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1 Financial Time Series and Regression Analysis (Econometric

Theory Review)

� In many �nancial applications the relationship between two time series is of major interest

The market model is an example the relates the return of an individual stock to the return of a

market index

The term structure of interest rates is another is another example in which the time evolution

of the relationship between interest rates with di¤erent maturities is investigated.

A simple bivariate regression model with time series errors is

(1) yt = �+ �xt + ut , t = 1; 2; :::; T

where yt and xt are two time series and ut denotes the error term

� Simple estimation and tests of the CAPM can be conducted using an equation of the form of (1),

but Arbitrage Pricing Theory (APT) does not pre-suppose that there is only a single factor a¤ecting

stock returns.

Stock returns might be purported to depend on their sensitivity to unexpected changes in:

(1) in�ation

(2) the di¤erences in returns on short- and long-dated bonds

(3) industrial production

(4) default risks.

� It is very easy to generalise the simple model to one with k regressors (independent variables).

Equation (1) becomes

(2) yt = �1 + �2x2t + �3x3t + :::+ �kxkt + ut , t = 1; 2; :::; T

� So the variables x2t; x3t; :::; xkt are a set of k�1 explanatory variables which are thought to in�uence

y, and the coe¢ cient estimates �1; �2; :::; �k are the parameters which quantify the e¤ect of each

of these explanatory variables on y.

� Each coe¢ cient measures the average change in the dependent variable per unit change in a given

independent variable, holding all other independent variables constant at their average values.
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Testing single hypotheses: the t-test

� Recall that the formula under a test of signi�cance approach to hypothesis testing using a t-test

for the slope parameter was

(3) test statistic = �̂��
SE(�̂)

with the obvious adjustments to test a hypothesis about the intercept

� If the test is H0 : � = 0 , H1 : � 6= 0,

i.e. a test that the population parameter is zero against a two-sided alternative, this is known as a

t-ratio test.

Since � = 0, the expression in (3) reduces to

test statistic = �̂

SE(�̂)

� Thus the ratio of the coe¢ cient to its standard error is known as the t-ratio or t-statistic and it

behaves as a t-distributed variable with T � 2 degrees of freedom

Testing multiple hypotheses: the F-test

� If you wanted to determine whether a restriction that the coe¢ cient values for �2 and �3 are both

unity could be imposed, so that an increase in either one of the two variables x2 or x3 would cause

y to rise by one unit?

� Under the F -test framework, two regressions are required, known as the unrestricted and the

restricted regressions.

The unrestricted regression is the one in which the coe¢ cients are freely determined by the data

The restricted regression is the one in which the coe¢ cients are restricted, i.e. the restrictions are

imposed on some ��s.

� Thus the F -test approach to hypothesis testing is also termed restricted least squares, for obvious

reasons.

The residual sums of squares from each regression are determined, and the two residual sums of

squares are �compared�in the test statistic
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� The F -test statistic for testing multiple hypotheses about the coe¢ cient estimates is given by

� (3) test statistic = RRSS�URSS
URSS � T�k

m

� where

URSS = residual sum of squares from unrestricted regression

RRSS = residual sum of squares from restricted regression

m = number of restrictions

T = number of observations

k = number of regressors in unrestricted regression

� Recall that OLS estimation involved choosing the model that minimised the residual sum of squares,

with no constraints imposed.

� If the residual sum of squares increased not much after the restrictions were imposed

! it would be concluded that the restrictions were supported by the data.

� If the residual sum of squares increased considerably after the restrictions were imposed

! it would be concluded that the restrictions were not supported by the data (hypothesis should

be rejected)

� The test statistic follows the F -distribution under the null hypothesis

The value of the degrees of freedom parameters for the F -test are F (m;T � k)

m is the number of restrictions imposed on the model

(T � k), the number of observations less the number of regressors for the unrestricted regression

� The appropriate critical value will be in column m, row (T � k) of the F -distribution tables.
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Assumptions of the model

� Recall that �ve assumptions were made relating to the Classical Linear Regression Model (CLRM).

These were required to show that the estimation technique, ordinary least squares (OLS), had a

number of desirable properties, and also so that hypothesis tests regarding the coe¢ cient estimates

could validly be conducted.

Speci�cally, it was assumed that

(1) E(ut) = 0

The �rst assumption required is that the average value of the errors is zero

If a constant term is included in the regression equation, this assumption will never be violated.

(2) Var(ut) = �2 <1

This assumption is that the variance of the errors is constant, �2 �it is also known as the assumption

of homoscedasticity.

If the errors do not have a constant variance, they are said to be heteroscedastic

White�s (1980) general test is used to detect heteroscedasticity.

� What are the consequences of using OLS in the presence of heteroscedasticity?

OLS estimators will still give unbiased (and also consistent) coe¢ cient estimates, but they are no

longer BLUE (standard error estimates could be wrong)

In general, the OLS standard errors will be too large for the intercept when the errors are het-

eroscedastic

The e¤ect of heteroscedasticity on the slope standard errors will depend on its form.

If the variance of the errors is positively related to the square of an explanatory variable (which is

often the case in practice), the OLS standard error for the slope will be too low.

The OLS slope standard errors will be too low when the variance of the errors is positively related

to an explanatory variable

The OLS slope standard errors will be too big when the variance of the errors is inversely related

to an explanatory variable
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� How do we deal with heteroscedasticity?

1. If the form (i.e. the cause) of the heteroscedasticity is known, then an alternative estimation

method which takes this into account is called the generalised least squares (GLS)

2. Transforming the variables into logs or reducing by some other measure of �size�has the e¤ect

of re-scaling the data to �pull in�extreme observations.

3. Using heteroscedasticity-consistent standard error estimates. Following White (1980) if the

variance of the errors is positively related to the square of an explanatory variable the standard

errors for the slope coe¢ cients are increased relative to the usual OLS standard errors

! this would make hypothesis testing more �conservative�, so that more evidence would be required

against the null hypothesis before it would be rejected.

(3) Cov(ui; uj) = 0 for i 6= j

Assumption 3 is that the covariance between the error terms (or cross-sectionally, for that type of

data) over time is zero.

If the errors are not uncorrelated with one another, it would be stated that they are �autocorrelated�

or �serially correlated�.

In order to test for autocorrelation, it is necessary to investigate whether any relationships exist

between the current value of ût , and any of its previous values, ût�1, ût�2, ...

Durbin�Watson (DW) is a test for �rst order autocorrelation �i.e. it tests only for a relationship

between an error and its immediately previous value

Breusch�Godfrey test is a more general test for autocorrelation up to the r-th order.

� What are the consequences of ignoring autocorrelation if it is present?

OLS coe¢ cient estimates are still unbiased, but they are ine¢ cient, i.e. they are not BLUE

(standard error estimates could be wrong)

In the case of positive serial correlation in the residuals, the OLS standard error estimates will

understate their true variability.

! this would lead to an increase in the probability of type I error �that is, a tendency to reject

the null hypothesis sometimes when it is correct.

Furthermore, R2 is likely to be in�ated relative to its �correct�value if autocorrelation is present

but ignored, since residual autocorrelation will lead to an underestimate of the true error variance

(for positive autocorrelation)
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� How do we deal with autocorrelation?

1. If the form of the autocorrelation is known, it would be possible to use a GLS procedure.

Cochrane�Orcutt procedure works by assuming a particular form for the structure of the autocor-

relation.

2. An alternative approach to dealing with residual autocorrelation would be to use appropriately

modi�ed standard error estimates. Newey and West (1987) develop a variance�covariance estimator

that is consistent in the presence of both heteroscedasticity and autocorrelation

3. Sargan, Hendry and Mizon, suggests that serial correlation in the errors arises as a consequence of

�misspeci�ed dynamics�. Autocorrelation in the residuals is often caused by a dynamic structure

in y that has not been modelled and so has not been captured in the �tted values.

What is required is a dynamic model that allows for this extra structure in y.

Models containing lags of the explanatory variables (but no lags of the explained variable) are

known as distributed lag model

Speci�cations with lags of both explanatory and explained variables are known as autoregressive

distributed lag (ADL) models

The use of lagged variables in a regression model does, however, bring with it additional problems:

a. Inclusion of lagged values of the dependent variable violates the assumption that the explanatory

variables are non-stochastic (assumption 4 of the CLRM)

b. What does an equation with a large number of lags actually mean?

(4) Cov(ut; xt) = 0

The OLS estimator is consistent and unbiased in the presence of stochastic regressors, provided

that the regressors are not correlated with the error term of the estimated equation

However, if one or more of the explanatory variables is contemporaneously correlated with the

disturbance term, the OLS estimator will not even be consistent.

This results from the estimator assigning explanatory power to the variables where in reality it is

arising from the correlation between the error term and yt .
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(5) ut � N(0; �2)

Recall that the normality assumption is required in order to conduct single or joint hypothesis

tests about the model parameters

One of the most commonly applied tests for normality is the Bera�Jarque (hereafter BJ) test.

BJ uses the property of a normally distributed random variable that the entire distribution is

characterised by the �rst two moments �the mean and the variance.

The standardised third and fourth moments of a distribution are known as its skewness and kurtosis.

Skewness measures the extent to which a distribution is not symmetric about its mean value

Kurtosis measures how fat the tails of the distribution are.

A normal distribution is not skewed and is de�ned to have a coe¢ cient of kurtosis of 3.

It is possible to de�ne a coe¢ cient of excess kurtosis, equal to the coe¢ cient of kurtosis minus 3

! a normal distribution will thus have a coe¢ cient of excess kurtosis of zero.

Bera and Jarque (1981) formalise these ideas by testing whether the coe¢ cient of skewness and the

coe¢ cient of excess kurtosis are jointly zero.

� What should be done if evidence of non-normality is found?

For sample sizes that are su¢ ciently large, appealing to a central limit theorem, the test statistics

will asymptotically follow the appropriate distributions even in the absence of error normality.

In economic or �nancial modelling, it is quite often the case that one or two very extreme residuals

cause a rejection of the normality assumption.

Such observations would appear in the tails of the distribution, and would therefore lead u4, which

enters into the de�nition of kurtosis, to be very large.

Such observations that do not �t in with the pattern of the remainder of the data are known as

outliers.

If this is the case, one way to improve the chances of error normality is to use dummy variables

or some other method to e¤ectively remove those observations

Dummy variables are also used in modelling seasonality and �calendar anomalies�in �nancial data

Non-normality in �nancial data could also arise from certain types of heteroscedasticity, known as

ARCH.

! in this case, the nonnormality is intrinsic to all of the data and therefore outlier removal would

not make the residuals of such a model normal
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Multocolinearity

� A problem occurs when the explanatory variables are very highly correlated with each other, and

this problem is known as multicollinearity

It is possible to distinguish between two classes of multicollinearity: perfect multicollinearity and

near multicollinearity

Perfect multicollinearity occurs when there is an exact relationship between two or more vari-

ables.

Two variables are perfectly related to one another contain only enough information to estimate one

parameter, not two.

Trying to invert the (X 0X) matrix is di¢ cult since it would not be of full rank (two of the columns

would be linearly dependent on one another)

! so that the inverse of (X 0X) would not exist and hence the OLS estimates �̂ = (X 0X)�1Xy

could not be calculated.

Near multicollinearity would arise when there is a non-negligible, but not perfect, relationship

between two or more of the explanatory variables.

How do we deal with near multicolinearity?

1. Ignore it, if the model is otherwise adequate, i.e. statistically and in terms of each coe¢ cient

being of a plausible magnitude and having an appropriate sign

2. Drop one of the collinear variables unless there are strong a priori theoretical reasons for including

both variables in the model.

Also, if the removed variable was relevant in the data generating process for y, an omitted variable

bias would result

3. Transform the highly correlated variables into a ratio and include only the ratio and not the

individual variables in the regression.

Again, this may be unacceptable if �nancial theory suggests that changes in the dependent variable

should occur following changes in the individual explanatory variables, and not a ratio of them.
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4. An increase in the sample size will usually lead to an increase in the accuracy of coe¢ cient

estimation and consequently a reduction in the coe¢ cient standard errors, thus enabling the model

to better dissect the e¤ects of the various explanatory variables on the explained variable.

A further possibility, therefore, is for the researcher to go out and collect more data �for example, by

taking a longer run of data, switching to a higher frequency of sampling and pooling cross-sectional

observations over time.

5. Principal components analysis is a another technique to address the issue of near multicolinearity.

Speci�cally, if there are k explanatory variables in the regression model, PCA will transform them

into k uncorrelated new variables.

Adopting the wrong functional form

� A further implicit assumption of the classical linear regression model is that the appropriate �func-

tional form� is linear. This means that the appropriate model is assumed to be linear in the

parameters, and that in the bivariate case, the relationship between y and x can be represented by

a straight line.

Whether the model should be linear can be formally tested using Ramsey�s (1969) RESET test,

which is a general test for misspeci�cation of functional form.

Non-linear models in the parameters typically preclude the use of OLS, and require the use of a

non-linear estimation technique.

Ommision of an important variable

� What would be the e¤ects of excluding from the estimated regression a variable that is a determinant

of y?

The estimated coe¢ cients on all the other variables will be biased and inconsistent unless the

excluded variable is uncorrelated with all the included variables.

Even if this condition is satis�ed, the estimate of the coe¢ cient on the constant term will be biased,

which would imply that any forecasts made from the model would be biased.

The standard errors will also be biased (upwards), and hence hypothesis tests could yield inappro-

priate inferences.
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Inclusion of an irrelavant variable

� The consequence of including an irrelevant variable would be that the coe¢ cient estimators would

still be consistent and unbiased, but the estimators would be ine¢ cient.

This would imply that the standard errors for the coe¢ cients are likely to be in�ated relative to

the values which they would have taken if the irrelevant variable had not been included.

Variables which would otherwise have been marginally signi�cant may no longer be so in the presence

of irrelevant variables.

In general, it can also be stated that the extent of the loss of e¢ ciency will depend positively on the

absolute value of the correlation between the included irrelevant variable and the other explanatory

variables.

Parameter stability tests

� So far, regressions of a form such as

yt = �1 + �2x2t + �3x3t + ut

embody the implicit assumption that the parameters (�1, �2 and �3) are constant for the entire

sample, both for the data period used to estimate the model, and for any subsequent period used

in the construction of forecasts.

This implicit assumption can be tested using parameter stability tests.

The idea is essentially to split the data into sub-periods and then to estimate up to three models,

for each of the sub-parts and for all the data and then to �compare�the RSS of each of the models.

There are two types of test that will be considered, namely the Chow (analysis of variance) test

and predictive failure tests.
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Univariate time series models

� A class of speci�cations where one attempts to model and to predict �nancial variables using only

information contained in their own past values and possibly current and past values of an error

term.

This practice can be contrasted with structural models, which are multivariate in nature, and

attempt to explain changes in a variable by reference to the movements in the current or past

values of other (explanatory) variables.

� Time series models are usually a-theoretical, implying that their construction and use is not based

upon any underlying theoretical model of the behaviour of a variable.

Instead, time series models are an attempt to capture empirically relevant features of the observed

data that may have arisen from a variety of di¤erent (but unspeci�ed) structural models.

� An important class of time series models is the family of AutoRegressive Integrated Moving

Average (ARIMA) models, usually associated with Box and Jenkins (1976).

� It may be that the variables thought to drive movements of yt are not observable or not measurable,

or that these forcing variables are measured at a lower frequency of observation than yt.

For example, yt might be a series of daily stock returns, where possible explanatory variables could

be macroeconomic indicators that are available monthly.

� Stock Market returns

There are two methods used to calculate returns from a series of prices, and these involve the

formation of simple returns, and continuously compounded returns, which are achieved as follows:

Simple Returns

Rt =
Pt�P t�1
Pt�1

� 100

Continuously compounded returns

rt = 100� ln
�

Pt
Pt�1

�
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� If the asset under consideration is a stock or portfolio of stocks, the total return to holding it is the

sum of the capital gain and any dividends paid during the holding period.

Researchers often ignore any dividend payments but doing so will lead to an underestimation of the

total returns that accrue to investors.

This is likely to be negligible for very short holding periods, but will have a severe impact on

cumulative returns over investment horizons of several years.

� Ignoring dividends will also have a distortionary e¤ect on the crosssection of stock returns.

For example, ignoring dividends will imply that �growth�stocks, with large capital gains will be

inappropriately favoured over �value�stocks (e.g. utilities and mature industries) that pay high

dividends.

� Alternatively, it is possible to adjust a stock price time series so that the dividends are added back

to generate a total return index.

If Pt were a total return index, returns generated using either of the two formulae presented above

thus provide a measure of the total return that would accrue to a holder of the asset during time t.

� There is, however, also a disadvantage of using the log-returns. The simple return on a portfolio of

assets is a weighted average of the simple returns on the individual assets

Rpt =
nX
i=1

wiRit

� But this does not work for the continuously compounded returns, so that they are not additive

across a portfolio.

The fundamental reason why this is the case is that the log of a sum is not the same as the

sum of a log, since the operation of taking a log constitutes a non-linear transformation.

� Calculating portfolio returns in this context must be conducted by �rst estimating the value of the

portfolio at each time period and then determining the returns from the aggregate portfolio values.

Or alternatively, if we assume that the asset is purchased at time t �K for price Pt�K and then

sold K periods later at price Pt , then if we calculate simple returns for each period, Rt, Rt+1, . .

. , RK , the aggregate return over all K is

Rkt =
Pt�P t�K
Pt�K

= Pt
Pt�K

�1 =
h
Pt
Pt�1

� Pt�1
Pt�2

� :::� Pt�K+1

Pt�K

i
�1 = [(1 +Rt)� (1 +Rt�1) ::: (1 +Rt�K+1)]�

1
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Stationarity

� A strictly stationary process

A strictly stationary process is one where, for any t1, t2, . . . , tT 2 Z, any k 2 Z and T = 1; 2; :::

Fyt1 ; yt2 ; :::; ytT (y1; :::; yT ) = Fyt1+k; yt2+k; :::; ytT+k(y1; :::; yT )

where F denotes the joint distribution function of the set of random variables

A series is strictly stationary if the distribution of its values remains the same as time progresses,

implying that the probability that y falls within a particular interval is the same now as at any

time in the past or the future.

� A weakly stationary process

A series is said to be weakly or covariance stationary if it has a constant mean, a constant variance

and a constant autocovariance structure

The autocovariances determine how y is related to its previous values, and for a stationary series

they depend only on the di¤erence between t1 and t2, so that the covariance between yt and yt�1

is the same as the covariance between yt�10 and yt�11, etc.

The moment E (yt � E(yt)) (yt�s � E(yt�s)) = 
s, s = 0; 1; 2; :::is known as the autocovariance

function

It is thus more convenient to use the autocorrelations (� s = 
s=
0, s = 0; 1; 2; :::), which are the

autocovariances normalised if we divide by the variance

� A white noise process

A white noise process has constant mean and variance, and zero autocovariances, except at lag zero

Another way to state this last condition would be to say that each observation is uncorrelated with

all other values in the sequence

Hence the autocorrelation function for a white noise process will be zero apart from a single peak

of 1 at s = 0
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� It is also possible to test the joint hypothesis that all m of the �k correlation coe¢ cients are

simultaneously equal to zero using the Q-statistic developed by Box and Pierce (1970)

Q = T
mX
k=1

�̂2k

where T = sample size, m = maximum lag length.

The correlation coe¢ cients are squared so that the positive and negative coe¢ cients do not cancel

each other out.

The sum of squares of independent standard normal variates is itself a �2 variate with degrees of

freedom equal to the number of squares in the sum

Thus, it can be stated that the Q-statistic is asymptotically distributed as a �2m under the null

hypothesis that all m autocorrelation coe¢ cients are zero.

As for any joint hypothesis test, only one autocorrelation coe¢ cient needs to be statistically signif-

icant for the test to result in a rejection.

However, the Box�Pierce test has poor small sample properties, implying that it leads to the wrong

decision too frequently for small samples.

� A variant of the Box�Pierce test with better small sample properties is the Ljung�Box (1978)

statistic

Q = T (T + 2)
mX
k=1

�̂2k

It should be clear from the form of the statistic that asymptotically (that is, as the sample size

increases towards in�nity), the (T +2) and (T � k) terms in the Ljung�Box formulation will cancel

out, so that the statistic is equivalent to the Box�Pierce test.

This statistic is very useful as a portmanteau (general) test of linear dependence in time series.
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Moving Average processes (MA)

� The simplest class of time series model that one could entertain is that of the moving average

process.

Let ut (t = 1; 2; 3; :::) be a white noise process with E(ut) = 0 and Var(ut) = �2. Then

yt = �+ ut + �1ut�1 + �2ut�2 + :::+ �qut�q

is a q-th order moving average mode, denoted MA(q). This can be expressed using sigma notation

as

yt = �+

qX
i=1

�iut�i + ut

A moving average model is simply a linear combination of white noise processes, so that yt depends

on the current and previous values of a white noise disturbance term.

AutoRegressive processes (AR)

� An autoregressive model is one where the current value of a variable, y, depends upon only the

values that the variable took in previous periods plus an error term

An autoregressive model of order p, denoted as AR(p), can be expressed as

yt = �+ �1yt�1 + �2yt�2 + :::+ �pyt�p + ut

where ut is a white noise disturbance term. A manipulation of previous expression will be required

to demonstrate the properties of an autoregressive model.

This expression can be written more compactly using sigma notation

yt = �+

pX
i=1

�iyt�i + ut
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ARMA processes

� By combining the AR(p) and MA(q) models, an ARMA(p; q) model is obtained. Such a model

states that the current value of some series y depends linearly on its own previous values plus a

combination of current and previous values of a white noise error term.

The model could be

yt = �+ �1yt�1 + �2yt�2 + :::+ �pyt�p + �1ut�1 + �2ut�2 + :::+ �qut�q + ut

or

yt = �+

pX
i=1

�iyt�i +

qX
i=1

�iut�i + ut

with E(ut) = 0, E(u2t ) = �
2, E(utus) = 0, t = s

The characteristics of an ARMA process will be a combination of those from the autoregressive

(AR) and moving average (MA) parts.

For more information about the invertibility and stationarity conditions of AR, MA and ARMA

processes please see Chapter 5 of Chris Brook�s book �Introductory Econometric for Finance�

� Forecasting

Some examples in �nance of where forecasts from econometric models might be useful include

Forecasting tomorrow�s return on a particular share

Forecasting the price of a house given its characteristics

Forecasting the riskiness of a portfolio over the next year

Forecasting the volatility of bond returns

Forecasting the correlation between US and UK stock market movements tomorrow

Forecasting the likely number of defaults on a portfolio of home loans.
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� It is useful to distinguish between two approaches to forecasting:

Econometric (structural) forecasting �relates a dependent variable to one or more independent

variables.

Such models often work well in the long run, since a long-run relationship between variables often

arises from no-arbitrage or market e¢ ciency conditions.

Examples of such forecasts would include return predictions derived from arbitrage pricing models,

or long-term exchange rate prediction based on purchasing power parity or uncovered interest parity

theory.

Time series forecasting �involves trying to forecast the future values of a series given its previous

values and/or previous values of an error term.

A one-step-ahead forecast is a forecast generated for the next observation only, whereas multi-step-

ahead forecasts are those generated for 1, 2, 3, . . . , s steps ahead, so that the forecasting horizon

is for the next s periods.

For more information about how to forecast with AR, MA and ARMA models please see Chapter

5 of Chris Brook�s book �Introductory Econometric for Finance�
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