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A NEW METHOD FOR OBTAINING
THE AUTOCOVARIANCE OF
AN ARMA MODEL: AN EXACT
FORM SOLUTION

M. KARANASOS
York University

In this article we present a new method for computing the theoretical autocovari-
ance function of an autoregressive moving average madthel importance of our
theorem is that it yields two interesting resulEsrst a closed-form solution is
derived in terms of the roots of the autoregressive polynomial and the parameters of
the moving average parSeconda sufficient condition for the lack of model re-
dundancy is obtained

1. INTRODUCTION

In this paper we present a new method for computing the theoretical autocovari-
ance function of an autoregressive moving aver@f@MA) model

In Section 2 of this paper we give a new method for computing the theoretical
autocovariance function of an autoregresqi&) scheme Exact methods of
calculating the autocovariance for autoregressive models are given by Que-
nouille (1947 and Pagan@l973. We believe that our method is an improvement
over those proposed by Quenouille and Pagéris exact easily codedand can
be used for AR models of all orders

In Section 3 of this paper we give a new method for computing the autocovari-
ance function of the following ARMA scheme

p q
yt:ao"‘zqﬁi*yt—i_Zaift—i, Oo=-1
i=1 i=0

(From now on we will assume that, = 0 for ease of calculation McLeod
(1975 gives an algorithm for the computation of the autocovariances of the pre-
ceding process in terms of the parameters of the medgl..,¢7,04,...,64. In

our method we express the autocovariance as an explicit function of the roots of
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AUTOCOVARIANCE OF AN ARMA MODEL 623

the AR polynomial(—=P_y ¢i'L', ¢4 = —1) and the parameters of the moving
averagéMA) part6y,6,,...,60,. The only restriction that we impose is that all the
roots(complex or realof the AR polynomial are distincNeverthelesghe cases
of two, threg and four equal roots are presented in the Appendixes

To point out the importance of our theorem we quote Granger and Newbold
(1986: “A specific form for the autocovariance sequence j¢gy of an
ARMA (p,q) model is more difficult to find than it was for the AR and MA
models In principle an expression for cgy;) can be found by solving the dif-
ference equation

p
E)(ﬁi* E(Vi-j€-i) = =6,

for the E(y;—je,—i), substituting into

q
g =2 6E(Yjei)
i=o

to find theg's and then solving the difference equation

p
§)¢i* covi_i(y) =g

for the coy(y;). Because in general the results will be rather complicattes
eventual solution is not presentéd

The reasons we present our proof are that it is simpler than the one based on
solving differences equations and that it has two important consequences

(a) Itis convenient for obtaining a solution in closed farm
(b) It provides a sufficient condition for the lack of model redundancy for an ARMA
process

2. AUTOCOVARIANCE OF AN AR( p)
Lety, be an AR2) process that is given by
Ve =iV 1t sy 2t 6= (1— dil — p3L%)y = €
= 1-dL)A— PaL)y, = €, € ~i.i.d. (0,0?). (2.1)

(Without loss of generalitywe assume that the varianceepfs 1.)

PROPOSITION 1 The autoceariance function of the precedigR (2) pro-
cess is gien by

1

Cm”“):<1—¢ﬂmx¢1—¢a<

P b1 Py > 2.2)

1-¢2 1—¢3



624 M. KARANASOS

Proof The AR(2) process can be written as an AR process with an ARL)
error term(z):

Yo = oY1tz (2.3)
wherez, = ¢,z 1 + €. Thenth (n = 1) autocovariance of; is given by

n—1

Yt = E D1z + PTYin = COV(VL, Yin)

=0

n—1
= ¢ var(y,) + ZO PLcoV(Zi i, Yin). (2.4)
Because/; n=¢1Yin-1+ Zn= 220012 n i We have
cov(z, Yi—n) = _Z‘Bdfl cov(zi, 2 n-i)- (2.5)
Because cotz, z_;) = $hvar(z,), we get
coV(Z,, Yi-n) = @Bvar(z) X, (1) = d»_Lr(zt) (2.6)
=0 1-a1¢p
From(2.4) and(2.6) we get
n—1
var(z,) 20 37 1
covy(Vr) = @ var(y) + (1= by
e ¢} 1— ($2/$)"
= ¢1var(y,) + 1= 0. b10m var(zt){—l_ (bu/dbs) ] (2.7)
Using(2.3) and(2.6) we can write the variance gf as
ar(z,) + 2 var(z,)
var(z —_—
Var( ) _ t ¢1¢2 1_¢1¢2 _ 1+¢1¢2
% 1-¢7 (1= 1) (L= ¢D(1— ¢3)°
(2.8)
From equation$2.7) and(2.8) we have
~ 1 Pid1  Bigs
M) = g 60— 62 ( 1-¢7 1- ¢>§>' (2'?

Important Property Equation(2.3) is symmetric with respect t¢, and¢..
Hence the autocovariance functi@h) is symmetric with respect t, andd,.

We note that theth autocovariance of an AR) process is a function of the
inverse of the two rootghereafteii-roots ¢, and¢, of the second-order poly-
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nomial(1— ¢;L — ¢5L?) and can be expressed as the sum of two teTime first
termis the product of the firstroot raised to the power of(¢1) and a coefficient
that depends on the twaroots{ ¢, /[(1— ¢1¢2) (¢1 — d2) (1— $3)]}. The second
term is the product of the secondoot raised to the power af (¢5) and a
coefficient that depends on the twooots{d,/[(1— ¢1d2) (o — ¢1) (1— P2)]}.
Given the symmetry of the autocovariance function initheots of the AR poly-
nomial the coefficients of the two terms are such that if in the first term we
interchangep, and ¢, we will get the second on&he preceding form of the
autocovariance of an AR) process leads us to the first principal result of this
paper

Lety, be an AR p) process that is given by

P P
Ve = 521¢?yt7i +et:~[[1(1—¢i L)y = &. (2.10)

THEOREM 1 The autocoariance function of the precedim§R (p) process
is given by

COVy (V1) = of "df =3
h(Y) =2 5 5 = en. (2.11)
=t 1_[1(1—¢i¢j)(| 1} .)(¢j_¢|) =t
i= =114

Proof(1st Method. We prove the theorem by inductiolm Proposition 1 we
proved that it holds for an AR) process if we assume that it holds for an
AR(p — 1) processthen it will be sufficient to prove that it holds for an AR).

Lety, be an AR p) processThen it can be written as an AR) process with an
AR(p—1) error term y; = ¢1y;-1 + z, wherez, is an AR(p — 1) process given

by]
i(1—¢i L)z = &. (2.12)

Notice that the ARp) process is symmetric with respect to fhieroots of the AR
polynomial(¢4,...,¢,). Hence the autocovariance function will also be sym-
metric with respect to thp i-roots of the AR polynomial

For easy reference we rewrit2.4) and(2.5):

n—1
covh(yy) = ofvar(y,) + ZO Bl cov(z_i, Yin), (2.13)
cov(z, Yi—n) = %rﬁ‘l coV(Z,Zpi). (2.14)

In equatior{2.13), whenn = 0, the lower limit exceeds the upper limit of the
summation When this is the case we will say that the summation vanidnes
other words fom = 0 equation2.13) becomes a tautology
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Because, is an AR(p — 1) processits autocovariance is given by

cov,(z) Ep: il = Ep: S
h(z) =2 5 5 =2 &n. (2.15)
Cla-¢e) 11 (G-¢) 2
i=2 (1=2,1#j)
Substituting(2.15) into (2.14) we get
p _p_2 n
coV(z,Yin) = X (fj Y
PEIIA-did) I1 (65— d)(A— dudy)
i=2 (1=2,1%#j)
P=2 4n
:_i : o9 . (2.16)
- H(l did)) 11 (- )
=1 (1=2,1#j)
Substituting(2.16) into (2.13) we get
, 1—(¢a/P)"
) O ¢F¢—1¢fj)
cov(y) = divar(y) + X .
a H(l b)) I (65— )
i=1 (1=2,1%#j)
P
= ¢pTA+ 22¢j“qo, (2.17)
s
where
p-1
A:var(yt)—}p: 5 id . ) (2.17a)
PIIa-¢00 I (60— o)
i=1 (I=1,1#j)

The autocovariance function is the sunpdérms The first term is the product
of ¢ and a coefficient that depends @, ¢, ..., ¢,,(A). Each of the rest of the
p—1ltermsisthe product @f"whergf = 2,3,..., pand a coefficient that depends
oNn ¢y,...,¢p,(g0). Given the symmetry of the autocovariance function in the
i-roots of thepth-order AR polynomialif we interchange the inverse of thoot
¢; with the inverse of the first roap, in the coefficientg, we will get the coef-
ficient of 7, that is coefficientA. Hence A is given by

p—1
A= d)l p = €10. (218)

p
':1_[1(1_ ¢1¢i)|:1_[2(¢1_

Finally, substituting the preceding equation if#17) we get equatiori2.11).
[ |
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Proof(2nd Method. The preceding proof does not hold for the variancg of
becausgas we mentioned earlier pwhenn = 0, equation(2.13) becomes a
tautology However there is an alternative proof that holds for the variance as
well.

The covariance betwegpandz,_,, is given by

n—1 e’}
Vi =1V 1t 2= Z d1z i + 2 G Z_ni = COV( Vi, Z—n)
i—=o0 i—=o0

n—1 %)
= 20 dicov, i(z) + %M*‘ covi (z,). (2.19)

Substituting(2.15) into (2.19) we get

P
COV(Yr, Zi—n) = gz 8.0 P ¢1¢J

& &l n(f’ qo b & )
> BT e 2e-a) O
Note that whenn = 0, the first term in the right-hand side of the preceding
equation becomes zerand this is in accordance with the fact thahenn = 0,
the lower limit exceeds the upper limit of the summation of the first term in the
right-hand side of equatiof2.19).

Thenth (n = 0) autocovariance of; is given by

M3

d’lzt n—i = COVn(yt) - 2 d’l COV(Yt,Zt n— |) (2-21)

0 i=0

Yi-n =

Substituting(2.20) into (2.21), and after some algehrae get

p A
coVy (i) = Equ;”qo +¢lA, (2.22)
-
where
R 1 p 8o P §
= 2.22
A w2 2ol (2.:222)

We employ the same reasoning with the one used in the first méth&26) to
get

A

A= €10- (223)

Finally, substituting the preceding equation irth22) we get equatiori2.11).
[ |
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3. AUTOCOVARIANCE OF AN ARMA(p, q)
Let z. be an ARMA(L,q) process given by

Z = ¢z 1 — EHGI i (3.1)

wheref, = —1 ande, ~ i.i.d. (0,02).2

PROPOSITION 2 The autocoariance function of zis given by

cov(z) = (3.2)

where

2 67 +2 2 OOus1 (5 + 3') + 2 2 OOk (5 + 5 3).  (3.2a)
=0 =1k=0 I=j+1 k=0
Proof It is not difficult to show that
) min(j,q)
covi(z) = ¢yvar(z) + Z aidl, (3.3)
where
g—1-ig—i—n

q—i
- E 6i+m¢’£n+ E 2 9k9n+i+k¢g- (3-33)
m=0 n=0 k=1

It should be noted thafor i = g, the preceding double summation vanishes be-
cause the lower limit exceeds the upper limit of the summation operator
It can be seen that the variancezpfs given by

=1k=1

q —1q9g-I
(11— ¢p3)var(z,) = 200%4‘ 2¢2< 2 ¢ 10, + 2 > OO 5 ) (3.4)

We substitute equatiori8.3a) and(3.4) into (3.3) and(after some algebjave get
equation(3.2). u

Theorem 1 and Proposition 2 lead us to the second principal result of this paper
Lety, be an ARMA(p,q) process given by

p q
= Z@*)’H - 26& €t—i, (3.5)

wheref, = —1 ande, ~i.i.d.(0,1).
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THEOREM 2 The autoceoariance function of the precedingRMA (p,q)
procesdy,) is given by

p
> e, j=q-1

i=1

cov(y) =13, (3.6)
gle] )\iq’ J = g,
where
i, p-1
QJ _ 5 ¢I ¢I 5 (363)
[Ta-¢d) II (6=
1=1 (k=1 k#i)
and

q i g-! qg gl
Aj = kzoakz + ; kzoekakﬂ(d’il + o+ D D 0l (pl + d7F).  (3.6b)

I1=j+1k=0

Note that for j = g, the third term of the righthand side of the preceding equa
tion disappears because the lower limit exceeds the upper limit of the first sum
mation operator

Proof(Casejj = q). We prove the theorem by inductioim Proposition 2 we
proved that the theorem holds for an ARNIAQg) processif we assume that it
holds for an ARMA(p — 1,q) processthen it will be sufficient to prove that it
holds for an ARMA( p,q) process

Lety, be an ARMA(p,q) processThen it can be written as an AR) pro-
cesswithan ARMAp —1,q) errorterm(y; = ¢1 Y1 + Z;), wherez, is an ARMA
(p—1,q) process given by

ﬁ(1_¢i Lz = _i 0 €—i. (3.7)
i=2 i=0

Notice that the ARMA p,q) process is symmetric with respect to th®ots of
thepth-order AR polynomialHence the autocovariance will also be symmetric
with respect to theroots of the AR polynomiaBecause; isan ARMA(p—1,q)
processits autocovariance is given by

cov(z) = (3.8)
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where
Jpp=2
& =5 i ¢'p (3.82)
[Ta-e¢g) II (=)
=2 (k=2, ki)
g-j-1 ,
Wz‘a%qu”’wﬁm
q-1—j q—j—(k+1) _
+ 2 > Ol (P AT — grarik (3.8b)
k=1 =0

and A is given by(3.6b). Note thaf whenj = g — 1, the second term in the
preceding equation vanishes because the lower limit exceeds the upper limit of
the summation operatdvioreoverthe relation betweenth@sis & = ¢ é ;_, =
=gl My
In equation(3.8) we expressed thg; coefficients as functions of thi, co-
efficients The covariance of; andy,_; (for 1=j = q—1) is given by

CoV(Zy, Yij) = >, 1 COV(Zy, Z—(j+i))- (3.9)
i=0

Substituting(3.8) into (3.9) we get
p a]

cov(z, Y j) = 221 6id A,q+wEéJ i (3.10)
where
q-1 _
fy = > vi(rpi)V T, (3.10a)

o=

andr =0,forj=qw=Lforl=j=q-1
Thejth autocovariance of; is given by

-1 ,
covi(y,) = |2 CoOV(Z—1, Yi—j) @1 + i var(y,)
=0

j : )
= 21 cov(z, Yeoy) 1 © + divar(yy). (3.11)

Substituting(3.10) into the preceding equatioand after some algehrae get

P .
cov (yr) = > QO)\ingiJ|:l_ <il> ] + ¢lvar(y) + Z 2 pi7ve, 1,

p

= X & hig T B, (3.12)
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where

{= Var(yt E QO)\lq + E 2 b1” &, fiu. (3-12a)

v=1i=

The autocovariance of the ARM#A, q) process is the sum gfterms The last
termis the product api and a coefficientthatdependsén...,¢,andd,, ..., 0
Each ofthe firsp—1 terms is the product @/ wherei = 2, ..., pand a coefficient
thatdepends oy, ..., ¢y, 01, ...,04(€0Ai). Giventhe symmetry of the autocovari-
ance function in the-roots of the AR polynomiaif we interchange theroot ¢,
with the firsti-root ¢, in the coefficientg o Ai, we will get the coefficient ofp1,
that is coefficient{. Hence ¢ is given by

{ = eprig- (3.13)
Finally, substituting(3.13) into (3.12) we get(3.6). u

Proof(Caseijl=j=q—1 1st Method. Because; is an ARMA(p —10)
process its autocovariance function is given by

[ p p

Eén/\ngén(/\ Vij), n=q

i=2 i=2

p p _ _
> énA :E (Aj + Ajp+), n=j+b gq-1-j=b=1
i—2 —2

cova(z) =4

Zén/\ij, n:]

i—2

p p . .
kEen)\lj— :Eéin(/\ij'i_/\ij,b’)’ n=j—b, j=zb=1
i=2 i=2

(3.14)
whereé, is given by(3.8a), v; is given by(3.8b), andA;; ,+ andA;j ,- are given
by

q-j-1 v ) )
Aijpr = X (—un + >0 0q<,,|>>(¢f’l<q“)2”2“*b> -7, (3.14a)
v=0 I1=1
wherer,=1forv=q—j—b—-1L 7, =—-1forv=q—j—bandm,=1forv =
g—j—b-Lm,=0forv=q—j—bandl=j=q—-2,1=b=qg-1—j,and
g+b—(j+1) v ) _
Aij,b7 = 2 (_Hqu + 2 0I 6q(v|)>(¢iq+2b(2l+l}) - ¢i771(q7u>72772j)7
v=0 I=1

(3.14b)

wherer,=1forO=v=q—j—1L 7 =—-1forv=q—jandm,=1for0O=v =
g-j—1lLm,=0forv=q—jand2=j=q-11=b=j-1

In equation(3.14) we express thaq, A; j_p, anda; ;. as functions of the;
coefficients Note that in equation€.14g8 and(3.14b), whenv = 0, the second
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summation term vanishes because the lower limit exceeds the upper limit of the
summation operator
The covariance betweenandy;_, is given by

cov(z, Y—p) = Zodfl COV,+i(2). (3.15)

Substituting(3.14) into (3.15), and after some algehrae get

p P
COV(ZUyt*U) = 2 Z é Iv’ (316)

where

- 1

q—j—
E )\u(J m)~ (d’ld’ )m v+ 2 /\u I*(d’l ¢)J+I v

=1

(h1hi)9
-y (3.16a)

Note that inf;;, whenov = j, the first term becomes zerand wherj = q — 1, the
second term becomes zero because the lower limit exceeds the upper limit of the
corresponding summation operator

Thejth autocovariance of; is given by

j . )
cov(yr) = Zl cov(z, Yin) 1 * + dpivar(yy). (3.17)

Substituting(3.16) into the preceding equatioand after some algehrae get

cov (y,) = s G [ <¢1> ] + plvar(y,)

2 T onb—dn? %
S e

p _
= g Aj + pil” (3.18)
i=2
where
i P P
o =varly) + S D 6iv6, i — S aod;. (3.182)
v=1i=2 i=2

We employ the same reasoning with the one used fgrthgcasegp. 631) to get
g* = eloAlj . (319)

Finally, substituting the preceding equation ir®18) we get(3.6). |
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Proof(Case ij0 = j = q — 1, 2nd Method. The covariance between and
Zi_(j+v) IS given by
jtuv—1

+o+
Ve = 1Ver T = E drze i + E (If’l ’ Iztf(j+u+i) = COV( Vi, Zt—(j+v))

jto—1

3, $Loov,-i(z) + 2 61" covi(z). (3.20)

Substituting(3.14) into the preceding equatioand after some algehrae get

COV( Y, Zt—(j+v))

P S Ai' +v +v
:;m((ﬁ] - ] )+EEQ(J k) Aij, k- §b1
min(v,q—1—j) p
+ 2 X & Akl
k=1 =2
. 1_ g1
u+J q+ v+]—q+
3 g Gal T g
+v - e /\i' +v
FH D g T kEo.E% w0 (1)
+ 2"“§q_§l‘,—j (prop)* — q“*“iﬂ 3.21
91 =2 k=1 A (9201 51— 1)’ (3.21)

whererr, =0forv =q—j—1 7, =1 otherwiseNote thatfor j = v = 0, the first
term in equatior§3.20) becomes zerdn accordance with the lattghe first four
terms in equatioi3.21) become zeroAfter some algebra equatidB.21) gives

COV( Y, Zt—(j+v))

- Cidi e g ( 1 ¢ )

Zp—p? T 2% 1= 6t 6

p ¢Q+j+v iv+j—q+1 _ ¢€+j—q+1
_i_zzé”"( Y )

i P q-1-j
+ o1 kzl__ & kA k- (Tadk + T 7F) + d’vkE 12 &k Aj K pPTE
min(v,q—1-j) p A

+dt X D& (g odth, (3.22)

k=1 i=2

wherer, =1forv >q—j—1 7 =0, otherwiseandm, =0 fork=j, mo =1,
otherwise
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Thejth autocovariance of, (0= = q— 1) is given by

Yeoj = X iz = coVi(Y) = X, dicov(Ye,z ). (3.23)
i=0 i=0
Substituting(3.22) into the preceding equatipand after some algehrae get
p )
cov(yy) = X g A + 1L, (3.24)
i=2
where
1 i P ) ik
= 1_ 42 D DG kA (M T+ 1)
d’l k=1i=2
qg-1-j v p K
+ E 2 E ¢fl’€‘| J+k/\u k*(d’lk '+ ¢J )
v=0 k=1i=2
(ﬁ(qﬂ') qg-1-j p T
+ — 2 ZéIJJrk)\u k*((ﬁlk ]+¢J )
1 d)l k=1 i=2
q—-2-jgq-1-j p R J+k
+ E E ¢ a ]+k)\u k*
v=0 k=v+1li=2
1 2 1 ®i
+ Aj -
1= g7 2% '(1—¢>1¢i & —¢1>
B Ep: & ¢1 N o7 ¢y
T A= p1d) L= D) (i — 1)1~ P1hi)

TG —d0-9D | (3.242)

whererr, =1 fork=j, 7, = 0 otherwiseWe employ the same reasoning with the
one used in the first methdg. 631) to get

—2j+1
PF ]

g’ = elo/\lj. (325)
Finally, substituting the preceding equation ir{®24) we get(3.6). |

4. ARMA MODEL REDUNDANCY

COROLLARY 1. Asufficient condition for the lack of teRMA ( p,q) model
redundancy is gien by

P
H Aiq 7& 0’
i=1

wherelq is given by(3.6b).
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Proof The proof follows immediately from Theorem 2 u

A Note on ARMA Model Parameter Redundandy/hen the first inverse root
of the AR polynomial ¢,) is equal to the first inverse root of the MA polynomial
(07) the order of the autoregressive part reduces fpamp — 1. In accordance
with the latterthe coefficient of thep{ in thejth autocovariangdor j = g, (A1g)
becomes zerdMoreover the order of the MA part reduces frogqito g — L In
accordance with the lattethe autocovariance of ordgrbecomes

P p
COVq(Yt) = E Qq /\iq = E é,qu,qfl’ (41)
i=2 i=2
because
®i Aiq
~ — =X g1, 4.1a
A= 6id) (o) ot (4-12)
where
q-1 i g-1-1
Noj= 2002+ D 0kbii(pl + &)
k=0 I=1 k=0
q-1 g—1-I )
+ X Y kba(dl + o) (4.1b)
I=j+1 k=0
and

q q—1
[MMa-euv=-S6U, 6=-1 (4.1c)
j=2 j=0

and the autocovariance of ordgr 1 becomes

P P P
COVq—l(yt) = H a,q—l)\i,q—l = 2 a,q—l)\iq + 2 € g-1Vig-1 (4-2)
i=1 i=2 i=1
P p
=> €,q-1iq = > € q-1iq-1, (4.2a)
i=2 i=2
because

P ¢’
=602 — 5 =0. (4.2b)
N | NG I | B

(I=1,1#i) (k=1 k#i)




636 M. KARANASOS

Example.

Lety, be an ARMA(2,2) process given by
Yo = d1Yi-1 t 71, (4.3)

wherez, = ¢,z,_1 + €, — 016,_1 — 6,€6,_, and whereb, ande, are the twa-roots
of the second-order polynomial-1 ¢;L — ¢3L2 The preceding equation says
that an ARMA(2,2) process can be expressed as an(BRprocess with an
ARMA (1,2) error term(z,).

Thenth autocovariance of; (for n = 2) is given by

COVn(Ye)
_ 1
(- $1¢)($1— $2)
% {¢?¢1[(1+ 0F + 03) + (=0, + 0160,) (d1 + d11) — 02(F + 1))
1-¢7f
_ G5 ho[(1+ 67+ 03) + (=01 + 0,0,) (o + p2h) — O(h3 + (f’zz)]}
1-¢3 )

(4.4)

Thenth autocovariance of, has two termsThe first is the product of the first
i-root raised to the power af($7) and a coefficient that depends @, ¢-, 6,,
andd,. The second term is the product of the secbnabt raised to the power of
n(¢%) and a coefficient that also dependsdy ¢,, 61, andd,. These two terms
are such that if in the one we interchange the two roots we will get the. dther
thatis in accordance with the fact that the ARNEA2) proces$4.3) is symmetric
with respect to the twiroots of the second-order AR polynomibliote also that
if one of the twoi-roots¢,, k = 1,2 is equal to one of the twieroots of the MA
polynomial[(1— 6,L — 6,L.2) = (1—6;L)(1 — 65L), —0;65 = 6,, 65 + 05 = 6,]
(say¢, = 61), then the process reduces to an ARMA) process and the coef-
ficient of ¢{ in the autocovariance function becomes zero

cov; ()
_ Dhba[1+ 62+ 05+ (—61+ 0:6) (do + b3 ") — 62(b3 + $5°)]
(1= 21— b1¢2) (b2~ ¢1)

¢
C1-¢3

[1+(65)% = 05(¢2+ ¢35 1)], forj=1 (4.5)

5. CONCLUSIONS

In this paper we showed that an ARMA, q) model can be expressed as a se-
qguence ofp AR(1) processes with ARMAp — i,q) (wherei = 1,2,...,p) error
terms The first AR(1) process has an ARM& — 1,q) error termythe second has
an ARMA(p — 2,q) error term . . ., and the last one has a M#4) error term
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Moreover we showed that the ARMAp, q) process is symmetric with respect to
thei-roots of the AR polynomial¢,,...,¢,). Hence the autocovariance of the
process is symmetric with respect to theots of the AR polynomial

This recursive and symmetric nature of the AR¥M#AQ) model led us to find
an exact-form solution for thigh autocovariancéVe expressed it as an explicit
function of the roots of the AR polynomial and the parameters of the MA fart
is the sum op terms Theith term is the product of the inverse of thi root of
the AR polynomialraised to the power gf times a coefficient that depends on
$1,-.-,¢p,04,...,04. Because of the aforementioned symmgifryn the coeffi-
cient of ¢! we interchangep; with ¢, we will get the coefficient ofp;.

Furthermorein our proof tha-roots of the AR polynomial can be either real or
complex The only restriction that we imposed is that all the roots are distinct

NOTES

1. McLeod (1993 gives a simple conditigrexpressed in terms of the ARMA model parameters
for determining ARMA model redundanclie derived the algebraic condition by setting the deter-
minant of the auxiliary matrix of the ARMA modél) equal to zero

2. Without loss of generality we assume that the variance of 1.

3. I am grateful to an anonymous referee fresimonometric Theorfor suggesting this method to
me
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APPENDIX A: CASE OF TWO EQUAL ROOTS
(AR(2))

Proof (1st Method). Lety; be an AR2) process that is given by
Yo = d1Yi-1 T 7, Z=¢1z 1+ €. (A.1)

The covariance betweemandy;_, is given by

cov(z, Yi—n) = ZO b} COVy1i(2). (A-2)
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Because, is an AR(1) processits autocovariance is given by

P
covy(z) = =42 o7 (A.3)
Substituting(A.3) into (A.2) we get
¢n
cov(z, Yi—n) = m (A.4)
From(A.1) we get the variance of,
var(y,) = var(z) + 2qil CCZJV(zt,ytfl)‘ (A5)
1-¢1
Substituting(A.3) and(A.4) into (A.5) we get
1+ ¢7
var(y,) = m (A.6)
The covariance of; is given by
n—1
cova(y1) = pfvar(y) + 20 b1 coV(Zi—i, Yin). (A7)
Substituting(A.4) and(A.6) into the preceding equation we get
¢n 1+ ¢2
COV(Wr) = m <1——<f>% + n>. (A.8)
|
Proof (2nd Method)2 Taking the limit of(2.2) as(¢» — ¢1) we get
cou(y) = lim 1 <¢2¢1 B ¢5¢>2>
ot bady (1— ¢1¢2)(¢1 —¢2) \1- (15% 1- ¢§
— iim 1 im P P11 — p3) — PpBpo(1— bf)
b=y (1= hprho) (1 — ¢f)(1 - ¢§) bo—>d1 b1~ b2
d
) 1 |' 67)2[¢£‘¢1(1 — $3) — ¢pBa(1— ¢3)]
T 16D e, K
7, (1= 42
_ i (B8 (=260) — (n+ 131 = $3)]
(1 - ¢12.)3 Po—>b1 -1
e [1+¢7
_—(1_¢f)2<—1_¢%+n>. (A.9)
This method will be applicable to all multiple roots cases |
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APPENDIX B: CASE OF THREE EQUAL ROOTS
(AR(3))

Proof. Lety, be an AR3) process thatwe express as a sequence of thr¢pARcesses
Yo = 1Ve1 T 7, =121+ Xy Xt = 1 X—1 t+ €. (B.1)

Substituting(A.8) into (A.2) we get

e [1+24F
cov(z, Yi—n) = (1¢%)3< ey +n]. (B.2)
Substituting(A.8) and(B.2) into (A.5) we get the variance of,
1+ 442+ o7
var(y,) = TrAdit (B.3)

(1-¢3)°

Substituting equationd.3) and(B.2) into (A.7) we get thenth autocovariance of;,

(B.4)
n

covih(yp)

_ &7 1-i-4¢f+(f)i1 l+q’>f 3n n?
Ta-¢| a-¢? 1-¢2\2) 72|

APPENDIX C CASE OF FOUR EQUAL ROOTS

(AR(4))
Proof. Lety, be an AR4) process that we express as a sequence of folt fflRocesses
Vi = d1 Vi1t Z, Z =1z 1+ i, di =11 + X, Xe = Pp1 X1 T €.
(C.1)

Substituting equatiofB.4) into (A.2) we get the covariance betweerandy;_,

_ % [1+6¢E+3¢f 3+5¢4f(n) n?
SIS = gt | T a-ep? T 1-ef \2) T 2 ©2
Substituting equation&C.2) and(B.3) into (A.5) we get the variance of,
1+ 9¢7 + 9¢7 + ¢
var(y,) = ¢+ 991 + @7 ©3)

A=)
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Substituting equation&C.2) and(C.3) into (A.7) we get thenth autocovariance of;,
_ b7 14 9¢% + 9¢7 + ¢ N (11+ 38¢4% + 116H)n
(1-¢d* (1-¢9)° 6(1— ¢1)?
1+ ¢F n3
¢, _]

covih(Yr)

+

My n 6 (C.4)



