Brunel University

School of Social Sciences

Mid-Term Exam

EC5501-EC5509

2011-2012

(kx1)

Answer one question.

Each part of the question carries equal weight

- 1. a) Consider the bivariate regression $\hat{Y}_i = \alpha + \beta X_i$, where N = 5, $\overline{Y} = 8$, $\overline{X} = 4$, $\sum xy = 70$, $\sum x^2 = 40$, $\sum y^2 = 124$.
- i) Obtain the regression coefficients α and β .
- ii) Calculate the explained and residual sum of squares as well as the correlation coefficient between Y and X (r)

(use the form:
$$\sum y^2 = \sum \hat{e}^2 + r^2 \sum y^2$$
).

- iii) Obtain the estimated standard error of the regression.
- b) i) Explain the White, Breusch-Pagan and ARCH test statistics for heteroscedasticity.
- ii) Consider the classical linear regression model: $\mathbf{Y} = \mathbf{X} \mathbf{b} + \mathbf{e}$. What is the formula for the variance-covariance matrix $\mathbf{V}(\beta)$ of the $(k \times 1)$ least-squares β vector under heteroscedasticity?
- c) i) Write four factors that affecting housing prices and explain how one can use regression analysis to test for the effect of each of these factors on housing prices.
- ii) Consider the following regression:

$$log(\text{wage}) = 0.284 - \underset{(0.007)}{0.092}(\text{educ}) + \underset{(0.0017)}{0.0041} (\text{exper}) + \underset{(0.003)}{0.022}(\text{tenure}), \, n = 526,$$

1

where standard errors are in parentheses. Test the null hypothesis that years of labour market experience have a significant effect on hourly wages.

- d) Show that if r is the correlation coefficient between n pairs of variables (X_i,Y_i) , then the squared correlation between the n pairs $(aX_i + b, cY_{i+d})$, where a;b;c and d are constants, is also r^2 .
- 2) a) i) Consider the classical linear regression model: $\mathbf{Y} = \mathbf{X}_{(Nxk)(kx1)} + \mathbf{e}$. What is the formula for the $(k \times 1)$ least-squares $\boldsymbol{\beta}_{(kx1)}$ vector?
- ii) In the two variable regression: $Y_i = b_1 + b_2 X_i + e_i$, use your result in i) to derive the least-squares estimates β_1 and β_2 .
- b) i) Consider the classical linear regression model: $\mathbf{Y} = \mathbf{X} \mathbf{b} + \mathbf{e}$. What is the formula for the variance-covariance matrix $\mathbf{V}(\beta)$ of the $(k \times 1)$ least-squares $\boldsymbol{\beta}$ vector?
- ii) In the two variable regression: $Y_i = b_1 + b_2 X_i + e_i$, use your result in i) to derive the $V(\beta_2)$ and the $Cov(\beta_1, \beta_2)$.
- c) From a sample of 200 observations the following quantities were calculated:

$$\sum X = 11.34$$
, $\sum Y = 20.72$, $\sum x^2 = 11.52$
 $\sum y^2 = 82.81$, $\sum xy = 20.95$.

Estimate both regression equations: the regression of Y on X, and the regressions of X on Y.

- d) i) Write three factors that affecting hourly wages and explain how one can use regression analysis to test for the effect of each of these factors on hourly wages.
- ii) Consider the following regression:

$$log(\text{price}) = 11.08 - 0.954 log(\text{nox}) - 0.134 \log{(\text{dist})} + 0.255 (\text{rooms}) - 0.052 (\text{stratio}), \\ 0.017)$$

where standard errors are in parentheses and n = 506. Test the null hypothesis that the elasticity of housing prices with respect to air pollution is -1.

3) a) The following sums (in deviation form) were obtained from 10 sets of observations on Y, X_1 , and X_2 :

$$\sum y^2 = 48.2, \quad \sum x_1^2 = 2, \sum x_2^2 = 3,$$

$$\sum x_1 x_2 = -1, \sum y x_1 = -1, \quad \sum y x_2 = 8.$$

The standard error of the regression is: $s^2 = 3.6$. Estimate the regression of Y on X_1 and X_2 , including an intercept term, and test the hypothesis that the coefficient of X_2 is zero.

(The 5% critical value for the t distribution with 7 degrees of freedom is 2.365).

- b) Explain the Durbin-Watson test and the Box-Pierce statistic for serial correlation.
- c) i) Let β_{xy} be the estimated slope coefficient from the regression of X on Y. Write an equation that relates r_{yx} (the sample correlation coefficient), β_{xy} and β_{yx} .
- ii) Assume that Y is a linear combination of X. Prove that ρ (the theoretical correlation coefficient) between the two variables is 1.
- d) Explain what is: i) the probability of type I error; ii) the 95% confidence interval; iii) the p value;) the probability of type II error; v) the power of a test.