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Christian Conrad a,T, Menelaos Karanasos b

aUniversität Mannheim, Fakultät für Rechtswissenschaft und Volkswirtschaftslehre, L7 3-5, D-68131 Mannheim, Germany
bBusiness School, Brunel University, Middlesex, UK

Received 13 April 2004; received in revised form 10 May 2005; accepted 6 July 2005

Available online 8 September 2005
Abstract

In this article we derive convenient representations for the cumulative impulse response function of the long

memory GARCH( p, d, q) (LMGARCH) process. Our results extend the results in Baillie et al. (1996) [Baillie,

R.T., Bollerslev, T., Mikkelsen, H.O. 1996. Fractionally integrated generalized autoregressive conditional

heteroskedasticity. Journal of Econometrics 74, 3–30.] on the first order LMGARCH. Using the derived impulse

response functions we compare the persistence of shocks to the conditional variance in various GARCH models of

interest such as stable, integrated and LMGARCH.
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1. Introduction

The topic of long memory and persistence has recently attracted considerable attention in terms of the

second moment of a process. An excellent survey of major econometric work on long memory processes

and their applications in economics and finance is given by Baillie (1996). The issue of temporal

dependence on financial time series has been the focus of attention since information on persistence can

also guide the search for an economic explanation of movements in asset returns. For example, as Baillie

et al. (1996) point out, there is a direct relation between the long term dependence in the conditional
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variances of daily spot exchange rates and the long memory in the forward premium. This relation could

explain the systematic rejection of the unbiasedness hypothesis as an artefact due to the unbalanced

regression of the return on the premium (Baillie et al., 1996).

Robinson (1991) was the first to consider the long memory potential of a model which he called linear

ARCH (LARCH). Subsequently, many researchers have proposed extensions of GARCH-type models

which can produce long memory behavior (see, for example, Teyssièrie, 1998; Davidson, 2004 and

Giraitis et al., 2004, and the references therein). The empirical relevance of long memory conditional

heteroscedasticity has emerged in a variety of studies of time series of economic and financial variables

(see, for example, Conrad and Karanasos, 2005a,b). Kirman and Teyssière (2005) assemble models from

economic theory providing plausible micro foundations for the occurrence of long memory in

economics. Recent research has been aimed at both extending our understanding of these well

established models, and widening the range of data features that can be handled. For example, Giraitis et

al. (2005) provide an overview of recent theoretical findings on the LMGARCH processes.

Moreover, Baillie et al. (1996) measure the persistence of shocks to the conditional variance using

impulse response functions (IRF). To appreciate how such measures work in practice they consider the

fractionally integrated GARCH (FIGARCH) process of order (1, d, 0). To that end, in this article the

impulse response function is analyzed in the framework of an LMGARCH(p, d, q) process. We also look

at the persistence of shocks in the conditional variance process for the LMGARCH model as compared

with the persistence of shocks for the stable and integrated GARCHmodels. An important related study by

Karanasos et al. (2004) derives convenient representations for the autocorrelation function of the squared

values of LMGARCH processes, and some of our results can been seen as complementary to theirs.

This article is organized as follows. Section 2 lays out the model of interest, assumptions and

notation. Section 3 presents expressions for the cumulative impulse response functions of the

LMGARCH(p, d, q) process and discusses an empirical example. In the conclusions we suggest future

developments.
2. The long memory GARCH model

To establish terminology and notation, recall from Karanasos et al. (2004) that an LMGARCH(p, d, q)

process {et} is defined by the equation

et ¼ et
ffiffiffiffiffi
ht;

p
taZ; ð1Þ

and

ht ¼ x þ X Lð Þ � 1½ �vt; ð2Þ
with

X Lð Þ ¼
Xl
j¼0

xjL
jJ

B Lð Þ
U Lð Þ 1� Lð Þd

;

where vtJ et
2�ht. Here and in the remainder of this article, L stands for the lag operator and the symbol

dJT is used to indicate equality by definition. We assume hereafter that xa (0,l), 0bdb0.5 and that the

finite order polynomials U Lð ÞJ1�
Pq

i¼1 /iL
i ¼ jq

i¼1 1� fiLð Þ, B Lð ÞJ�
Pp

i¼1 biL
i b0J� 1ð Þ have

zeros outside the unit circle in the complex plane.
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The rescaled innovations et are assumed to be i.i.d with E etð Þ ¼ E e2t � 1
� �

¼ 0. By Eq. (1) and

the i.i.d.-ness of the et, E vtjF t�1ð Þ ¼ 0 where F t is the r-field of events induced by {es, s\ t}.

For notational convenience, in what follows we denote -mJ
Pl

j¼0 xjxjþm (m=0,1,2, . . .). Note that,

since db0.5, -0bl. The et
2 has finite first moment equal to x. In addition, simple manipulations

suggest that E e4t
� �

bland E e4t
� �

� 1
� �

-0bE e4t
� �

imply covariance stationarity of the et
2 Under these

conditions the autocorrelations {qm(et
2)JCorr(e2t +m, et

2)} are qm(et
2)=-m /-0 (see Karanasos et al.,

2004).

Moreover, ht has an ARCH(l) representation, i.e. it can be expressed as an infinite distributed lag of

e2t �j terms as (ht�x)=W(L)(et
2�x) where W Lð Þ ¼

Pl
j¼1 wjL

jJ 1� U Lð Þ 1� Lð Þd=B Lð Þ
h i

. Note that

in this specification the conditional variance and the squared errors are expressed in deviations from the

unconditional variance x. To guarantee the non-negativity of the conditional variance one has to impose

inequality constraints which ensure that wjz0 for j=1,2, . . . . Necessary and sufficient constraints for

pV2 and sufficient constraints for pN2 can be found in Conrad and Haag (2005).

Furthermore, under Eqs. (1) and (2), the coefficients xj decay at a slow hyperbolic rate so that

xj =O( jd� 1). This in turn implies that the autocorrelations satisfy qm(et
2)=O(m2d� 1), provided

E e4t
� �

bl. Hence, when the fourth moment of the et exists, et
2 is a weakly stationary process which

exhibits long memory for all da (0,0.5), in the sense that the series
Pl

m¼0 jqm e2t
� �

j is properly

divergent. For this reason, we refer to a process et satisfying Eqs. (1) and (2) as an LMGARCH(p, d, q)

process.

Finally, it is interesting to note the difference between the LMGARCH process and the FIGARCH

model. The ARCH(l) formulation of the latter is ht=x+W(L)et
2. It is noteworthy that this model,

unless E e2t � 1
� �

b0, is not compatible with covariance stationary et. However, Zaffaroni (2004) points
out that even this weak covariance stationarity condition for the levels et rules out long memory in the

squares et
2.
3. The IRF of the LMGARCH(p, d, q) model

In the LMGARCH class of models, the short-run behavior of the time series is captured by the

conventional ARCH and GARCH parameters, while the long-run dependence is conveniently modelled

through the fractional differencing parameter.

Since in the LMGARCH the conditional variance is parameterized as a linear function of the past

squared innovations, the persistence of the conditional variance is most simply characterized in terms of

the impulse response coefficients for the optimal forecast of the future conditional variance as a function

of the current innovation vt. Following Baillie et al. (1996) we define the impulse response and

cumulative impulse response function as follows:

Definition 1. The impulse response function of the LMGARCH(p, d, q) model is given by the sequence

yk, k=0,1, . . . , where dkJBEt e2tþk

� �
=Bvt � BEt e2tþk�1

� �
=Bvt;withd0J1. Accordingly, the cumulative

impulse response function is given by the sequence kkJ
Pk

l¼0 dl.

The impulse response coefficients dk can be simply obtained by considering the first difference of the

squared errors

1� Lð Þe2t ¼ D Lð Þvt; ð3Þ
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where D Lð Þ ¼
Pl

j¼0 djLj ¼ 1� Lð ÞX Lð Þ. Since by definition the impulse response coefficients dk are

related to the cumulative impulse response weights kk by D(L)= (1�L)K(L), with K Lð Þ ¼
Pl

k¼0 kkLk ,
it follows that the cumulative impulse response weights kk coincide with the xk coefficients defined by

Eq. (2).1

Further, let F be the Gaussian hypergeometric function defined by F a; b; c; zð ÞJ
Pl

j¼0

að Þj bð Þj z j
cð Þj j!

, where

að ÞjJjj�1
i¼0 aþ ið Þ (with (a)0=1) is Pochhammer’s shifted factorial. Then, the fractional differencing

operator (1�L)d in Eq. (2) is most conveniently expressed in terms of the hypergeometric function

1� Lð Þd ¼ F � d; 1; 1; Lð Þ ¼
Xl
j¼0

C j� dð Þ
C jþ 1ð ÞC � dð Þ LjJ

Xl
j¼0

g�d jð ÞLj;

where C(d ) is the gamma function. Note that using this notation we can write D Lð Þ ¼ B Lð Þ
U Lð Þ

F d � 1; 1; 1; Lð Þ.
Next, we establish a representation for the cumulative impulse response function of the

LMGARCH(p, d, q) process.

Theorem 1. The cumulative impulse response function kk, k=0,1, . . ., of the LMGARCH (p, d, q) model

is given by

kk ¼ 1�
Xmin k;pf g

i¼1

bi

 ! Xmax k�p;0f g

i¼0

nigd max k � p; 0f g � ið Þ þ
Xk

i¼max k�p;0f gþ1

1�
Xk�i

l¼1

bl

 !
ci;

where

ciJ
Xi
l¼0

ni�lgd�1 lð Þ;withniJ
Xq
l¼1

hlf
i
l;andhiJ

fq�1
i

jq
l¼1;l p i fi � flð Þ :ð4Þ ð4Þ

(Recall that the fi are defined by Eq. (2)).

Proof. In view of Eq. (3), we have

D Lð Þ ¼
Xl
j¼0

Xl
i¼0

� cj�ibiL
j;ordj ¼

Xp
i¼0

� cj�ibi;

where ci is defined in Theorem 1 and c� i=0(i=1, . . . , p).

Therefore, the cumulative impulse response function is given by

kk ¼
Xk
i¼0

di ¼ �
Xmin k;pf g

i¼0

bi

 ! Xmax k�p;0f g

i¼0

ci þ
Xk

i¼max k�p;0f gþ1

1�
Xk�i

l¼1

 !
ci;

where we use the convention that
P0

j¼1 bj ¼ 0.
1 Note that since Eq. (3) is satisfied by both the LMGARCH and the FIGARCH process the results that follow can be applied

to the latter as well.
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Hence, in view of the fact that

Xmax k�p;0f g

i¼0

ci ¼
Xmax k�p;0f g

i¼0

nigd max k � p; 0f g � ið Þ;

Eq. (4) follows. 5

The long-run impact of past shocks for the volatility process may now be assessed in terms of the

limit of the cumulative impulse response weights, i.e., D 1ð Þ ¼ limkYl
Pk

l¼0 dl ¼ limkYlkk . Note that

the results in Theorem 1 hold for 0VdV1.
As noted by Baillie et al. (1996), for 0Vdb1, F(d� 1,1;1;1)=0, so that for the LMGARCH(p, d, q)

model with 0bdb0.5 and the stable GARCH model with d=0, shocks to the conditional variance will

ultimately die out in a forecasting sense. In contrast, for d=1, F(d� 1,1;1;1)=1, and the cumulative

impulse response weights will converge to the nonzero constant D(1)=B(1) /U(1). Thus, from a

forecasting perspective shocks to the conditional variance of the integrated GARCH (IGARCH) model

persist indefinitely.

To illustrate the general result we consider the LMGARCH(1, d, 1) process. In this case

B(L)=1�b1L and U(L)=1�/1L.

Lemma 1. The cumulative impulse response coefficients kk of the LMGARCH(1, d, 1) are given by

kk ¼ gd kð Þ þ /1 � b1ð Þ
Xk
i¼1

/i�1
1 gd k � ið Þ: ð5Þ

Moreover, when /1=0, Eq. (5) gives the cumulative impulse response weights of the LMGARCH(1,

d, 0) model: kk=[1�b1� (1�d) /k] �gd (k�1).2 By restricting d to being zero in Eq. (5) and observing

that g0(0)=1 and g0( j)=0 for j N0, we obtain the cumulative impulse response function of the

GARCH(1, 1) model: kk=(/1�b1)/1
k� 1 Finally, when d=0 and /1=1, we obtain the kk of the

IGARCH(1, 1) model: kk =(1�b1).

The impulse response functions can be used:

(a) to distinguish between short and long memory specifications. Conrad and Karanasos (2005a)

model the conditional variance of the monthly US inflation rate for the period 1962–2000 as

GARCH(1, 1), IGARCH(1, 1) and FIGARCH(1, d, 1), respectively. Fig. 1 plots the cumulative

impulse response functions of their parameter estimates for the GARCH(1, 1) model with

/̂1=0.976 and b̂=0.822, the IGARCH(1, 1) process with b̂1=0.819 and the FIGARCH(1, d, 1)

specification with /̂1=0.325, b̂1==0.768 and d̂ =0.692. Note that while a shock to the optimal

forecast of the future conditional variance decays at an exponential rate in the GARCH model, and

remains important for forecasts of all horizons in the IGARCH model, in sharp contrast the effect

will die out at a slow hyperbolic rate in the FIGARCH model.
2 The cumulative impulse response function of the LMGARCH(1, d, 0) model was first derived by Baillie et al. (1996) (see

also, Eq. (87) in Baillie, 1996).
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Fig. 1. Cumulative impulse response functions for GARCH, IGARCH and FIGARCH models.
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(b) to investigate the persistence properties of a particular LMGARCH specification for different

parameter values. For example, Conrad and Haag (2005) show that in the LMGARCH(1, d, 0)

model one can allow for b1b0 (there is a lower bound for b1 depending on the value of d). Fig. 2

plots the impulse response function for the LMGARCH(1, d, 0) for d fixed at 0.45 and with
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Fig. 2. Cumulative impulse response functions for LMGARCH(1, d, 0) with d =0.45 and b1a{�0.1925, 0, 0.45}.



Table 1

Quasi-maximum likelihood estimates

LMGARCH(1, d, 0) LMGARCH(0, d, 1) LMGARCH(1, d, 1)

d̂ 0.2326 (0.0365) 0.1847 (0.0237) 0.3805 (0.0680)

/̂1 – �0.1260 (0.0306) 0.2742 (0.0471)

b̂1 0.1973 (0.0460) – 0.6114 (0.0620)

Figures in parentheses are asymptotic standard errors.

The parameter estimates correspond to those in Karanasos et al. (2004), p. 278.
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ba{�0.1925, 0, 0.45}, which is the range of b1 values allowed for by Proposition 1 in Conrad

and Haag (2005). Clearly, the impulse response functions for the three different values of b1 help to

show that persistence is decreasing in b1.
3.1. Illustrative example

As an empirical illustration, we examine the properties of the continuously compounded daily rate of

returns for the Deutschmark exchange rate vis-a-vis the US dollar over the period from 31/10/1983 to 31/

12/1992 (2394 observations in total). This data set was used by Karanasos et al. (2004). We compare the

cumulative IRF of LMGARCH(1, d, 0), LMGARCH(0, d, 1) and LMGARCH(1, d, 1) models. The

cumulative impulse response weights were evaluated using the formula in Eq. (5) and the quasi-

maximum likelihood parameter estimates, reported in Table 1, obtained under the assumption of

conditional Gaussianity.

Fig. 3 plots the cumulative IRF for lags up to 160. The cumulative impulse response weights of the

LMGARCH(1, d, 0) and LMGARCH(0,d,1) decrease much faster than that of the LMGARCH(1, d, 1).

The plots for the autocorrelation functions in Karanasos et al. (2004) show a very similar pattern.
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Fig. 3. Cumulative impulse response functions for LMGARCH models from Table 1.



C. Conrad, M. Karanasos / Economics Letters 90 (2006) 34–41 41
4. Conclusions

In this article we have obtained convenient representations for the cumulative impulse response

weights of a process with long memory conditional heteroscedasticity. Since the long memory GARCH

model includes the stable and integrated GARCH models as special cases our theoretical results provide

a useful tool which facilitates comparison between these major classes of GARCH models. It is worth

noting that our results on the impulse response function of the general LMGARCH(p, d, q) model

extend the results in Baillie et al. (1996) on the first order LMGARCH model. We should also mention

that the methodology used in this article can be applied to obtain the impulse response weights of more

sophisticated long memory GARCH models, e.g. ARFIMA, asymmetric power, and multivariate

LMGARCH models.
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