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Introduction and motivation

I Individuals or firms make choices “either-or” in many
situations

I Economics: Why some individuals vote for a increasing
public spending and others do not; why some female
college students decided to study physics and others do
not

I Finance: Why firms decide to list their shares on the
NASQAD rather than the NYSE; Why some firms pay
dividend while others do not; Why some firms choose to
engage in stock splits while others do not
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Introduction and motivation

I For all the examples previously shown the dependent
variable would be a dummy variable 0− 1 since there are
only two possible outcomes

I This situation would be regarded to as limited dependent
variables (Binary choice model)
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Binary choice model: an economic example

I How can individual’s choice between driving (private
transportation) and taking the bus (public transportation) be
explained in terms of two possible alternative.

I Let us represent an individual’s choice by the following
indicator variable:

y =

{
1 individual drives to work ,

0 individual takes bus towork
(1)
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Binary choice model: an economic example

I If one collect a random sample of workers going to work, then
the outcome y will be unknown until the sample is drawn.
Therefore, y is a random variable.

I If the probability that an individual drives to work is p, then
P[y = 1] = p. It follows that the probability that a person
uses public transportation is P[y = 0] = 1− p.
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Binary choice model: an economic example

I The probability function for such a binary random variable is:

f (y) = py (1− p)1−p, y = 0, 1 (2)

where p it the probability that y takes value one.

I What factors might affect the probability that an individual
chooses one or another solution. One factors may be how long
it takes to get work one way or the other:

x = (commuting time by bus − communting time by car)
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The linear probability model: an example in Finance

I The linear probability model is by far the simplest way of
dealing with binary dependent variables.

I It is based on an assumption that the probability of an event
occurring (Pi ) is linearly related to a set of explanatory
variables x2i , x3i , ..., xki :

Pi = p(yi = 1) = β1+β2x2i+β3x3i+··+βkxki+µi , i = 1, ..,N. (3)
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The linear probability model: an example in Finance

I The actual probabilities cannot be observed, so one would
estimate a model (with OLS) where yi (the series of zeros and
ones) would be the dependent variable.

I The fitted values from this regression are the estimated
probabilities for yi = 1 for each observation i .
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The linear probability model: an example in Finance

I Suppose, for example, that we wanted to model the probability
that a firm i will pay a dividend (yi = 1) as a function of its
market capitalisation (x2i , measured in millions of US dollar)

I The slope estimates for the linear probability model can be
interpreted as the change in the probability that the
dependent variable will equal 1 for a one-unit change in a
given explanatory variable, holding the effect of all other
explanatory variables fixed.
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The linear probability model: an example in Finance

I Suppose we fit the following equation regression :

P̂i = −0.3 + 0.012x2i (4)

where P̂i denotes the fitted or estimated probability for firm i

I The previous model says that for every $1m increase in size,
the probability that the firm will pay a dividend increases by
0.012 (or 1.2%). A firm whose stock is valued at $50m will
have a −0.3 + 0.012× 50 = 0.3 (or 30%) probability of
making a dividend payment.
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The linear probability model: an example in Finance
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Figure 1. Dividend and market capitalization
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The linear probability model: an example in Finance

I if one looks at diagram, then it appears quite clear that some
problems emerge. For any firm whose value is less than $25m,
the model predicts a negative probability of dividend payment,
while for any firm whose value is greater than $88m, the
probability is greater than one.

I Such predictions cannot obviously be allowed to stand, since
the probabilities should lie within the range (0,1). Once can
truncate the probabilities at 0 or 1, so that a probability of
-0.3, say, would be set to zero, and a probability of, say, 1.2
would be set to 1. However, there are at least two reasons
why this is still not adequate.
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The linear probability model: an example in Finance

I There will be too many observations for which the estimated
probability is zero or one.

I It is not plausible that the probability of paying a dividend is
zero or 1. Are we sure that very small firms never pay a
dividend and large ones always make a payout?
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The linear probability model: cope with heteroscedasticity

I Since the dependent variable takes only one or two values, for
given values of independent variables, the error term will also
takes one or two values. Consider the following equation:

yi = β1 + β2x2i + · · ·+ βkxki + µi , (5)

I If yi = 1,then by definition, we have

µi = 1− β1 + β2x2i + · · ·+ βkxki (6)

I if yi = 0,then by definition, we have

µi = −β1 + β2x2i + · · ·+ βkxki (7)
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The linear probability model: cope with heteroscedasticity

I Since µi changes systematically with the independent
variables, then the error term will be also heteroscedastic.
therefore, Estimate equation (5) by OLS. Then estimate the
variance of the error term: σ2

i = µ̂i .

I Using this variance, transform the data as follows: y∗i = yi/σ̂i ,
x∗2i = x2i/σ̂i , x∗3i = x3i/σ̂i and so on. Then estimate the
following model using the OLS method:

y∗i = β1σ̂
−1
i + β2x

∗
2i + ... + β∗kxki + µ∗i (8)
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The probit model

I Consider the following model:

Pi = p(yi = 1) = β1 + β2x2i + µi , (9)

I The linear probability model implicitly assumes that increases
in x have a constant effect on the probability, That is, as x2i

increases the probability continues to increase at a constant
rate:

dp

dx
= β2 (10)

However, since 0 ≤ p ≤ 1, a constant rate of increase is
impossible.
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The probit model: s-shaped curve

I To overcome the problem related to the linear probability
model, we consider the probit model.

I To keep the choice probability p within the interval [0,1], a
S-shaped relationship between x and p can be used.
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The probit model: standard normal distribution

 
 
 
 
 
 

                              
Figure 2 a) Standard normal cumulative distribution function; b) Standard normal probability density function
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The probit model

I As x increases, the probability curve rises rapidly at first, and
then begins to increase at a decreasing rate. The slope of this
curve gives the change in probability given a unit change in x.
The slope is not constant as in the linear probability model

I A functional relationship to represent such a curve is the
probit function. The probit function is associated with the
standard normal distribution
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The probit model: probit function

I If Z is a standard normal variable, then its probability density
function is:

φ(z) =
1√
2π

e−1/2z2 (11)

I The probit function is:

φ(z) = PZ ≤ z =

∫ z

−∞

1√
2π

e−1/2u2du (12)

I This integral expression is the probability that a standard
normal random variable falls to the left of point z. The
function φ(z) is the cumulative distribution function (cdf) that
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The probit model

I Why use the cumulative normal distribution?

I The S-shape gives us what we want:

0 ≤ Pr(yi = 1|xi ) ≤, for all xi

Pr(yi = 1|xi ) to be increasing in xi (for β1 > 0) (13)

I Easy to use: The probabilities of the Normal distribution are
tabulated.
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The probit Model: interpretation

I Consider a probit regression model with one independent
variables

Pr(yi = 1) = P[Z ≤ β1 + β2x2i ] = φ(β1 + β2x2i ) (14)

where φ(z) is the probit function and z the standard normal
variable.

I The marginal effect of a one-unit change in x on the
probability that yi = 1 is

dp

dx
=

dΦ(t)

dt
× dt

dx
= φ(β1 + β2x2i )β2 (15)

where t = β1 + β2x2i and Φ(β1 + β2x2i ) is the standard
normal probability density function evaluated at β1 + β2x2i .
We estimate this effect by replacing the unknown parameters
by their estimates β̂1 and β̂2.
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The probit model: interpretation

I In Figure 2 we show the probit function φ(z) and the standard
normal probability density function φ(z) just below it. The
expression in (15) shows the effect of an increase in x on p.
The effect depends on the slope of the probit function, which
is given by φ(β1 + β2x2i ) and the magnitude of the parameter
β2.

I Equation (15) has the following implications: Since
φ(β1 + β2x2i ) is a probability density function, its value is
always positive. Consequently the sign of dp/dx is determined
by the sign of β2. In the transportation problem, we expect β2

to be positive so that dp = dx > 0; as x increases, we expect
p to increase.
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The probit model: interpretation

I As x changes, the value of the function φ(β1 + β2x2i ) changes.
The standard normal probability density function reaches its
maximum when z = 0 or when β1 + β2x2i = 0. This implies
p = φ(0) = 0.5; an individual is equally likely to choose car or
bus transportation: the effect of a change in x has its greatest
effect, since the individual is “on the borderline” between car
and bus transportation. The slope of the probit function
p = φ(z) is at its maximum when z = 0, the borderline case.

I On the other hand, if β1 + β2x2i is large (' 3), then the
probability that the individual chooses to drive is very large
and close to one. This implies that a change in x2i will have
relatively little effect, since φ(β1 + β2x2i ) will be nearly zero.
The same is true if β1 + β2x2i is a large negative value (' −3)
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The probit model: an example with mortgage data.

I Regress mortgage denial (deny) on the payment to-income
ratio (P/I)

̂P(deny = 1) = φ(−2.19
(0.16)

+ 2.97
(0.47)

P/I ) (16)

I The estimated coefficient of −2.19 and 2.97 are difficult to
interpret because they affect the probability of denial via the
z − value. What we can say is that the P/I is positively
related to probability of denial (the coefficient is positive) and
that this relationship is statistically significant
(t=2.97/0.47=6.32).
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The probit model: An example with mortgage data.

I What is the change in the predicted probability that an
application will be denied when P/I increase from 0.3 to 0.4?
Compute the probability for P/I = 0.3 and for P/I = 0.4, and
then compute the difference.

I The probability of denial when P/I = 0.3 is
φ(−2.19 + 2.97× 0.3) = φ(−1.30) = 0.097. The probability
of denial when P/I = 0.4 is
φ(−2.19 + 2.97× 0.4) = φ(−1.00) = 0.159.

I The estimated change in probability of denial is
0.159-0.097=0.062: An increase in payment-to-income ratio
from 0.3 to 0.4 is associated with an increase in the probability
of denial of 6.2 percentage points, from 9.7% to 15.9%
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The logit model

I A frequently alternative for binary choices is the the logit
model. These models differ only in the particular S-shaped
curve used to constrain probabilities to the [0,1] interval. If L
is a logistic random variable, then its probability density
function is

λ(l) =
e−l

(1 + e−l)2
,−∞ < l < ∞ (17)

I The cumulative distribution function for a logistic random
variable is

λ(l) = P[L ≤ li ] =
1

(1 + e−li )
(18)
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The logit model

I Consider a model with only one independent variable. The
probability that y = 1 can be written:

p =
1

1 + e−(β1+β2x2i )
(19)

I The probability that y = 0 can be written:

1− p =
1

1 + e(β1+β2x2i )
(20)
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The logit model

I With the logic model, 0 and 1 are asymptotes to the function
and thus the probabilities will never actually fall to exactly
zero or rise to one, although they may come infinitesimally
close.

I In equation (18), as li tends to infinity, e−li tends to zero and
1/(1 + e−li ) tends to 1; as li tends to minus infinity, e−li

tends to infinity and 1/(1 + e−li ) tends to 0.
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The logit model: testing the pecking order hypothesis

I The theory of firm financing suggests that corporations should
use the cheapest methods of financing their activities first (i.e.
the sources of funds that require payment of the lowest rates
of return to investors) and switch to more expensive methods
only when the cheaper sources have been exhausted. This is
known as the “pecking order hypothesis”.

I Differences in the relative cost of the various sources of funds
are argued to arise largely from information asymmetries: the
firm’s senior managers will know the true riskiness of the
business, whereas potential outside investors will not. Hence,
all else equal, firms will prefer internal finance and then, if
further (external) funding is necessary, the firm’s riskiness will
determine the type of funding sought. The more risky the firm
is perceived to be the less accurate will be the pricing of its
securities.
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The logit model: testing the pecking order hypothesis

I Helwege and Liang (1996) examine the pecking order
hypothesis in the context of a set of US firms that had been
newly listed on the stock market in 1983, with their additional
funding decisions being tracked over the 1984-1992 period.
Such newly listed firms are argued to experience higher rates
of growth, and are more likely to require additional external
funding than firms which have been stock market listed for
many years.

I The list of initial public offerings (IPOs) came from the
Securities Data Corporation and the Securities and Exchange
Commission with data obtained from Compustat. A core
objective of the paper is to determine the factors that affect
the probability of raising external financing.
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The logit model: testing the pecking order hypothesis

I The dependent variable is a binary one: 1 (firm raises funds
externally), 0 (firm does not raise any external funds).

I The independent variables are a set that try to grasp the
relative degree of information asymmetry and degree of
riskiness of the firm. If the pecking order hypothesis is
supported by the data, then firms should be more likely to
raise external funding the less internal cash they hold.
Therefore, the variable “deficit” measures (capital
expenditures + acquisitions + dividends - earnings).
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The logit model: testing the pecking order hypothesis

I “Positive deficit” is a variable identical to deficit but with any
negative deficits (i.e. surpluses) set to zero. “Surplus” is
equal to the negative of deficit for firms where deficit is
negative.“ Positive deficit x operating income” is an interactio
term where the two variables are multiplied together to
capture cases where firms have strong investment
opportunities but limited access to internal funds

I “Assets is used as a measure of firm size. “Industry asset
growth” is the average rate of growth of assets in that firm’s
industry over the 1983-1992 period.“Firm’s growth of sales” is
the growth rate of sales averaged over the previous 5 years.
“Previous financing” is a dummy variable equal to 1 for firms
that obtained external financing in the previous year.
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The logit model: testing the pecking order hypothesis.

Table: Logit estimation of the probability of external funding

Variable (1) (2) (3)
Intercept −0.29

[−3.42]
−0.72
[−7.05]

−0.15
[−1.58]

Deficit 0.04
[0.34]

0.02
[0.18]

Positive deficit −0.24
[−1.19]

Surplus −2.06
[−3.23]

Positive deficit x operating income −0.03
[−0.59]

Assets 0.0004
[1.99]

0.0003
[1.36]

0.0004
[1.99]

Industry −0.002
[−1.70]

−0.002
[−1.35]

−0.002
[−1.69]

Previous financing 0.79
[8.48]

Notes: t-ratio in parenthesis.
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The logit model: testing the pecking order hypothesis.

I The key variable, “deficit,” has a parameter that is not
statistically significant and hence the probability of obtaining
external financing does not depend on the size of a firm’s cash
deficit.

I The parameter on the “surplus” variable has the correct
negative sign, indicating that the larger a firm’s surplus, the
less likely it is to seek external financing, which provides some
limited support for the pecking order hypothesis. Larger firms
(with larger total assets) are more likely to use the capital
markets, as are firms that have already obtained external
financing during the previous year.
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Logit or probit models

I For the majority of the applications, the logit and probit
models will give very similar characterizations of the data
because the densities are very similar.

I That is the relationships between the explanatory variables
and the probability that yi = 1 will also be very similar. Both
approaches are much preferred to the linear probability model.

I The only instance where the models may give non-negligibility
different results occurs when the split of the yi between 0 and
1 is very unbalanced – for example, when yi = 1 occurs only
10% of the time.
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