wald test.
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Table 6.8 Second model regression results (including both CPIand PPI)

Dependent Variable: LOG(IMP)
Method: Least Squares

Date: 02/17/04 Time: 02:19
Sample: 1990:1 1998:2
Included observations: 34

Variable Coefficient Std. Error t-Statistic Prob.

C 0.213906 0.358425 0.596795 0.5551
LOG(GDP) 1.969713 0.156800 12.56198 0.0000
LOG(CPI) 1.025473 0.323427 3.170645 0.0035
LOG(PPI) —0.770644 0.305218 —2.524894 0.0171
R-squared 0.972006 Mean dependent var 10.81363
Adjusted R-squared 0.969206 S.D. dependent var 0.138427
S.E. of regression 0.024291 Akaike info criterion --4.487253
Sum squared resid 0.017702 Schwarz criterion —4.307682
Log likelihood 80.28331 F-statistic 347.2135
Durbin — Watson stat 0.608648 Prob(F-statistic) 0.000000

Table 6.9 Third model regression results (including only PPI)

Dependent Variable: LOG(IMP)
Method: Least Squares

Date: 02/17/04 Time: 02:22
Sample: 1990:1 1998:2
Included observations: 34

Variable Coefficient Std. Error t-Statistic Prob.

c 0.685704 0.370644 1.850031 0.0739
LOG(GDP) 2.093849 0.172585 12.13228 0.0000
LOG(PPI) 0.119566 0.136062 0.878764 0.3863
R-squared 0.962625 Mean dependent var 10.81363
Adjusted R-squared 0.960213 S.D. dependent var 0.138427
S.E. of regression 0.027612 Akaike info criterion —4.257071
Sum squared resid 0.023634 Schwarz criterion ~4.122392
Log likelihood 75.37021 F-statistic 399.2113
Durbin—Watson stat 0.448237 Prob(F-statistic) 0.000000

Estimating the equation this time without log(CPI) but with log(PPI) we get the
results shown in Table 6.9, which shows that log(PPI) is positive and insignificant! So,
it is clear that the significance of log(PPI) in the specification above was due to the
linear relationship that connects the two price variables.

So, the conclusions from this analysis are similar to the case of the collinear data set
in Example 1 above, and can be summarized as follows:

1 The correlation among the explanatory variables was very high.

o Standard errors or t-ratios of the estimated coefficients changed from estimation
to estimation.

-




