
Figure 1.1 displays two aspects of the relationship be-
tween real personal saving (SAV) and real personal dis-
posable income (INC) in the US

In Fig. 1.1a the value of each series is shown for the
period 1959.1 to 1992.1

It is a typical example of a time series plot, in which time
is displayed on the horizontal axis and the values of the
series are displayed on the vertical axis

Income shows an upward trend throughout the period,
and in the early years, saving does likewise

This pattern, however, is not replicated in the middle and
later years

SEE FIGURE 1.1



Figure 1.2 illustrates various associations between the
natural log of real personal expenditure on gasoline (GAS),
the natural log of the real price of gasoline (PRICE), and
the natural log of real disposable personal income

The real price series, shows the two dramatic price hikes
of the early and late 1970s, which were subsequently
eroded by reductions in the nominal price of oil and by
US in�ation

The income and expenditure series are both shown in per
capita form, because US population increased about 44%
over the period

Per capita real expenditure of gasoline increased steadily
in the 1960s and early 1970s, as real income grew and
real price declined

This steady price ended with the price shocks of the
1970s, and per capita gas consumption has never regained
the peak levels of the early seventies

SEE FIGURE 1.2



An alternative display of the same information is in terms
of a scatter plot, shown in Fig 1.1b

Here one series is plotted against the other

Both parts of Fig 1.1 indicate a positive association be-
tween the variables:

increases in one tend to be associated with increases in
the other

It is clear that although the association is approximately
linear in the early part of the period, it is not so in the
second half

SEE FIGURE 1.1b



SAMPLE MEANS

The observations for two variables are denoted by (Xi; Yi)
with i = 1; 2; : : : ; N

Sample means are given by

X =

NX
i=1

Xi

N
;Y =

NX
i=1

Yi

N

Data in deviation form (deviations from the mean) are
denoted by

xi = Xi �X; yi = Yi � Y



SCATTER DIAGRAM

Figure 1 shows an illustrative point on a scatter diagram
with the sample means as new axes, giving four quadrants

Positive relationship: points lying for the most part in QI
and QIII.

Negative relationship:points lying for the most part in QII
and QIV.

The sign of
X
xiyi will indicate whether the scatter di-

agram slopes upward or downward

SEE FIGURE SCATTER DIAGRAM



SAMPLE COVARIANCE

It is better to express the sum in average terms, giving
the sample covariance:

COV (X;Y ) =

XN

i=1
xiyi

N
=

XN

i=1
(Xi �X)(Yi � Y )

N

The value of the covariance depends on the units in which
the variables are measured



CORRELATION COEFFICIENT

To obtain a measure of association that is invariant with
respect to units of measurement the deviations are ex-
pressed in standard deviation units:

sx =

vuutXN

i=1
(Xi �X)2

N
=

vuutXN

i=1
x2i

N

sy =

vuutXN

i=1
(Yi � Y )2

N
=

vuutXN

i=1
y2i

N

The correlation coe¢ cient is de�ned as

r =
NX
i=1

xiyi
sxsyN



ALTERNATIVE FORM

Since

sx =

vuutXN

i=1
x2i

N
;sy =

vuutXN

i=1
y2i

N

the correlation coe¢ cient can also be expressed as

r =
NX
i=1

xiyi
sxsyN

=

NX
i=1

xiyirXN

i=1
x2i

rXN

i=1
y2i



AN ALTERNATIVE EXPRESSION FOR r

Moreover using the fact that

N
NX
i=1

xiyi = N
NX
i=1

XiYi �
NX
i=1

Xi

NX
i=1

Yi;

N
nX
i=1

x2i = N
NX
i=1

X2i � (
NX
i=1

Xi)
2;

N
nX
i=1

y2i = N
NX
i=1

Y 2i � (
NX
i=1

Yi)
2;

we have

r =

N
NX
i=1

XiYi �
NX
i=1

Xi

NX
i=1

YivuutN NX
i=1

X2i � (
NX
i=1

Xi)2

vuutN NX
i=1

Y 2i � (
NX
i=1

Yi)2



LIMITS OF r

The correlation coe¢ cient must lie in the range from -1
to +1

From the Cauchy-Schwarz inequality we have:

(
NX
i=1

xiyi) � (
XN

i=1
x2i )(

XN

i=1
y2i )

Since

r =

NX
i=1

xiyirXN

i=1
x2i

rXN

i=1
y2i

It follows that r2 � 1



NUMERICAL EXAMPLE

r =

NX
i=1

xiyirXN

i=1
x2i

rXN

i=1
y2i

=
70p

40
p
124

= 0:9879



If no theory exists or can be devised that connects the two
variables, the correlation may be classed as a nonsense
correlation

Yule took annual data from 1866 to 1911 for the death
rate in England and Wales and for the proportion of all
marriages solemnized in the Church of England and found
the correlation coe¢ cient to be 0.95

However, no British politician proposed closing down the
Church of England to confer immortality on the electorate



ECONOMIC THEORY

Lets say that we have two variables: expenditure (Y ) and
income denoted by (X)

There are N observations: i = 1; : : : ; N

Actual values: Y1; : : : ; YN ; X1; : : : ; XN

Economic theory suggests a linear relationship between
the two variables:

eYi = a+ bXi
eYi are the values suggested by the theory
The di¤erences between the actual values and the sug-
gested ones are the errors

ei = Yi � eYi



LEAST SQUARES ESTIMATORS

Thus, we have the actual values: Y1; : : : ; YN

and the values suggested by the theory: eY1; : : : ; eYN
Their di¤erence are the errors e1; : : : ; eN

We want to get an estimate of the two coe¢ cients: a
and b

We calculate the sum of the squared errors:PN
i=1 e

2
i =

PN
i=1(Yi � eYi)2 = PN

i=1(Yi � a� bXi)2

This sum is a function of the two parameters a and b

We choose the values of a and b that minimises this sum.

These are the least squares estimates: � and �



It can be shown that

� = Y � �X

and � is

� =

PN
i=1 xiyiPN
i=1 x

2
i



ALTERNATIVE EXPRESSIONS

Recall that

COV (X;Y ) =

PN
i=1 xiyi
N

;V AR(X) =

PN
i=1 x

2
i

N

Hence, it follows from equation (8)

� =

PN
i=1 xiyiPN
i=1 x

2
i

=
COV (X;Y )

V AR(X)
(1)

It can also be shown that

� = r
sy

sx
(2)



NUMERICAL EXAMPLE

� =

PN
i=1 xiyiPN
i=1 x

2
i

=
70

40
= 1:75;

� = Y � �X = 8� 1:75(4) = 1



MODEL

Our bivariate regression is given by

Yi = a+ bXi + ei (3)

The errors ei are stochastic

Assumptions about the errors:

i) They are identically and independently distributed

ii) They have expected value 0, E(ei) = 0, and variance
�2, V AR(ei) = �2

That is ei � iid(0; �2)



ESTIMATORS AND ESTIMATES

There are thus three parameters to be estimated in the
model, namely, a,b and �2

Once the two parameters a and b has been estimated and
a line has been �tted, the residuals from this line may be
used to form an estimate of �2

An estimator is a formula, method, or recipe for estimat-
ing an unknown population parameter

An estimate is the numerical value obtained when sample
data are substituted in the formula



Thus the least square formula � =
PN
i=1 xiyiPN
i=1 x

2
i

is an esti-

mator

For each particular sample (values ofXi, Yi, i = 1; : : : ; N)
we have one estimate (a numerical value of �)

However, before the sampling the fact that ei is stochas-
tic implies that Yi is stochastic

Thus the estimator � is stochastic as well

It is a linear combination of the y (or Y ) variable, � =PN
i=1wiyi where wi =

xiPN
i=1 x

2
i

, and hence a linear com-

bination of the stochastic e variable



TWO IMPORTANT QUESTIONS

There are two important questions regarding the least
squares estimators of a and b: � and � respectively

1. What are the properties of these estimators

2. How may these estimators be used to make inferences
about a and b

The answers to both these questions depend on the sam-
pling distribution of the least squares estimators.

A given sample yields a speci�c numerical estimate

Another sample from the same population will yield an-
other numerical estimate

A sampling distribution describes the results that will be
obtained from the estimator(s) over the potentially in�-
nite set of samples that may be drawn from the popula-
tion



MAIN ASSUMPTIONS

Recall that we assume: ei � iid(0; �2)

The derivation of inference procedures requires an as-
sumption about the distribution of the e0s

The standard assumption is that of normality:

ei � N(0; �2)

Recall that the least square estimator � is a linear com-
bination of e and thus it is also stochastic



It can be shown that

� � N(b; �2PN
i=1 x

2
i

)

That is E(�) = b; In other words � is an unbiased esti-
mator

In addition V AR(�) = �2PN
i=1 x

2
i

. It can be shown that

this is the smallest variance amongst all other unbiased
linear estimators

The least squares estimator that has the minimum vari-
ance in the class of linear unbiased estimators is called
best linear unbiased estimator: BLUE



THE � ESTIMATOR

It can be shown that

� � N(a; �2( 1
N
+

X
2PN

i=1 x
2
i

))

That is E(�) = a; In other words � is an unbiased
estimator

In addition V AR(�) = �2( 1N +
X
2PN

i=1 x
2
i

)



HYPOTHESIS TESTING

The fact that � � N(b; �2PN
i=1 x

2
i

) implies that

� � b
se(�)

� N(0; 1)

where se(�) =
q
V AR(�) = �qPN

i=1 x
2
i

We can use this information to do hypothesis testing

For example, we can test the null hypothesis: H0 : b = b0
against the alternative H0 : b 6= b0

IF

������ � b0se(�)

����� > 1:96 REJECT H0



ESTIMATE OF �2

Because we do not know the true variance of the error
(�2) we have to use an estimate

The estimate of �2, denoted by s2 is the sample variance
of the residuals:

s2 =

PN
i=1 be2i
N � 2

Because we use an estimate of the true variance it follows
that

� � tN�2(b;
s2PN
i=1 x

2
i

);

� � tN�2(a; s
2(
1

N
+

X
2PN

i=1 x
2
i

))



For example, we can test the null hypothesis: H0 : b = b0
against the alternative H0 : b 6= b0

IF

������ � b0dse(�)
����� > 5% Crit Val tN�2 REJECT H0



NUMERICAL EXAMPLE

s2 =

PN
i=1 be2i
N � 2

=
1:5

3
= 0:5;

dV AR(�) =
s2PN
i=1 x

2
i

=
0:5

40
= 0:0125;

dV AR(�) = s2(
1

N
+

X
2PN

i=1 x
2
i

) = 0:5(
1

5
+
16

40
) = 0:3

The estimated standard errors of the regression coe¢ -
cients are

dse(�) = 0:1118, dse(a) = 0:5477



Testing the null hypotheses: H0 : b = 0 and H0 : a = 0

The 5% critical value for t distribution with N � 2 = 3

degrees of freedom is 3:182. Thus

����� �dse(�)
����� = 1:75

0:1118
= 15:653 > 3:182, REJECT H0;����� �dse(a)

����� = 1

0:5477
= 1:826 < 3:182, ACCEPT H0



PROOFS FROM WEEK 7 ONWARDS

ONLY FOR EC5501

MINIMIZATION PROBLEM

Take the �rst derivatives with respect to a and b and set
them equal to zero:

@[
PN
i=1 e

2
i ]

@a
=

@[
PN
i=1(Yi � a� bXi)2]

@a
= �2PNi=1(Yi � a� bXi) = 0; (4)

@[
PN
i=1 e

2
i ]

@b
=

@[
PN
i=1(Yi � a� bXi)2]

@b
= �2PNi=1Xi(Yi � a� bXi) = 0

(5)



These two equations imply thatPN
i=1 Yi = Na+ b

PN
i=1Xi;PN

i=1XiYi = a
PN
i=1Xi + b

PN
i=1X

2
i (6)

Dividing the �rst equation by N gives

Y = �+ �X ) � = Y � �X (7)

It can be shown that if we substitute the above expression
into equation (6) and solve for � we get

� =

PN
i=1 xiyiPN
i=1 x

2
i

(8)



3 IMPORTANT PROPERTIES

The Least square estimates minimizes the sum of the
squared errors:

PN
i=1 e

2
i

It passes through the mean point (equation 7): Y =

�+ �X

From equation (4) we havePN
i=1(Yi � �� �Xi) = 0)

PN
i=1 bei = 0



From equation (5) we havePN
i=1Xi(Yi � �� �Xi) = 0)

PN
i=1Xibei = 0

The least squares residuals have no covariance in the sam-
ple with the values of the independent variable

The theoretical covariance is given by

COV (X; be) = E(Xbe)� E(X)E(be);
The sample covariance is given byPN

i=1Xibei
N

�
PN
i=1Xi
N

PN
i=1 bei
N

= 0

In view of equations (4) and (5) this is 0.


