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Moments of the ARMA–EGARCH model
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Summary This paper considers the moment structure of the general ARMA–EGARCH
model. In particular, we derive the autocorrelation function of any positive integer power of
the squared errors. In addition, we obtain the autocorrelations of the squares of the observed
process and cross correlations between the levels and the squares of the observed process.
Finally, the practical implications of the results are illustrated empirically using daily data on
four East Asia Stock Indices.
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1. INTRODUCTION

One of the principal empirical tools used to model volatility in asset markets has been the
ARCH class of models. Following Engle’s (1982) ground-breaking idea, several formulations of
conditionally heteroscedastic models (e.g. GARCH, Fractional Integrated GARCH, Switching
GARCH, Component GARCH) have been introduced in the literature (see, for example,
the survey of Bollerslevet al. (1994)). These models form an immense ARCH family.
Many of the proposed GARCH models include a term that can capture correlation between
returns and conditional variance. Models with this feature are often termed asymmetric or
leverage volatility models.2 One of the earliest asymmetric GARCH models is the EGARCH
(exponential generalized ARCH) model of Nelson (1991). In contrast to the conventional
GARCH specification, which requires non-negative coefficients, the EGARCH model does not
impose non-negativity constraints on the parameter space since it models the logarithm of the
conditional variance.

Although the literature on the GARCH/EGARCH models is quite extensive, relatively few
papers have examined the moment structure of models where the conditional volatility is time
dependent. Karanasos (1999) and He and Teräsvirta (1999) derived the autocorrelations of the
squared errors for the GARCH(p, q) model, while Karanasos (2001) obtained the autocorrelation
function of the observed process for the ARMA-GARCH-in-mean model. Demos (2002) studied
the autocorrelation structure of a model that nests both the EGARCH and stochastic volatility
specifications. Heet al. (2002) considered the moment structure of the EGARCH(1,1) model.

1Corresponding address: Department of Economics and Related Studies, University of York, York, YO10 5DD, UK.
E-mail:mk16@york.ac.uk
2The asymmetric response of volatility to positive and negative shocks is well known in the finance literature as the

leverage effect of stock market returns (Black, 1976). Researchers have found that volatility tends to rise in response
to ‘bad news’ (excess returns lower than expected) and to fall in response to ‘good news’ (excess returns higher than
expected).
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Street, Malden, MA, 02148, USA.
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This paper focuses solely on the moment structure of the general ARMA(r, s)–
EGARCH(p, q) model. It would be useful to know the properties of the autocorrelation func-
tion of power-transformed observations when comparing the EGARCH model with the standard
GARCH model. In particular, possible differences in the moment structure of these models may
shed light on the success of the EGARCH model in applications.

We contribute to the aforementioned literature by deriving: (i) the autocorrelation function
of any positive integer power of the squared errors, (ii) the cross correlations between the levels
and the squares of both the observed process and the squared errors, and (iii) the autocorrelations
of the squared observations. To obtain the theoretical results and to carry out the estimation, we
assume that the innovations are drawn from either the normal, double exponential, or generalized
error distributions. To facilitate model identification, the results for the autocorrelation function
of the power-transformed errors can be applied so that properties of the observed data can be
compared with the theoretical properties of the models.

The derivation of the autocorrelations of the fitted power-transformed values and their
comparison with the corresponding sample equivalents will help the investigator (a) to decide
which is the most appropriate method of estimation (e.g. maximum likelihood estimation (MLE),
minimum distant estimator (MDE)) for a specific model, (b) to choose, for a given estimation
technique, the model (e.g. asymmetric power ARCH (APARCH), EGARCH) that best replicates
certain stylized facts of the data and, (c) in conjunction with the various model selection criteria,
to identify the optimal order of the chosen specification.

This paper is organized as follows. Section 2.1 presents the ARMA(r, s)–EGARCH(p, q)
process. Section 2.2 investigates the autocorrelation function of any positive integer power of the
squared errors for the EGARCH model. Section 2.3 derives the cross correlations between the
levels and the squares of the ARMA–EGARCH process. Section 2.4 provides the autocorrelation
function of the squared observations. Section 3 discusses the data and presents the empirical
results. In the conclusions we suggest future developments. Proofs are found in the appendices.

2. ARMA–EGARCH MODEL

2.1. ARMA(r, s)–EGARCH(p, q) process

Of the many different asymmetric GARCH specifications the EGARCH model has become one
of the most common. Here we examine the general ARMA(r, s)–EGARCH(p, q) model. The
stochastic process{yt } is assumed to be a causal ARMA(r, s) process satisfying

8(L)yt = b + 2(L)εt , (2.1a)

where

8(L) ≡

r∏
l=1

(1 − φl L), (2.1b)

2(L) ≡ 1 +

s∑
l=1

θl L
l . (2.1c)

Further, let{εt } be a real-valued time stochastic process generated by

εt = et h
1
2
t , (2.2)
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148 M. Karanasos and J. Kim

where{et } is a sequence of independent, identically distributed (i.i.d.) random variables with
mean zero and variance 1.ht is positive with probability one and is a measurable function of
6t−1, which in turn is the sigma-algebra generated by{εt−1, εt−2, . . .}. That is,ht denotes the
conditional variance of the errors{εt }, (εt |6t−1) ∼ (0, ht ). As regardsht , we assume that it
follows an EGARCH(p, q) process

B(L) ln(ht ) = ω + C(L)zt , (2.3a)

zt−l ≡ d
εt−l

√
ht−l

+ γ

[∣∣∣∣ εt−l
√

ht−l

∣∣∣∣− E

∣∣∣∣ εt−l
√

ht−l

∣∣∣∣] , (2.3b)

where

C(L) ≡

q∑
l=1

cl L
l , (2.3c)

B(L) ≡

p∏
l=1

(1 − βl L). (2.3d)

Various cases of the EGARCH(p, q) model have been applied by researchers. More specifically,
Donaldson and Kamstra (1997) found that the optimal EGARCH specification for the NIKKEI
stock index was a flexible 3,2. Huet al. (1997) found that in the pre-EMS period, the majority of
the European currencies followed an AR(5)–EGARCH(4,4) model.

2.2. Higher-order moments of the squared errors

Although the EGARCH model was introduced over a decade ago and has been widely used
in empirical applications, its statistical properties have only recently been examined. Engle
and Ng (1993) artificially nested the GARCH and EGARCH models, estimated this nested
specification, and then applied likelihood ratio (LR) tests (see also Huet al. (1997)). Hentschel
(1995) developed a family of asymmetric GARCH models that nests both the APARCH model
and the EGARCH model.

In this section we focus solely on the moment structure of the general EGARCH(p, q) model.

Assumption 1.All the roots of the autoregressive polynomial B(L) lie outside the unit circle
(covariance–stationarity condition).

Assumption 2.The polynomials C(L) and B(L) in (2.3c) and (2.3d) respectively, have no
common left factors other than unimodular ones (irreducibility condition). Moreover,βp, cq 6= 0.

In what follows we examine only the case where all the roots of the autoregressive polynomial
B(L) in (2.3d) are distinct. The following proposition establishes the lag-m autocorrelation of
{ε2k

t }, thekth power of the squared errors:ρ(ε2k
t , ε2k

t−m) ≡ Corr (ε2k
t , ε2k

t−m).

Proposition 1.Let Assumptions1and2hold. Suppose further thatE(e4k
t ) < ∞, E[ exp(2kzt )] <

∞ andE[e2k
t exp(kzt )] < ∞ ∀ t , for any finite positive scalar k. Then the autocorrelation of the

c© Royal Economic Society 2003
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kth power of the squared error{ε2k
t }, at lag m (m∈ N), has the form

ρ(ε2k
t , ε2k

t−m) = E(e2k
t )

{
m−2∏
i =0

[
E
(

exp
(
ξ0, k

2 ,i zt−i −1
))]

E
[
e2k

t−m exp
(
ξ0, k

2 ,m−1zt−m
)]

×

∞∏
i =0

[E(exp(ξm,k,i zt−m−i −1))] − E(e2k
t )

[
∞∏

i =0

[
E
(

exp
(
ξ0, k

2 ,i zt−i −1
))]]2


×

{
E(e4k

t )

∞∏
i =0

[E(exp(ξ0,k,i zt−i −1))] − [E(e2k
t )]2

×

[
∞∏

i =0

[
E
(

exp
(
ξ0, k

2 ,i zt−i −1
))]]2


−1

,

(2.4a)

where

ξm,k,i ≡ k
p∑

f =1

ζ f (λ f,m+i +1 + λ f,i +1), (2.4b)

with

λ f i ≡


i −1∑
n=0

ci −nβ
n
f , if i ≤ q,

λ f qβ
i −q
f , if i > q,

(2.4c)

ζ f ≡
β

p−1
f∏p

n6= f
n=1

(β f − βn)
. (2.4d)

Note that, when m= 1, the first product term in the right-hand side of(2.4a)is replaced by1.

Proof. See Appendix A. 2

Heet al. (2002) derived the autocorrelations of positive powers of the absolute-valued errors
of the EGARCH(1,1) model.

In the following theorem we provide the autocorrelations of thekth power of the squared
errors{ε2k

t } of the EGARCH(p, q) model.

Theorem 1.Let k be any finite positive integer. Then, when the distribution of{et } is generalized
error, the second moment and the autocorrelation function of{ε2k

t } are given by

E(ε4k
t ) = exp


2k

[
ω − γ

0
(

2
v

)
λ2

1
v

0
(

1
v

) ∑q
l=1 cl

]
∏p

f =1(1 − β f )

µ
(g)

4k B(g)

0,k , (2.5a)
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ρ(ε2k
t , ε2k

t−m) =

µ
(g)

2k

[
A(g)

m−1,k D(g)

m−1,k B(g)
m,k − µ

(g)

2k

(
B(g)

0, k
2

)2
]

[
µ

(g)

4k B(g)

0,k −

(
µ

(g)

2k B(g)

0, k
2

)2
] , (A(g)

0,k ≡ 1), (2.5b)

where

A(g)
m,k ≡

m−1∏
i =0

{
∞∑

τ=0

[
2

1
v λξ0, k

2 ,i

]τ [
(γ + d)τ + (γ − d)τ

] 0
(1+τ

v

)
20
( 1

v

)
0(1 + τ)

}
, (2.5c)

B(g)
m,k ≡

∞∏
i =0

{
∞∑

τ=0

[
2

1
v λξm,k,i

]τ
[(γ + d)τ + (γ − d)τ ]

0
(1+τ

v

)
20
( 1

v

)
0(1 + τ)

}
, (2.5d)

and

D(g)
m,k ≡ 2

2k
v λ2k

∞∑
τ=0

(
λ2

1
v ξ0, k

2 ,m

)τ

[(γ + d)τ + (γ − d)τ ]
0
(

τ+2k+1
v

)
20
( 1

v

)
0(1 + τ)

, (2.5e)

µ
(g)

2k ≡

[
0
( 1

v

)]k−1
0
(2k+1

v

)[
0
( 3

v

)]k , (2.5f)

with

λ ≡

{
2

−2
v 0

(
1

v

)[
0

(
3

v

)]−1
} 1

2

,

whereξm,k,i is defined in Proposition1, v are the degrees of freedom of the generalized error
distribution and0(·) is the Gamma function. Whenv > 1, the summations in(2.5c)–(2.5e)
are finite; whenv < 1, the three summations are finite if and only ifξ0, k

2 ,i γ + |ξ0, k
2 ,i d| ≤ 0,

ξm,k,i γ + |ξm,k,i d| ≤ 0 andξ0, k
2 ,mγ + |ξ0, k

2 ,md| ≤ 0, respectively(see Nelson,(1991)).

Proof. See Appendix A. 2

One of the most widely used models in financial economics to describe a time series,r t , of
the returns from some asset is the martingale process

r t ≡ εt = et

√
ht ,

whereet is i.i.d. (0, 1) andht is a GARCH type process.
In many applications in financial economics, it is not reasonable to assume the normality of

et , because of the substantial excess kurtosis present in the conditional density of returns. Hence
investigators often use MLE assuming some fat-tailed conditional density such as generalized
error. Therefore, when it comes to model identification, practitioners in this area may find the
results in Theorem 1 quite useful.

In the following proposition, when the innovations are drawn from the double exponential
distribution, we provide the autocorrelations of{ε2k

t } for any finite positive integerk.
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Proposition 2.When the distribution of{et } is double exponential, the autocorrelation function
of the kth power of the squared errors is given by

ρ(ε2k
t , ε2k

t−m) =

µ
(d)
2k

[
A(d)

m−1,k D(d)
m−1,k B(d)

m,k − µ
(d)
2k

(
B(d)

0, k
2

)2
]

[
µ

(d)
4k B(d)

0,k −

(
µ

(d)
2k B(d)

0, k
2

)2
] , (A(d)

0,k ≡ 1), (2.6a)

with

A(d)
m,k ≡

m−1∏
i =0

2 −
√

2ξ0, k
2 ,i γ

2 −
√

2ξ0,k,i γ + ξ2
0, k

2 ,i
(γ 2 − d2)

, (2.6b)

B(d)
m,k ≡

∞∏
i =0

2 −
√

2ξm,k,i γ

2 − 2
√

2ξm,k,i γ + ξ2
m,k,i (γ

2 − d2)
, (2.6c)

and

D(d)
m,k ≡ 2−(k+1)0(2k + 1)

×

{
F

[
2k + 1;

ξ0, k
2 ,m(γ + d)

√
2

]
+ F

[
2k + 1;

ξ0, k
2 ,m(γ − d)

√
2

]}
, (2.6d)

µ
(d)
2k ≡

0(2k + 1)

2k
, (2.6e)

where F(·) is the hypergeometric function(see Abadir,(1999)) and ξm,k,i is defined in
Proposition1. Expressions(2.6b)and (2.6c)hold if and only ifξ0, k

2 ,i γ + |ξ0, k
2 ,i d| <

√
2 and

ξm,k,i γ + |ξm,k,i d| <
√

2, respectively; the right-hand side of(2.6d) converges if and only if
ξ0, k

2 ,mγ + |ξ0, k
2 ,md| <

√
2 (see Nelson,(1991)).

Proof. See Appendix A. 2

Also note that the coefficients of the Wold representation of thekth power of the conditional
variance are needed for the computation of the autocorrelations of thekth power of the
squared errors (see Demos (2002)). In Appendix A (see equation (A.1)) we provide exact form
solutions which express the above coefficients in terms of the parameters of the moving average
polynomial and the roots of the autoregressive polynomial.

In the following proposition, when the errors are conditionally normal, we derive the
autocorrelation function of thekth power of the squared errors{ε2k

t }, k ∈ N.

Proposition 3.When the distribution of{et } is normal, the autocorrelations of the kth power of
the squared errors are given by

ρ(ε2k
t , ε2k

t−m) =

µ
(n)
2k

[
A(n)

m−1,k D(n)
m−1,k B(n)

m,k − µ
(n)
2k

(
B(n)

0, k
2

)2
]

[
µ

(n)
4k B(n)

0,k −

(
µ

(n)
2k B(n)

0, k
2

)2
] , (A(n)

0,k ≡ 1), (2.7a)
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with

A(n)
m,k ≡

m−1∏
i =0

exp

 (γ + d)2ξ2
0, k

2 ,i

2

 1

2

[
1 + exp

(
−2γ dξ2

0, k
2 ,i

)]
+

(γ + d)ξ0, k
2 ,i

√
2π

× F

1;
3

2
;

(γ + d)2ξ2
0, k

2 ,i

2

+

(γ − d)ξ0, k
2 ,i

√
2π

× F

1;
3

2
;

(γ − d)2ξ2
0, k

2 ,i

2

 ,

(2.7b)

B(n)
m,k ≡

∞∏
i =0

{
exp

(
(γ + d)2ξ2

m,k,i

2

)
1

2
[1 + exp(−2γ dξ2

m,k,i )] +
(γ + d)ξm,k,i

√
2π

× F

(
1;

3

2
;
(γ + d)2ξ2

m,k,i

2

)
+

(γ − d)ξm,k,i
√

2π
× F

(
1;

3

2
;
(γ − d)2ξ2

m,k,i

2

)}
,

(2.7c)

and

D(n)
m,k ≡

1

2

 ∂

∂
[
ξ0, k

2 ,m(γ − d)
]2k

exp

ξ2
0, k

2 ,m
(γ − d)2

2

[1 + 8

(
ξ0, k

2 ,m(γ − d)
√

2

)]
+

∂

∂
[
ξ0, k

2 ,m(γ + d)
]2k

exp

ξ2
0, k

2 ,m
(γ + d)2

2

[1 + 8

(
ξ0, k

2 ,m(γ + d)
√

2

)]
 ,

(2.7d)

µ
(n)
2k ≡

k∏
j =1

[2k − (2 j − 1)], (2.7e)

where∂ denotes partial derivative,8(·) is the error function of the standard normal distribution
andξm,k,i is given by(2.4b).

Proof. See Appendix A. 2

Several previous articles dealing with financial market data—e.g. Dacorognaet al. (1993),
Ding et al. (1993) and Mulleret al. (1997)—have commented on the behavior of the autocorre-
lation function of positive powers of the squared returns, and the desirability of having a model
which comes close to replicating certain stylized facts in the data (abstracted from Baillie and
Chung (2001)). In this respect, one can apply the results in this section to check whether the
EGARCH model can effectively replicate the observed pattern of autocorrelations of power-
transformed returns.

2.3. Dynamic asymmetry

In this section we examine the cross correlations between the levels and the squares of the
ARMA–EGARCH process in (2.1)–(2.3).
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Proposition 4.Let the distribution of{et } be generalized error and k a finite positive integer.
Suppose further thatE(e4k

t ) < ∞, E[e2k−1
t exp(kzt )] < ∞ andE[exp(2kzt )] < ∞ ∀ t . Then, if

Assumptions1 and2 hold, the cross correlations between the2kth and(2k − 1)th powers of{εt }

are given by

ρ(ε2k
t , ε2k−1

t−m ) =
µ

(g)

2k A(g)

m−1,k D(g)

m−1,(k)B
(g)

m,(k)√[
µ

(g)

4k B(g)

0,k − (B(g)

0, k
2
)2

]
µ

(g)

4k−2B(g)

0,( 4k−1
4 )

, (m ∈ N), (2.8a)

with

D(g)

m,(k) ≡ 2
2k−1

v λ2k−1
∞∑

τ=0

(
λ2

1
v ϕ0, 2k+1

4 ,m

)τ [
(γ + d)τ − (γ − d)τ

] 0
(

τ+2k
v

)
20
( 1

v

)
0(1 + τ)

,

(2.8b)

B(g)

m,(k) ≡

∞∏
i =0

{
∞∑

τ=0

[
2

1
v λϕm,k,i

]τ
[(γ + d)τ + (γ − d)τ ]

0
(1+τ

v

)
20
( 1

v

)
0(1 + τ)

}
, (2.8c)

and

ϕm,k,i ≡

p∑
f =1

(kλ f,m+i +1 + (k − 0.5)λ f,i +1)ζ f ,

where A(g)
m,k, B(g)

m,k andµ
(g)

4k are defined in Theorem1. Note that, when m is a negative integer,

ρ(ε2k
t , ε2k−1

t−m ) = 0.

The proof of Proposition 4 is similar to that of Theorem 1.
Demos (2002) derived the cross correlations between the levels and the squares of an obser-

ved series, under the assumption that the mean parameter is time varying and the conditional
variance follows a flexible parameterization which nests the autoregressive stochastic volatility
and the exponential GARCH specifications.3 In the same spirit, the following theorem obtains
the cross correlations between the levels and the squares of the ARMA(r, s)–EGARCH(p, q)
process in (2.1)–(2.3).

Assumption 3.All the roots of the autoregressive polynomial8(L) lie outside the unit circle.

Assumption 4.The polynomials8(L) and2(L) are left coprime.

Theorem 2.Let Assumptions1–4 hold. Suppose further thatE(e4
t ) < ∞, E[et exp(zt )] < ∞

andE[exp(2zt )] < ∞ ∀ t . Then the cross correlations between the squares and the levels of{yt }

are given by

ρ(y2
t , yt−m) =

(
η − 1

κ − 1

) 1
2

(Fm + Hm), (m ∈ N), (2.9a)

3Demos called this model time varying parameter generalized stochastic volatility in mean (TVP-GSV-M).
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where

Fm ≡

∑ j +m−1
i =0

∑
∞

j =0 δ2
i δ j ρ

(
ε2

t , εt−( j +m−i )
)

(∑
∞

l=0 δ2
l

)2 , (2.9b)

Hm ≡
2
∑

∞

i = j +m+1
∑

∞

j =0 δi δ j δ j +mρ
(
ε2

t , εt−(i − j −m)

)
(∑

∞

l=0 δ2
l

)2 . (2.9c)

Furthermore

ρ(yt , y2
t−m) =

(
η − 1

κ − 1

) 1
2

(Km + Lm) , (m ∈ N), (2.10a)

with

Km ≡

∑
∞

i = j +m+1
∑

∞

j =0 δi δ
2
j ρ
(
ε2

t , εt−(i − j −m)

)
(∑

∞

l=0 δ2
l

)2 , (2.10b)

Lm ≡
2
∑

∞

i = j +1
∑

∞

j =0 δi δ j δ j +mρ
(
ε2

t , εt−(i − j )
)

(∑
∞

l=0 δ2
l

)2 , (2.10c)

whereη andκ denote the kurtosis ofεt and yt respectively;δi is the i th coefficient in the Wold
representation of the ARMA(p, q) process in(2.1) (see equation(B.2a)). Note that when the
distribution of{et } is generalized error,ρ(ε2

t , εt−m) is given in Proposition4, andη, κ are given
in Proposition5 below.

Proof. See Appendix B. 2

Also observe that when there is no leverage effect (d = 0), the D(g)

m,(k) term in (2.8b) is
zero and hence the cross correlations between the levels and the squares of both the errors
and the observed process are zero. Demos (2002), for the TVP-GSV-M model, does not need
the asymmetric EGARCH effect to obtain dynamic asymmetry even under the assumption of
conditional normality.

2.4. Autocorrelations of the squared observations

In this section, we establish the autocorrelation properties of the squares of the ARMA–
EGARCH process in (2.1)–(2.3). Demos (2002) obtained the autocorrelation function of the
squares of the observed series for the TVP-GSV-M model.

The result presented in the following proposition, which is a special case of Theorem 2 in
Palma and Zevallos (2001), is highly relevant since it helps to identify the nature of the process.
By analyzing the autocorrelation function of the squared series it is possible to discard those
theoretical models which are incompatible with the data under study.

Proposition 5.Let Assumptions1–4 hold. Suppose further thatE(e4
t ) < ∞, E[exp(2zt )] < ∞

and E[e2
t exp(zt )] < ∞ ∀ t . Then, when the distribution of{εt } is generalized error, the

autocorrelation function of{y2
t } is given by

ρ(y2
t , y2

t−m) =
2[ρ(yt , yt−m)]2

κ − 1
+

(κ − 3)0m

(κ − 1)
+

η − 1

κ − 1
[Gm + 21m − 3100m], (m ∈ N),

(2.11a)
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where

0m ≡

∑
∞

i =0 δ2
i δ2

i +m∑
∞

l=0 δ4
l

, (2.11b)

1m ≡

∑
∞

i =0
∑

∞

j =0 δi δ j δi +mδ j +mρ
(
ε2

t , ε
2
t−(i − j )

)
(∑

∞

l=0 δ2
l

)2 , (2.11c)

Gm ≡

∑
∞

i =0
∑

∞

j =0 δ2
i δ2

j ρ
(
ε2

t , ε
2
t−(m+ j −i )

)
(∑

∞

l=0 δ2
l

)2 , (2.11d)

and

κ ≡ 3 −
2η
(∑

∞

i =0 δ4
i

)(∑
∞

l=0 δ2
l

)2 + 3(η − 1)10, (2.11e)

η ≡
E
(
ε4

t

)[
E
(
ε2

t
)]2 , (2.11f)

where ρ
(
ε2

t , ε
2
t−(i − j )

)
and E(ε4

t ) are given in Theorem1; δi is defined in Theorem2 and
ρ(yt , yt−m) is the lag-m autocorrelation of{yt }.

The significance of the above result is that it allows us to establish whether the ARMA–
EGARCH model in (2.1)–(2.3) is capable of reproducing key features exhibited by the data.
These features include, for example, time series with very little autocorrelation but with strongly
dependent squares. Another potential motivation for the derivation of the results in Theorem 2
is that the autocorrelations of the squared process in (2.1) can be used to estimate the ARMA
and GARCH parameters in (2.1) and (2.3) respectively. The approach is to use the MDE, which
estimates the parameters by minimizing the mahalanobis generalized distance of a vector of
sample autocorrelations from the corresponding population autocorrelations (see Baillie and
Chung (2001)).

The following proposition provides the lag-m autocorrelation of{hk
t }, k ∈ R+.

Proposition 6.Let Assumptions1 and2 hold. Suppose further thatE[exp(2kzt )] < ∞ ∀ t . Then,
when the distribution of{et } is generalized error, the autocorrelation function of the kth power
of the conditional variance is given by(2.5b)where now the terms D(g) andµ(g) are replaced
by1, and A(g)

m−1,k is replaced by A(g)
m,k.

Proof. See Appendix B. 2

Demos (2002) derived the autocorrelations of thekth power of the conditional variance for
the GSV model under the assumption of conditional normality.

Next, consider a processyt governed by

yt = E(yt | 6t−1) + εt .

Further, suppose that the conditional mean ofyt , given information through timet − 1, is

E(yt | 6t−1) = δhk
t , (k > 0).
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The results in Proposition 6 can be used to derive the autocorrelation function of the above
process. Mean equations of this form have been widely used in empirical studies of time-varying
risk premia. Demos (2002), in the TVP-GSV-M model, allowed the conditional variance to affect
the mean with a possibly time varying coefficient.

3. EMPIRICAL RESULTS

3.1. Data

We use four daily stock indices: the Korean stock price index (KOSPI), the Japanese Nikkei
index (NIKKEI) and the Taiwanese Se weighted index (SE) for the period 1980:01–1997:04,
and the Singaporean Straits Times price index (ST) for the period 1985:01–1997:04. The daily
observations for each country are extracted from the ‘Datastream’ database. In each case, the
index return is the first difference of log prices without dividends.

3.2. Estimation results

In order to carry out our analysis of stock returns, we have to select a form for the mean equation.
Scholes and Williams (1977), Dinget al. (1993), and Ding and Granger (1996) suggested an
MA(1) specification for the mean. We therefore model the stock returns as MA(1) processes.
The MA(1) model is

yt = b + (1 + θ L)εt . (3.1)

To select our ‘best’ EGARCH specification,4 we begin with high order models (e.g.,
EGARCH(4,4)) and follow a ‘general to specific’ modelling approach to fit the data. The general
EGARCH(p, q) specification that we estimate is

εt = et h
1
2
t , et ∼ i .i .d. (0, 1), (3.2a)

p∏
i =1

(1 − βi L) ln(ht ) = ω +

q∑
i =1

ci (|et−i | + di et−i ). (3.2b)

We estimate EGARCH models of order up to 4,4 for the returns on the four stock indices using
three alternative distributions: the normal, double exponential and generalized error. The Akaike
information criterion (AIC) (not reported here) chose high order EGARCH specifications for all
indices.5 In addition, we use the LR test to show the performance of the high order models over
the EGARCH(1,1) model. The tests (not reported here) show the dominance of the high order
models.

For all the stock returns, parameter estimation is conducted jointly on an MA(1) mean
specification6 and the appropriate EGARCH model for the conditional variance. Table 1 reports
the results for the period 1980–1997 and presents parameter estimates along witht-statistics.

4We define ‘best’ as the specification chosen by the AIC.
5In contrast, in most of the cases, the Schwarz information criterion (SIC) (not reported here) chose the EGARCH(1,1)

model.
6The only exceptions are the Taiwanese Se weighted index, where the white noise specification is used for the

generalized error and double exponential distributions, and the Japanese index where the white noise specification is
used when the errors are drawn from the double exponential distribution.
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For two out of the four indices the AIC is minimized when the double exponential distribution
is used, while for the KOSPI and ST indices, it chooses the generalized error distribution. The
parametersb andθ are the intercept and MA(1) coefficient respectively for the return equation
(3.1). The remaining parameters are from the EGARCH model (3.2b). Not surprisingly, for all the
EGARCH specifications, most of the moving average, leverage and autoregressive parameters are
significantly different from zero. The estimated values of degrees of freedom in the generalized
error distribution, for the KOSPI and ST indices, are 1.07 and 1.13 respectively. Researchers
have found that nontrading periods contribute much less than do trading periods to market
variance (see Nelson (1991)). Therefore, the selected specifications reported in Table 1 have
been reestimated taking into account the number of nontrading days between dayt and t − 1.
That isω in (3.2b) is replaced byωt = ω + ln(1 + δNt ). In all cases the estimatedδ’s were
statistically significant and less than unity (the results for these cases are not reported here).

For all four indices, parameter estimates are consistent with those generally reported in
the literature. The roots of the autoregressive parts of the conditional variances are reported
in the first column of Table 2. In particular, for the KOSPI index volatility appears nearly
integrated (the values of the two complex roots are−0.72 ± 0.68i ). For the ST index there
is one positive and one negative root with values 0.91 and−0.29 respectively. Fiorentini and
Sentana (1998) used a measure of persistence of shocks for stationary processes based on the
impulse response function, which captures the importance of the deviations of a series from its
unperturbed path following a single shock. Accordingly, the persistence of a shock tozt on ln(ht )

is P∞[ln(ht )|zt ] =
∑

∞

l=1
∑p

f =1(ζ f λ f l )
2, whereζ f andλ f l are defined in Proposition 1. The

algebra of this measure is simple and its interpretation straightforward since it is the ratio of the
variance of ln(ht ) to the variance ofzt . The second column of Table 2 reports a measure for the
persistence of a (positive) shock toet on ln(ht ). Most noteworthy is the observation that in all
EGARCH models, the product of the moving average parameter and the leverage coefficient for
the first lagged error is negative (see column 3, Table 2). In addition, the sum of these products,
over all the lagged errors, is also negative (see column 4, Table 2).

3.3. Autocorrelation structure of the estimated models

For each of the four indices, Figure 1 plots the estimated theoretical autocorrelations7 of the
squared observations of the ‘best’ EGARCH model. Specifically, for Korea and Singapore
we use the EGARCH(3,3) and EGARCH(2,1) specifications respectively, with innovations
that are drawn from the generalized error distribution. Further, for Japan and Taiwan we use
the EGARCH(1,3) process with the double exponential distribution. Note that all the ‘best’
EGARCH models have been estimated without the inclusion of the no-trade dummy (see
Figure 1).

The estimated autoregressive coefficient for the SE index is 0.983. As a result the estimated
autocorrelations of the squared observations start at 0.1357 for lag one and decrease very slowly.
Observe that the autocorrelation at lag 10, 20 and 30 is 0.1068, 0.0824 and 0.0646 respectively.
As with the SE index the ‘best’ EGARCH model for the NIKKEI index is of order 1,3 and has
errors that are drawn from the double exponential distribution, but the estimated autoregressive
coefficient is lower (0.973). Thus, although the estimated autocorrelations start at 0.1654 for
lag one they decrease more rapidly. The autocorrelation at lag 10, 20 and 30 is 0.0767, 0.0499

7We used Maple to evaluate the autocorrelations. The codes are available from the authors on request.
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Table 1.Parameter estimates for the ‘best’ EGARCH model.

KOSPI
MA(1)-EGARCH(3,3)

(GEN ERROR)

NIKKEI
WN-EGARCH(1,3)

(DOUBLE EXP)

SE
WN-EGARCH(1,3)

(DOUBLE EXP)

ST
MA(1)-EGARCH(2,1)

(GEN ERROR)

b −0.0002
(1.32)

6E−10
(0.00)

7E−08
(0.00)

0.0002
(1.15)

θ 0.059
(4.57)

— — 0.200
(11.99)

ω −2.180
(9.88)

−0.384
(7.07)

−0.273
(6.85)

−1.294
(7.16)

c1 0.258
(12.93)

0.193
(5.38)

0.145
(3.82)

0.349
(11.05)

c2 0.374
(12.90)

0.149
(2.95)

0.105
(2.06)

—

c3 0.254
(12.66)

−0.146
(3.37)

−0.065
(1.65)

—

β∗
1 −0.508

(84.56)
0.973

(206.00)
0.983

(260.60)
0.620
(5.89)

β∗
2 0.387

(40.51)
— — 0.267

(2.67)

β∗
3 0.949

(157.92)
— — —

d1 −0.124
(2.31)

−1.000
(3.85)

−0.713
(2.88)

−0.196
(3.29)

d2 −0.099
(1.87)

0.050
(1.84)

0.118
(3.18)

—

d3 −0.122
(2.28)

−0.637
(2.29)

−1.000
(1.24)

—

υ 1.076
{0.02}

1 1 1.134
{0.02}

AIC −28073 −30065 −25613 −20859

LL 14049 15041 12815 10438

For each of the four stock indices, Table 1 reports parameter estimates for the ‘best’ EGARCH
model. The general MA(1)–EGARCH(3,3) model is

yt = b + (1 + θ L)εt ,

εt =

√
ht et , et ∼ i .i .d. (0, 1),1 −

3∑
j =1

β∗
j L j

 ln(ht ) = ω +

3∑
i =1

ci (di et−i + |et−i |).

The numbers in parentheses aret-statistics. LL is the maximum log likelihood value.υ are
the degrees of freedom of the generalized error distribution. Standard errors are reported in
brackets.

and 0.0340 respectively. For the KOSPI and ST indices the distribution of the innovations is
generalized error. However the value of the highest root of the autoregressive polynomial for
the ST index is 0.913. Therefore, although the autocorrelations start very high, at 0.2257 for lag
one, they decrease very quickly. For the KOSPI index, the autocorrelation at lag 10, 20 and 30
is 0.0824, 0.0445 and 0.0261, respectively, whereas for the ST index it is 0.0499, 0.0170 and
0.0064 respectively.

It is useful to uncover the properties of the autocorrelation function of the squared obser-
vations, when comparing the EGARCH model with the standard GARCH model family. Pos-
sible differences in the moment structure of these models may shed light on the success of the
EGARCH model in applications. To facilitate model identification, the results for the autocorrela-
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Table 2.Persistence.

β j Persistence c1d1

q∑
j =1

c j d j

KOSPI (GEN ERROR)
MA(1)-EGARCH(3,3)

β1 = 0.95

β2 = −0.72+ 0.68i

β3 = −0.72− 0.68i

0.554 −0.032 −0.100

NIKKEI (DOUBLE EXP)
WN-EGARCH(1,3)

β1 = 0.973 0.209 −0.193 −0.092

SE (DOUBLE EXP)
WN-EGARCH(1,3)

β1 = 0.983 0.745 −0.103 −0.026

ST (GEN ERROR)
MA(1)−EGARCH(2,1)

β1 = −0.29

β2 = 0.91
0.298 −0.068 −0.068

The second column of this table reports a measure for the persistence of a (positive) shock to
et on ln(ht ).

tions of the power-transformed observations can be applied so that the properties of the observed
data can be compared with the theoretical properties of the models. For each of the four stock
indices, Figure 1 plots the sample autocorrelations of the squared observations. It also plots the
estimated theoretical autocorrelations of the squared observations of the ‘best’ EGARCH speci-
fication and of the GARCH(1,1) model with conditionally normal errors.8 For all three indices,
the autocorrelations of the EGARCH model are closer to the sample autocorrelations than those
of the GARCH model.9 Note that for the KOSPI index, the autocorrelation of the squared obser-
vations, at lag 2, 4 and 20 is equal to the corresponding sample autocorrelation. For the ST
index, Figure 1(d) plots the autocorrelations of the squared errors of the GARCH(1,1) model
with innovations drawn from the generalized error distribution.10 Observe that these autocorre-
lations are much higher than those obtained with conditionally normal errors. For the SE index
it can be seen that the fitted squared returns from the GARCH model generally have autocorrela-
tions that are substantially too high when compared with the corresponding sample equivalents.
In fact, they generally exceed the corresponding sample autocorrelations by a factor of two. In
contrast, the EGARCH specification does a good job of replicating the observed pattern of auto-
correlations of the squared returns. It generates a model where the autocorrelations of the fitted
squared values are relatively ‘close’ to those of the population equivalents. The autocorrelation
of the squared returns, at lag 11, 12, 16 and 26 is equal to the corresponding sample autocor-
relation. In other words, the EGARCH model can more accurately reproduce the nature of the
sample autocorrelations of squared returns than the GARCH model. Finally, for the four selected
specifications, when the no-trade dummy enters in the conditional variance, Figure 2 plots the

8The GARCH(1,1) specification that we estimate isht = ω + aε2
t−1 + βht−1. In order to obtain the estimated

theoretical autocorrelations of the squared errors of the above model we use the following formula

ρ(ε2
t , ε2

t−k) =
(a + β)k{1 + β2

− β[(a + β) + (a + β)−1
]}

1 + β2 − 2β(a + β)
.

9We also estimate a GARCH(1,1) model with conditionally normal errors for the NIKKEI index. The sum of the ARCH
and GARCH coefficients is greater than one.
10For all indices, we also estimated GARCH(1,1) models with innovations drawn from either the double exponential
or t distributions. In all cases, the condition for the existence of either the first moment (a + β < 1) or the second one
(β2

+ 2aβ + E(e4
t )a2 < 1) was violated.
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Figure 1.For each of the four indices, Figure 1 plots the sample autocorrelations of the squared observations
(solid line). It also plots the estimated theoretical autocorrelations (ETA) of the squared observations for
the ‘best’ EGARCH specification chosen by AIC (dark columns) and by SIC (clear columns). All the
‘best’ EGARCH models have been estimated without the inclusion of the no-trade dummy. Dotted lines
represent the ETA of the squared observations for the GARCH(1,1) model with conditionally normal
errors. Moreover, for the ST index, the grey line represents the ETA of the squared observations for the
GARCH(1,1) model with errors drawn from the generalized error distribution. Finally, note that for the
Nikkei index both information criteria chose the EGARCH(1,3) specification.

estimated theoretical autocorrelations of the squared observations and their corresponding sample
equivalents.

4. CONCLUSIONS

In this paper we obtained a complete characterization of the moment structure of the general
ARMA(r, s)–EGARCH(p, q) model. In particular, we provided the autocorrelation function of
any positive integer power of the squared errors. Additionally, we derived the cross correlations
between the levels and squares of the observed process. To obtain our results, we assumed that the
error term is drawn from either the normal, double exponential or generalized error distributions.
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Figure 2.For each of the four indices, Figure 2 plots the sample autocorrelations of the squared observations
(solid line). It also plots the ETA of the squared observations for the specifications used in Figure 1.
All these EGARCH models have now been estimated with the inclusion of the no-trade dummy. Dotted
lines represent the ETA of the squared observations for the GARCH(1,1) model with conditionally normal
errors. Moreover, for the ST index, the grey line represents the ETA of the squared observations for the
GARCH(1,1) model with errors drawn from the generalized error distribution.

The results of the paper can be used to compare the EGARCH model with the standard GARCH
model or the APARCH model. They reveal certain differences in the moment structure between
these models. Further, to facilitate model identification, the results for the autocorrelations of the
squared observations can be applied so that the properties of the observed data can be compared
with the theoretical properties of the models. Finally, the techniques used in this paper can be
employed to obtain the moments of more complex EGARCH models, e.g. EGARCH-in-mean,
the Component EGARCH, and the Fractional Integrated EGARCH models. The derivation of
the moment structure of these models is left for future research.
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APPENDIX A

Proof (Proposition 1).Using the Wold representation of an ARMA model (see Karanasos (2001)), and the
EGARCH(p,q) conditional variance (2.3), we have

ln(ht ) =
ω∏p

f =1(1 − β f )
+

∞∑
l=1

p∑
f =1

ζ f λ f l zt−l ,

whereλ f l andζ f are defined in (2.4c) and (2.4d) respectively. From the above equation it follows that

hk
t = exp

(
ωk∏p

f =1(1 − β f )

)
× exp

k
∞∑

l=1

p∑
f =1

ζ f λ f l zt−l

 , (A.1)

or

hk
t−m = exp

(
ωk∏p

f =1(1 − β f )

)
× exp

k
∞∑

l=1

p∑
f =1

ζ f λ f l zt−m−l

 . (A.2)

From (A.1) and (A.2), it follows that the expected value ofε2k
t ε2k

t−m is

E(ε2k
t ε2k

t−m) = E(e2k
t hk

t e2k
t−mhk

t−m) = exp

(
2ωk∏p

f =1(1 − β f )

)
× E(e2k

t )

×E

exp

k
m−1∑
i =1

p∑
f =1

ζ f λ f i zt−i

× E

e2k
t−m exp

k
p∑

f =1

ζ f λ f mzt−m


×E

exp

k
∞∑

i =1

p∑
f =1

(λ f,m+i + λ f i )ζ f zt−i −m

 , (m > 0), (A.3)

E
(
ε4k
t

)
= exp

(
2ωk∏p

f =1(1 − β f )

)
× E

(
e4k
t

)

×E

exp

2k
∞∑

i =1

p∑
f =1

λ f i ζ f zt−i

 . (A.4)

The proof of Proposition 1 is completed by inserting (A.3) and (A.4) intoρ(ε2k
t , ε2k

t−m) =

E(ε2k
t ,ε2k

t−m)−[E(ε2k
t )]2

Var(ε2k
t )

. 2
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Proof (Theorem 1).When the distribution of the innovations is generalized error, the expected value of
ek
t exp(zt b) is given by expression A1.5 in Theorem A1.2 (Nelson, 1991):

E[ek
t exp(zt b)] = exp

−bγ
0
(

2
v

)
λ2

1
v

0
(

1
v

)
2

k
v λk

×

∞∑
τ=0

(
λ2

1
v b
)τ

[(γ + d)τ + (−1)k(γ − d)τ ]

0
(

τ+k+1
v

)
20
(

1
v

)
0(1 + τ)

, (A.5)

wherek is a finite non-negative integer andb is a real scalar (k, b < ∞). Whenv > 1, the above summation
is finite, whereas whenv < 1, the summation is finite if and only ifbγ +|bd| ≤ 0. Using expressions (A.3),
(A.4) and (A.5), after some algebra, gives (2.5). 2

Proof (Proposition 2).Equation (A.5), forv = 1, gives

E[ek
t exp(zt b)] = 2

−(k+2)
2 exp

(
−bγ

1
√

2

)
0(k + 1)

×

{
F

[
k + 1;

b(γ + d)
√

2

]
+ (−1)k F

[
k + 1;

b(γ − d)
√

2

]}
. (A.6)

The right-hand side of the above expression converges if and only ifbγ +|bd| <
√

2. In addition, the above
equation, fork = 0, gives

E[exp(zt b)] =
1

2
exp

(
−bγ

1
√

2

)
2 −

√
2bγ

1 −
√

2bγ +
b2(γ 2−d2)

2

. (A.7)

When the conditional distribution of the errors is double exponential, combining equations (A.3), (A.4),
(A.6) and (A.7), after some algebra, yields equation (2.6). 2

Proof (Proposition 3).When the errors are conditionally normal, we use formula 2.3.15 #7 in Prudnikov
et al. (1992, Volume 1), to obtain the expected value ofek

t exp(zt b):

E[ek
t exp(zt b)] =

{
(−1)k

∂

∂[b(γ − d)]k

{
exp

(
b2(γ − d)2

2

)[
1 + 8

(
b(γ − d)

√
2

)]}

+
∂

∂[b(γ + d)]k

{
exp

(
b2(γ + d)2

2

)[
1 + 8

(
b(γ + d)

√
2

)]}} exp

(
−γ b

√
2
π

)
2

,

(A.8)

where8(·) is the error function (formula 8.250 #1 in Gradshteyn and Ryzhik (1994)). Note that the above
expression is finite. Using formula 8.253 # 1 in Gradshteyn and Ryzhik (1994), equation (A.8) , fork = 0,
gives

E[exp(zt b)] = exp

(
−γ b

√
2

π

){
exp

(
b2(γ + d)2

2

)
1

2
[1 + exp(−2γ db2)]

+
b(γ + d)

√
2π

F

(
1;

3

2
;

b2(γ + d)2

2

)
+

b(γ − d)
√

2π
F

(
1;

3

2
;

b2(γ − d)2

2

)}
, (A.9)

where F(·) is the hypergeometric function (for an alternative derivation see Theorem A1.1 in Nelson
(1991)). Combining (A.3), (A.4), (A.8) and (A.9), after some algebra, yields equation (2.7). 2
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APPENDIX B

Proof (Theorem 2).E(y2
t , yt−m) can be written as

E(y2
t , yt−m) =

∞∑
i =0

∞∑
j =0

∞∑
l=0

δi δ j δl+mE(εt−i εt− j εt−l−m), (B.1)

whereδi , when the roots of the autoregressive polynomial8(L) in (2.1b) are distinct, is given by

δl ≡

r∑
f =1

π f s f l , (δ0 ≡ 1), (B.2a)

with

π f ≡

φr −1
f∏r

n6= f
n=1

(φ f − φn)
, (B.2b)

s f l ≡


l−1∑
n=0

θl−nφn
f , if l ≤ s,

s f sφ
l−s
f , if l > s.

(B.2c)

Next, note that

E(εt−i εt− j εt−l−m) =


E(ε2

t εt − (l + m− i )), if i = j < l + m,

E(ε2
t εt − ( j − l − m), if i = l + m, j > i ,

E(ε2
t εt − (i − l − m)), if j = l + m, i > j ,

0 otherwise.

(B.3)

and

E(ε2
t εt−m) = ρ(ε2

t εt−m)(η − 1)
1
2 [E(ε2

t )]
3
2 (m > 0), (B.4)

whereη is the kurtosis ofεt .
Substituting (B.3) and (B.4) into (B.1) yields

E(y2
t , yt−m) = (η − 1)

1
2 [E(ε2

t )]
3
2

×


j +m−1∑

i =0

∞∑
j =0

δ2
i δ j ρ(ε2

t εt−( j +m−i )) + 2
∞∑

i = j +m+1

∞∑
j =0

δi δ j δ j +mρ(ε2
t εt−(i − j −m))

 .

(B.5)

Further, we have (see Palma and Zevallos (2001))

Var(y2
t )

[E(ε2
t )]2

(∑
∞
l=0 δ2

l

) = κ − 1, (B.6)

where κ is given in (2.11e). The proof of (2.9a) is completed by inserting (B.5) and (B.6) into

ρ(y2
t , yt−m) =

E(y2
t ,yt−m)√

Var(y2
t )E(y2

t )
. The proof of (2.10a) is like that of (2.9a). 2
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Proof (Proposition 6).Multiplying (A.1) by (A.2) and taking expectations yields

E(hk
t hk

t−m) = exp

(
2ωk∏p

f =1(1 − β f )

)
× E

exp

k
m∑

i =1

p∑
f =1

ζ f λ f i zt−i


×E

exp

k
∞∑

i =1

p∑
f =1

(λ f,m+i + λ f i )ζ f zt−i −m

 . (B.7)

Additionally, from (A.1) it follows that

E(hk
t ) = exp

(
ωk∏p

f =1(1 − β f )

)
× E

exp

k
∞∑

i =1

p∑
f =1

λ f i ζ f zt−i

 . (B.8)

Using equations (B.7), (B.8) and (A.5) fork = 0, after some algebra, yields the result in Proposition 6.2
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