o/

The Classical Linear Regression Model

44

presentation of regression results

on analysis can be presented in various different ways. However,
is to write the estimated equation with standard errors of
ts below the estimated coefficients and include some more
n function that will be presented in

hown below:

“The results of a regresst
the most common way
coefficients written in bracke
statistics below the equation. For the consumptio
Computer Example 2, the results are summarized a5 5

€ =15.116+ 0.160Y¢

(6,565 (0.038) (4.73)

Rl=0932 n=20 d= 6.879 474

can (a) read estimated effects of changes in the explanatory
¢ values of the dependent variable
perform hypothesis testing for

d coefficients, and (d) construct confidence intervals for the estimated

From this summary We
variables on the dependent variable, (b) predic

for given values of the explanatory variable, (€}
the estimate
coefficients.

Applications
plication 1: the demand function

hat the demand for a commodity depends basically
aw of demand). Other possible determinants €an

include prices of other competing goods (close substitutes) or those that complement
that commodity {close noaai_:m:zf and of course the level of income of the
consumet. In order to include all those determinarnts we need to employ a multiple
regression analysis. However, for pedagogical purposes we have to restrict gurselves to
one explanatory variable, Therefore, we can assume a partial demand function where

tity demanded is affected only by the price of the product. (Another way of
paribus {other things remaining the same) demand

that the other variables entering the relationship
ct the quantity demanded.) The population

From economic theory We know t
on the price of that commodity (thel

the quan
doing this is to assume a ceteris
function, in which we simnply assume
. and thus do not affe

remain constant
1 will have the form:

regression functio!

qr=ap+ a1 + 1y (+.75)

denoting quantity demanded and p¢ the
we expect ay to be negative reflecting the
nd (the higher the price the less the quantity demanded). We can collect
¢ and the price level of this product and estimate
the above specification. The interpretation of the obtained results will be as follows.
For ay: if the price of the product will be increased by one unit of measurement (1€ if

measured in £ an increase of £1.00), the consumption of this product will be decreased
ay will be negative) by iy units, For dg: if the price of the product is zero
quantity of this product. k2 is expected to be somehow

e standard notation is used with 4

where th
product. From economic theory

price of the
law of dema
time series data for sales of a produc

(because
consumers will consume iy
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low (lets say 0.6 @
il .n . ~u m_._mmm m::m .n_am_.n there are additional variables that affect the quan
emanded, :.M. we did not include in ou i ile i also possibie c.v !
the price elastici r equation, while it i possi a '
p ticity of this product for a given year (lets say “W_mmwu__m. o1 ”W_n _n. ””..u ol
h ) 3 { quation:

oo b0 _ poo,
Goo AP fog | 14.76)

ﬂ:_u_mazo: 2: a production function

One of the mo: i
st basic relationships i
Brb.OL B s 1ships in economic theory i i
. e v is the pro “ti
es output {denoted by ¥) to the possible _,um.”owr,_mwo_m q:q:rzc:_
inputs affecting

production, such as laboj
; abour (L) @ i
B i (L) and capital (K). The general form of this relationship

Ve=fik, Ly @77
A7)

A frequently utilized f
¥ zed form of thi i
later — is i his function - due to it fi
the well-known Cobb-Douglas production E:%o?%ﬁ:? that we will see
n:

¥y = AKPLY
(4.78)

where @ and # are
constant terms th
b it at express the responsivi ]
i iveness of o
- Oucwocm;_ hﬁL«Mm: c.m regarded as an exogenous &mn_mumw”n-“x_u o
i ._mu mﬂ.“n_m A, the higher is maximum output rm.n._um “mu _MM—_VME..
e run we can assume that th -k o
. e ] e stock o ital is fix
i e _.”MH.. as a period that once the decision about Mwmm_ﬂﬂ_u e
il i am M the producer until the next period) .?m:_.z.m e
pends only on the labour input, and the produ m,:._ ﬂ:n o
5 ction function

becomes:
Myt (.79
A9

Using the Cabb-Do
-Dougl .
=.=__:_<n" glas form of function {and for K; constant and equal to Ky)
0Nl we

Yy = (AKILY = A"LY (4.80
80)

where A" = (AK! i -run production functio Woa bivana
AK{). This short-ru i b te model, and
e m—v—u_a._._._ ! ] ducti mncti % i . .
: _ ; f n s now g
a i g u_ H_.-vw._ _=M mic transformation can be estimated _.4._..“._ th __m. O—._ S ..m_a_ od
8 natura Omm_:w_.:._._ of both sides and 2 ﬂEmH._M.- an error nﬁ.__ m we b . nod
Taking the m we have:

In¥p =InA*) + # lniLyy + 1y
=c+4Intlp) <y (4.81
81

where ¢ = In
= In(A*), and § i i
the properti 4 is the elasticity of out i
erties of the Cobb- ? put with respect t
percentage change in Cobb-Douglas production function). .H:Hwﬂ_mu% ,_m_,uoE {one of
: output that results from a 1 per cent change in .H:w_ ..”.:onmm tse
ang e labour input.
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ction and employment for the manufacturing

We may use time series data on produ
t data) to obtain estimates of ¢

sector of a country (or aggregate GDP and employmen
and g for the above model.

Application 3: Okun’s law

quarterly data from 1947:2 t0
f the economy (captured by changes in GNP)
known as Okun'’s law. His results provide an
oyment rate to economic growth.
h rate of unemployment (UNEMP)
t and the growth rate of GNP

Okun (1962) developed an empirical relationship, using

1960:4, between changes in the state O
and changes in the unemployment rate,
important insight into the sensitivity of the unempl
The basic relationship is that of connecting the growt
(which constitutes the dependent variable) to a constan

(the independent variable) as follows:

AUNEMP; = a + bAGNPt + Ut (4.82)
Applying OLS the sample regression equation that Okun obtained was:
————
AUNEMP; = 0.3 — 0.3AGNP;
(4.83)

R% =0.63

The constant in this equation shows the mean change in the unemployment rate
when the growth rate of the economy is equal to €10, so from the obtained results
we conclude that when the economy does not grow the unemployment rate rises by
0.3 per cent. The negative b coefficient suggests that when the state of the economy
improves, the unemployment rate falls. The relationship, though, is less than on¢ to
one. A 1 per cent increase in GNP is-connected with only a 0.3 per cent decrease in the
unemployment rate. This result is called Okun’s Jaw. It is easy to collect data on GNP
and unemployment, calculate their respective growth rates and check whether Okun's

law is valid for different countries and different time periods.

Application 4: the Keynesian consumption function

Aesian consumption function

Another basic relationship in economic theory is the Key
r function of disposable (after

that simply states that consumption (Cy) isa positive linea
tax) income (Yf]‘ The relationship is as follows:

Ce=a+8Yf (4.84)

where a is the autonomous consumption (consumption even when disposable income
is zero) and § is the marginal propensity to consume. In this function we expect
a>0and0>38>1A § = 0.7 means that the marginal propensity to consume is
0.7. A Keynesian consumption function is estimated below as a worked-out computer

exercise example.
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cking on Quick/ Estimate equation and then
ew window. Note that the option for OLS
tomatically chosen by EViews and the

on the EViews command line, or by cli
writing the equation {i.e. y ¢ x)in the v
(LS - Least Squares (NLS and ARMA)) isau

sample is automatically chosen to be from 1 to 20.
Either way the output shown inTable 4.7 isshown inanew window which provides

estimates for alpha (the coefficient of the constant term) and beta {the coefficient

of X}).

Questions

far from the sample regression function.
d using all observations and then
ted slope coefficient change? How

1 An outlier is an observation that is very
suppose the equation is initially estimate
reestimated omitting outliers. How will the estima
will R? change? Explain.

Regression equations are
a deviation from some valuw
unemployment rate equation, such as:

using an explanatory variable that is

sometimes estimated
pleisa capacity utilization rate-

e of interest. An exam

™

1y = dp e (CAP — 9.__1? + ¢

g the capacity utilization rate corresponding

where ﬁ.._l is a single value representin
is sometimes used for this value).

to full employment (the value of 87.5%

intercept from this equation differ from that in the equation

planatory variable? Explain.
his equation differ from that in the

ariable? Explain.

(a) Will the estimated
with only CAPy as an ex
(o) Will the estimated slope coefficient from t
equation with only CAPp asan explanatory v

that the OLS coefficient for the slope parameter in the simple linear regression

3 Prove
maodel is unbiased.

4 Prove that the OLS coefficient for the slope paramet
model is BLUE.

5 State the assumptions of t
are necessary.

Exercise 4.1

he following data refer t
price of that good X (measure

er in the simple linear regression

he simple linear regression model and explain why they

good ¥ (measured in kg), and the

o the quantity sold for a
0 different market locations:

d in pence per kgl for 1
145 167 203 251 147

. 98 181 170 179 163
o213 245 4 272 27 244 247 221 21 25
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{a) Assuming a linea 5 a I, 1€ Ewio v es5, 0 in the Tat
g r relationshi th { he( t
) pamong two variables,
, Obta LS e
stimators

(b tter
I asca lagra of the , draw ir ur :._—u_m e,
O s m data 1 vour OLS sa gression line.

__Qmmn_b_m»wi._mm_m‘ ema 5 ans {i.e
mn_n:v. CMQ i
S : nd for thi MD.CA_ at the to_"_.; of mm_.:_u_ﬂ.. e, {

- : i T8

Exercise 4.2

The table below sho
X ws the average g
countries for the period _mmm.umumm growth rates of GDP and employment for 25 OECD

Conntries  Enig ¥l LIS
e pl. GDP Cowntriy
Empl.  GDP

A
e e i m 257 7.7
Belgium c..ru_ g Luxemboury 302 M,H&
Citeds 117 201 Nowpands 18 268
Mkl B0 {03 New Zealand i 240
Finland 02 2,02 Norway 221 (201
Franes ..H_HMM WMM Portugal me WWM
ance 028 208 Spain 33 2
Gomry 008 271 Sk bl L
Teetaral |.u.~_nm m_w.m_ .wﬂz_hmn:p:a ro.w.o_ ““M
Ireland 216 6.4 HEL ; _
ol 216 640 United Kingdom 20 a8
Japan Jed L8 Unived St 1.53 246

i .nﬂmm_.:::.zu a linear ﬁo_uz.u:m_:_v obtain the OLS estimators.
) P : .
(b} Provide an :..-mnmuﬁmgz.c_._ of the coefficients,

Exercise 4.3

[ 2 3

n the Keynesian consumption function:

Cr=a+avy
the estimated i
marginal i
g propensity to consume is simply § while the ave
y 'erage propensity

to consume is C/¥Y = 4 ]
v = ayyd i
! /¥ + 4. Using data from 200 UK household
5 on annual income

m:nno:u:_:tzo:
3932:&.:
regression equatio ch were measured |
ation: n UKE ) we found

the followin
g

€ =13852+ Al
52+0.725V) R?=0862

(a) Provi ;
ide an interpretati
. tation of th .
sign and magnitude. e constant in this equation and comment

AE _Hm_n..__
: ate the predicted ¢

income £40,000 consumption of a hypothetical household witl .r
, vith annual

about its
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(c) With ._:M on the x-axis draw 2 graph of the estimated MPC and APC.

® Exercise 4.4
Obtain annual data for the inflation rate and the unemployment rate of a country.

(a) Estimate the following regression which is known as the Phillips curve:

m=p+ ay UNEMP + 1t

where mp 18 inflation and UNEMP; is unemployment. Present the results in the

usual way.

(b) Estimate the alternative maodel:

LT

7y = Tp-1 =00 4 UNEMP—q + e

e the NAIRU {i.e. when mp —T=1 = 0.
ons splitting your sample into different de
? Which period has the

cades. What
‘pest-fitting’

and calculat
mate the above equati
t for differences in the results
you have used.

(c) Reesti
factors accoun
B:a__ozm. state the criteria

{Exercise 4.5
s been estimated by OLS:

The following equation ha

R = 0.567 + 1LO43Rur 1= 250

(0.3%)  (0.066)

denote the excess return of a stock and the excess return of the market

where Ry and Reut
don Stock Exchange.

index for the Lon

for each coefficient.

{a) Derivea 954 confidence interval
7 Explain what

Are these coefficients statistically significan
findings regarding the CAPM theory.
s p<lat the 1% le

@?& Emsquo.ﬁ:muax?uu _,E._az_
inﬁ Hy what does this indicate about this uanr.w

is the meaning of your

vel of significance. If you

Simple Regression

@ Exercise 4.6

Obtain time series d ed investment (/) and an appropriate rate of
] ata on real business fixed i
¢ ; ed b nw pRrop: i
interest {r). Consider the followir g _ﬂ._D_uC_m.DGH_ Hnmnnmm._.uw— —..r.mn: _
] on:

It =ag+enn +e

{a) What a i
re the expected signs of the coefficients in this equation?
(b) Explain the rationale for each of these signs .
{c) How can you i ;
¥ you use this equation to estimate the interest elasticity of i
(d) Estimate the population regression function i
(e} Which i isti )
e coefficients are statistically significant? Are the signs those e ed
N , se expected?
struct a 99% confidence interval for the coefficient of r 4
s

(g) Estimate i i
the log-linear version of the population regression functi
ction:
Inff=ap+ay Inr+u

(h) Is the esti i

] estimated interest rate elasticity of investment significant?

: . . B 3 nt?

{i) Do you expect this elasticity to be elastic or inelastic and why?
'hy?

{j) Perform /| i
a hypothesis test of whether investment is interest-elastic

Exercise 4.7

The file salaries_01.wfl contains dat i

Lt " a for senior officers from a lar;

e f_umm_u__w the 3_2« that each one of them gets, NM“MH” Mnmﬁﬂx R

L i o _ﬂﬂzﬂ %«Mz..a measures the number of years for S&.H: »M:E:a

A Dot e riable years_comp measures the number of years fi - _Em
company at the time of the research S

{a) Find summary isti
v statistics for the three
above-mentioned v;
ariables and discuss th
em.

(b) Estimate a sim i
ple regression that explai
ity at exp ains whether and how salary level is af
iliia m_M” “d__omv, are senior officers. Estimate another _.mmﬁmm__mc_h”_&_,mnﬁa
A b no:.__,u.,.m_mum_.ww level is affected by the years for which z._“_ﬂ_.ﬂ..“
: : y. Report your re: i
relationship seems to be more robust and s._..“.w_ﬁm I
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estimating the mean in expression (3.2). In fact, if there is no regressor, then b,
does not enter expression (4.6) and the two problems are identical except for the
different notation (m in expression (3.2), b, in expression (4.6)). Just as there is a
unique estimator, Y, that minimizes the expression (3.2), so is there a unique pair
of estimators of 8, and f; that minimize expression (4.6).

The estimators of the intercept and slope that minimize the sum of squared
mistakes in expression (4.6) are called the ordinary least squares (OLS) esti-
mators of §; and ;.

OLS has its own special notation and terminology. The OLS estimator of 3,
1s denoted ﬁ’ﬂ, and the OLS estimator of 8, is denoted ﬁl The OLS regression
line is the straight line constructed using the OLS estimators, that is, f, + [51
The prechctecl value of Y] given X, based on the OLS regression line, is ¥, =
,BO + [3’1X,. The residual for the i ™ observation is the difference between Y; and

-

its predicted value, that is, the residual is f;r- =Y-Y.

You could compute the OLS estimators 5, and f3, by trying different values
of b, and b, repeatedly until you find those that minimize the total squared mis-
takes in expression (4.6); they are the least squares estimates. This method would
be quite tedious, however. Fortunately there are formulas, derived by mini-
mizing expression (4.6) using calculus, that streamline the calculation of the
OLS estimators.

The OLS formulas and terminology are collected in Key Concept 4.2. These
formulas are implemented in virtually all statistical and spreadsheet programs.

These formulas are derived in Appendix 4.2.

OLS Estimates of the Relationship Between
Test Scores and the Student-Teacher Ratio

When OLS is used to estimate a line relating the student-teacher ratio to test
scores using the 420 observations in Figure 4.2, the estimated slope is —2.28 and
the estimated intercept is 698.9. Accordingly, the OLS regression line for these
420 observations is

e
TestScore = 698.9 —2.28 X STR, 4.7)

where TestScore is the average test score in the district and STR is the student-
teacher ratio. The symbol “*” over TestScore in Equation (4.7) indicates that this
1s the predicted value based on the OLS regression line. Figure 4.3 plots this OLS
regression line superimposed over the scatterplot of the data previously shown
in Figure 4.2.
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CHAPTER 4  Linear Regression with One Regressor

A small value of the p-value, say less than 5%, provides evidence against
the null hypothesis 1n the sense that the chance of obtaining a value of B, by
pure random variation from one sample to the next is less than 5% if in fact
the null hypothesis 1s correct. If so, the null hypothesis is rejected at the 5%
significance level.

Alternatively, the hypothesis can be tested at the 5% significance level simply
by comparing the value of the t-statistic tO +1.96, the critical value for a two-
sided test, and rejecting the null hypothesis at the 5% level if |t*|> 1.96.

These steps are summarized in Key Concept 4.6.

Application to test scores. The OLS estimator of the slope coeflicient, esti-
mated using the 420 observations in Figure 4.2 and reported in Equation (4.7), is
5 8. Its standard error is 0.52, that s, SE(f};) = 0.52. Thus, to test the nul
hypothesis that Betasssize = 0» WE construct the t-statistic using Equation (4.20);
accordingly, t* = (—2.28 - 0)/0.52 = —4.38.

This f-statistic exceeds the 1% rwo-sided critical value of 2.58, so the null
hypothesis s rejected in favor of the two-sided alternative at the 1% significance
level. Alternatively, we can compute the p-value Jssociated with t = —4.38. This
probability is the area in the tails of standard normal distribution, as shown in Fig-
ure 4.6. This probability 1s extremely small, approximately 100001, or .001%. That
is, if the null hypothesis Beigssize = 0 is true, the probability of obtaining a value
of B, as far from the null as the value we actually obtained is extremely small, less
than .001%. Because this event 15 SO unlikely, it 18 reasonable to conclude that the

null hypothesis is false.

One-Sided Hypotheses Concerning J3
The discussion so far has focused on testing the hypothesis that B, = o agiinst
the hypothesis that B; # B o This is a rwo-sided hypothesis test, because under
the alternative ; could be either larger or smaller than f; - Sometimes, however,
it is appropriate to use 2 one-sided hypothesis test. For example, in the student-
teacher ratio/test score problem, many people think that smaller classes provided
better learning environment. Under that hypothesis, By 15 negative: smaller classes
lead to higher scores. It might make sense, therefore, to test the null hypothes®
that B; = 0 (no effect) against the one-sided alternative that iy < 0. _
For a one-sided test, the null hypothesis and the one-sided alternative
hypothesis are

(4.23)

Hy: By = Bro Vs H: B < Bi.os (one—sided alternative).
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In contrast, Figure 4.7 illustrates a case in which the conditional distribution
of u; spreads out as x increases. For small values of x, this distribution is tight, but
for larger values of x, it has a greater spread. Thus, in Figure 4.7 the variance of
i; given X; = x increases with x, so that the errors in Figure 4.7 are heteroskedastic.

The definitions of heteroskedasticity and homoskedasticity are summarized
in Key Concept 4.8.

Example. These terms are a mouthful and the definitions might seem abstract.
To help clarify them with an example, we digress from the student-teacher
ratio/test score problem and instead return to the example of earnings of male
versus female college graduates considered in Section 3.5. Let MALE; be a binary
variable that equals 1 for male college graduates and equals 0 for female gradu-

ates. The binary variable regression model relating someone’s earnings to his or
her gender is

Earnings; = B, + BMALE, + u; (4.41)
fori =1, ..., n. Because the regressor is binary, f, is the difference in the pop-

ulation means of the two groups, in this case, the difference in mean earnings
between men and women who graduated from college.
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4.8

The error term #; is homoskedastic if the variance of the conditional distribu-
tion of u; given X, var(u;| X; = x), is constant fori = 1, ..., n, and in particu-
lar does not depend on x; otherwise, the error term is heteroskedastic.

The definition of homoskedasticity states that the variance of u; does not
depend on the regressor. Here the regressor is MALE;, so at issue is whether the
variance of the error term depends on MALE;. In other words, is the variance of
the error term the same for men and for women? If so, the error is homoskedas-
tic; if not, 1t 1s heteroskedastic.

Deciding whether the variance of u; depends on MALE; requires thinking
hard about what the error term actually is. In this regard, it is useful to write Equa-
tion (4.41) as two separate equations, one for men and one for women:

Earnings; = By T 4 (women) and (4.42)
Earnings; = By + By + #; (men). (4.43)

Thus, for women, ; is the deviation of the i™ woman’s earnings from the popu-
lation mean earnings for women (B), and for men, u, is the deviation of the i*
man’s earnings from the population mean earnings for men (S, + B,)- It follows
that the statement, “the variance of #; does not depend on MALE,” 1s equivalent
to the statement, “the variance of earnings is the same for men as it is for women.”"
In other words, in this example, the error term is homoskedastic if the variance
of the population distribution of earnings is the same for men and women; if thes¢
variances differ, the error term is heteroskedastic.

Mathematical Implications of Homoskedasticity

The OLS estimators remain unbiased and asymptotically norm
the least squares assumptions in Key Concept 4.3 place no restric

al. Becaust
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134 CHAPTER 4 Linear Regression with One Regressor

4.4 Show t hat f}, is an unbiased estimator of B, (Hint: use the fact that f is
unbiased, which is shown in Appendix 4.3).
Suppose that a random sample of 200 20-year-old men is selected from a
population and their height and weight is recorded. A regression of weight
on height yields:

R ; 2
Weight = —99.41 + 3.94 Height, R* = 0.81, SER = 10.2,
(2.15) (0.31)

where Weight is measured in pounds and Height is measured in inches.
a. What is the regression’s weight prediction for someone who 15 70
inches tall? 65 inches tall? 74 inches tall?

b. A person has a late growth spurt and grows 1.5 inches over the course
of a year. What is the regression’s prediction for the increase in the

person’s weight?
c. Construct a 99% confidence interval for the weight gain in (b).

d. Suppose that instead of measuring weight and height in pounds and
inches, they are measured in kilograms and centimeters. What are the
regression estimates from this new kilogram-centimeter regression?
(Give all results, estimated coefficients, standard errors, R2, and SER.)

4.6 Starting from Equation (4.15), derive the variance of f3, under homoskedas-
ticity given in Equation (4.61) in Appendix 4.4.

APPENDIX
A.1 | The California Test Score Data Set

The California Standardized Testing and Reeporting data set contains data on test perfor-
mance, school characteristics, and student demographic backgrounds. The data used her®
are from all 420 K—6 and K—8 districts in California with data available for 1998 and 199%:
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EXAMPLE 2.1

(Soybean Yield and Fertilizer)

Suppose that soybean yield is determined by the model
yield = B, + B,fertilizer + u, (2.3)

so that y = yield and x = fertilizer. The agricultural researcher is interested in the effect of
fertilizer on yield, holding other factors fixed. This effect is given by ;. The error term u
contains factors such as land quality, rainfall, and so on. The coefficient 8, measures the
effect of fertilizer on yield, holding other factors fixed: Ayield = B, Afertilizer.

EXAMPLE 2.2
(A Simple Wage Equation)

A model relating a person’s wage to observed education and other unobserved factors is
wage = B, + Bieduc + u. (2.4)

If wage is measured in dollars per hour and educ is years of education, then 8, measures
the change in hourly wage given another year of education, holding all other factors fixed.
Some of those factors include labor force experience, innate ability, tenure with current
employer, work ethic, and innumerable other things.

The linearity of (2.1) implies that a one-unit change in x has the same effect on y,
regardless of the initial value of x. This is unrealistic for many economic applications.
For example, in the wage-education example, we might want to allow for increasing
returns: the next year of education has a larger effect on wages than did the previous
year. We will see how to allow for such possibilities in Section 2.4.

The most difficult issue to address is whether model (2.1) really allows us to draw
ceteris paribus conclusions about how x affects y. We just saw in equation (2.2) that 3,
does measure the effect of x on y, holding all other factors (in u) fixed. Is this the end
of the causality issue? Unfortunately, no. How can we hope to learn in general about
the ceteris paribus effect of x on y, holding other factors fixed, when we are ignoring all
those other factors?

Section 2.5 will show that we are only able to get reliable estimators of B, and S,
from a random sample of data when we make an assumption restricting how the unob-
servable u is related to the explanatory variable x. Without such a restriction, we will
not be able to estimate the ceteris paribus effect, 3,. Because « and x are random vari-
ables, we need a concept grounded in probability.

Before we state the key assumption about how x and u are related, we can always
make one assumption about . As long as the intercept B, is included in the equation, noth-
ing is lost by assuming that the average value of « in the population is zero.
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we consider statistical properties after we explicitly impose assumptions on the popu-
lation model equation (2.1).

EXAMPLE 2.3
(CEO Salary and Return on Equity)

For the population of chief executive officers, let y be annual salary (salary) in thousands of
dollars. Thus, y = 856.3 indicates an annual salary of $856,300, and y = 1452.6 indicates a
salary of $1,452,600. Let x be the average return on equity (roe) for the CEO’ firm for the
previous three years. (Return on equity is defined in terms of net income as a percentage of
common equity.) For example, if roe = 10, then average return on equity is 10 percent.

To study the relationship between this measure of firm performance and CEO compen-
sation, we postulate the simple model

salary = By + B,roe + u.

The slope parameter 8, measures the change in annual salary, in thousands of dollars, when
return on equity increases by one percentage point. Because a higher roe is good for the
company, we think 8, > 0.

The data set CEOSAL1.RAW contains information on 209 CEOs for the year 1990; these
data were obtained from Business Week (5/6/91). In this sample, the average annual salary
is $1,281,120, with the smallest and largest being $223,000 and $14,822,000, respective-
ly. The average return on equity for the years 1988, 1989, and 1990 is 17.18 percent, with
the smallest and largest values being 0.5 and 56.3 percent, respectively.

Using the data in CEOSAL1.RAW, the OLS regression line relating salary to roe is

salary = 963.191 + 18.501 roe, (2.26)

where the intercept and slope estimates have been rounded to three decimal places; we
use “salary hat” to indicate that this is an estimated equation. How do we interpret the
equation? First, if the return on equity is zero, roe = Q, then the predicted salary is the inter-
cept, 963.191, which equals $963,191 since salary is measured in thousands. Next, we can
write the predicted change in salary as a function of the change in roe: Asalary = 18.501
(Aroe). This means that if the return on equity increases by one percentage point, Aroe =
1, then salary is predicted to change by about 18.5, or $18,500. Because (2.26) is a linear
equation, this is the estimated change regardless of the initial salary.

We can easily use (2.26) to compare predicted salaries at different values of roe.
Suppose roe = 30. Then salary = 963.191 + 18.501(30) = 1518.221, which is just over
$1.5 million. However, this does not mean that a particular CEO whose firm had a roe =
30 earns $1,518,221. Many other factors affect salary. This is just our prediction from the
OLS regression line (2.26). The estimated line is graphed in Figure 2.5, along with the
population regression function E(salary|roe). We will never know the PRF, so we cannot
tell how close the SRF is to the PRF. Another sample of data will give a different regres-
sion line, which may or may not be closer to the population regression line.

3
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Figure 2.5
The OLS regression line salary = 963.191 + 18.501 roe and the (unknown)
population regression function.
salary
safary = 963.191 + 18.501 roe
E{salaryirog) = B — Byroe
263.191
roe
EXAMPLE 2.4

(Wage and Education)

For the population of people in the workforce in 1976, let y = wage, where wage is q_,.mw.
sured in dollars per hour. Thus, for a particular person, if wage = 6.75, the hourly wage |5
$6.75. Let x = educ denote years of schooling; for example, educ = _N_ corresponds to a
complete high school education. Since the average wage in the sample is mm_.uo___ the con-
sumer price index indicates that this amount is equivalent to $16.64 in 1987 ao.__mﬂ_

Using the data in WAGE1 RAW where n = 526 individuals, we obtain the following OLS
regression line {or sample regressian function):

wige = —=0.90 + 0.54 educ, (2.27)

\We must interpret this equation with caution. The intercept of —0.90 literally means H;: m“
person with no education has a predicted hourly wage of |,u,o cents an hour. q.._m._ m,
course, is silly. it turns out that only 18 pecole in the sample of mM..m have less than eigf :
years of education. Consequently, it is not surprising that the regression line does poarly at

ITRErCT—

The estimated wage from (2.27), when educ = &, is $3.42 in

1976 dollars. Wha
enough informatic

In Exarmple 2.5, what is the predicted vote for Candidate A if
shared = 60 (which means 60 percent)? Does this answer seem
reasonal

Chapter 2 The Simple Regressicn Model i5

very low levels of education. For a person
with eight years of education, the predicted
wage is wige = —0.90 + 0.54(8) = 3.42, or
$3.42 per hour (in 1976 dolars).

The sicpe estimate in (2.27) impiies that
ane more year of education increases hourly
wage by 54 cents an hour. Therefore, four
maore years of egucation increase the predicted wage by 4{0.54) = 2.16, or $2.16 per hour.
These are fairly large effects. Because of the linear nature of (2.27), another year of educa-
tion increases the wage by the same amount, regardess of the initial level of education. In
Section 2.4, we discuss some methods that aliow for nonconstant marginal effects of our
explanatory variables,

this value in 1937 dollars? : You have
1 Examiple 2.4 to answer this question.)

EXAMPLE 2.5
(Voting Outcomes and Campaign Expenditures)

The file VOTE1.RAW contains data on election outcomes and campaign expenditures for
173 two-party races for the U.S. House of Representatives in 1988, There are two candi-
dates in each race, & and 8. Let voted be the percentage of the vote received by Candidate
A and shareA be the the percentage of total campaign expenditures accounted for by
Candidate A. Many factors other than shared affect the election outcome (inciuding the
quality of the candidates and possbly the dallar amounts spent by A and B). Nevertheless,
we can estimate a simple regression model to find out whether spending more relative to
one’s challenger implies a higher percentage of the vote.

The estimated equation using the 173 observations is

vofed = 26.81 + 0.464 shareA, (2.28)

This means that if the share of Candidate A's spending increases by one percentage
point, Candidate A receives almost one-half a percentage point (0,464} more of the
total vote. Whather or not this is a causal effect is unclear, but it is not unbelievable.
if shared = 50, voted is predicted to be about 50, or half the vote.

In some cases, regression analysis is not used to determine causality but to simply
look at whether two variables are positively or negatively related. much like a standard
correlation analysis. An example of this
occurs in Problem 2.12, where you are
asked to use data from Biddle and
Hamermesh (1990) on time spent sleeping
and working to investigate the tradeoff
between these two factors,
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Figure 2.6
wage = exp(B, + Bieduc), with B; > 0.

waga

0 educ

Notice how we multiply 3, by 100 to get the percentage n__mzm.a in wage given one pn_mm.
tional year of education. Since the percentage change in wage is the same qo.q each pa_ _._
tional year of education, the change in wage for an extra year cm. education increases as
education increases; in other words, (2.42) implies an increasing return _c_nn:_nm:.o?
By exponentiating (2.42), we can write wage = expl By + Bieduc + u). This equation
is ar in Figure 2.6, withu = 0. )

: m__m_u“ﬁﬂw.,._ﬂmm WMM%_@E% as (2.42) is straightforward when :.a:w simple regression.
Just define the dependent variable, y, 1o be y = logf{wage). The _=nnum:n_._w_= ﬁm:.éﬁ is
represented by x = edue. The mechanics of OLS are the same as before: the :__.M.ang
and slope estimates are given by the formulas (2.17) and (2.19). In other words, we
obtain 3, and .m_ from the OLS regression of log(wage) on educ.

EXAMPLE 2.10
(A Log Wage Equation)

Using the same data as in Example 2.4, but using log{wage) as the dependent variabie, we
obtain the following relationship:

—my ey g
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loglwage) = 0.584 + 0.083 educ (2.44)
n =526, R =0.186.

The coefficiant on educ has & percentage interpretation when it is multiplied by 100: wage
increases by 8.3 percent for every additional year of education. This is what economist:
mean when they refer to the “return to another year of education.”

Itis important to remember that the main reasen for using the log of wage in {2.42}) is
to impose a constant percentage effect of education on wage. Once equation (2.42) is
obtained, the natural log of wage is rarely mentioned. In particular, it is not corract to say
that ancther year of education increases logiwage) by 8.3 percent.

The intercept in (2.42) is not very meaningful, as it gives the predicted loglwage), when
educ = 0. The R-squared shows that educ explains about 18.6 percent of the variation in
logiwage) (not wage). Finally, equation (2.44) might not capture all of the nanlinearity in the
relationship between wage and schooling. If there are “diploma effects,” then the twelfth
year of education—graduation from high school—could be worth much more than the
eleventh year, We will learn how to allow for this kind of nonlinearity in Chapter 7.

Another important use of the natural log is in obtaining a constant elasti

EXAMPLE 2.11
{CEO Salary and Firm Sales)

We can estimate a constant elasticity model relating CEQ salary to firm sales. The data set
is the same one used in Example 2.3, except we now relate salary to sales. Let sales be
annual firm sales, measured in millions of dollars. A constant elasticity model is

log(salary) = B, + B,log(sales) + u, (2.45)

where B, is the elasticity of salary with respect to safes. This model falls under the simple
regression model by defining the dependent variable to be y = logisalary) and the inde-
pendent variable to be x = log(sales). Estimating this equation by OLS gives

_owﬁﬁ.m____u.w = 4.822 + 0.257 loglsales) (2.46)
n=209, R =0211.
The coefficient of log(sales) is the estimated elasticity of safary with respect to sales. It

implies that a 1 percent increase in firm sales increases CEO salary by about 0.257 per-
cent—the usual interpretation of an elasticity.

The two functional forms covered in this section will often arise in the remainder of
this text. We have covered models containing natural logarithms here because they
appear so frequently in applied work. The interpretation of such models will not be
much different in the multiple regression case.
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kids = By + Byeduc + .

where i is the unobserved error. .
(iy What kinds of factors are contain
lated with level of education?
(i) Will a simple regression analysis uncover th
education on fertility? Explain.

ed in 17 Are these likely to be corre-
¢ celeris paribus effect of
= B, + Bx + u. suppose that E(u} # 0.

always be rewritten with the same slope,
ervor has a zero expected value.

2.2 In the simple linear regression model ¥
Letting @, = E(u), show that the model can
but 4 new intercept and error. where the new
i F: int average)
B The following table contains the AC T scores and :._m GPA ,Amn%_n_ wo:H ” rw ’ mmm_._
Tor & college students. Grade point average is based on a four-point scale and has
=
rounded to one digit after the decimal.

| Student | GPA

m | | 28 | 2

nd ACT using OLS; that is.

(i) Estimate the relationship between GPA a :
quation

obtain the intercept and slope estimates in the &
GPA = f3,+ BACT.
Comment on the direction of the relationship. Ucn”m the __:_mﬁnv_ have a
useful interpretation here? Explain. How much Em:ﬂ is the GFA pre-
dicted 10 be if the ACT scare is increased by 5 points? e
(i) Compute the fitted values and residuals for each observation, and verify
that the residuals (approximately) sum to zero.

Mhat is i ralue PA when ACT = 207
(i) What is the predicted value of G ) ) )
{ivi How much of the variation in GPA for these § students 1s explained by

ACT? Explain.
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2.4 The data set BWGHT.RAW contains data on births to women in the United States.
Two variables of interest are the dependent variable, infant birth weight in ounces
(bwght), and an explanatory variable, average number of cigarettes the mother smoked
per day during pregnancy (cigs). The following simple regression was estimated using
data on i = | 388 births:

bwghe = 11977 — 0.514 cigs

(i) What is the predicted birth weight when cigs = 07 What about when
cigs = 20 (one pack per day)? Comment on the difference.

(i) Does this simple regression necessarily capture a causal relationship
between the child's birth weight and the mother’s smoking habits?
Explain.

To predict a birth weight of 125 ounces, what would cigs have 1o be?
Comment.

{iv) What fraction of the women in the sample do not smoke while preg-

nant? Does this help reconcile your finding from part (iii)?

2.5 In the linear consumption function

cdins = B, + Binc,
the (estimated) marginal propensity to consiwme (MPC) out of income is simply the
slope, B, while the average propensiry to consime (APC) is cdnsline = Bylinc + 3,.
Using observations for 100 families on annual income and consumption (both measured
in dollars), the following equation is obtained:

cdns = —124.84 + 0.853 inc
n =100, B* = 0.692,

(i) Interpret the intercept in this equation, and comment on its sign and
magnitude.

(ii) What is the predicted consumption when family income is $30.0007?

(iii) With ine on the x-axis, draw a graph of the estimated MPC and APC.

2.6 Using data from 1988 for houses sold in Andover, Massachusetts, from Kiel and
McClain (1995), the following equation relates housing price {price) to the distance
from a recently built garbage incinerator (disr):

logi pfice) = 9.40 + 0.312 log(dist)
n =135 R = 0.162.

(i) Interpret the coefficient on log(disr). Is the sign of this estimate what
you expect it to be?

(ii) Do you think simple regression provides an unbiased estimator of the

ceteris paribus elasticity of price with respect to dist? (Think about the

city’s decision on where to put the incinerator.)

What other factors about a house affect its price? Might these be corre-

lated with distance from the incinerator?

2.7 Consider the savings function

, —
sav = By + Biinc + w0 = Vine e,



