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Lecture Notes 7

1. Dynamic Regression Models

In time series models, a substantial period of time may pass between the economic
decision-making period and the �nal impact of a change in a policy variable. One
can say that it is the nature of economic relationships that the adjustment of y
to changes in x is distributed widely through time. If the appropriate decision-
and-response period is su¢ ciently long, lagged explanatory variables should be
included explicitly in the model.
One way to model the dynamic responses is to include lagged values of x on

the right hand side of the regression equation; this is the basis of the distributed-
lag model, in which a series of lagged explanatory variables accounts for the time
adjustment process. The (�nite) distributed-lag model takes the form:

yt = �0xt + �1xt�1 + �2xt�2 + :::+ �kxt�k + "t:

Given the above model, if the explanatory (input) variable x undergoes a one-o¤
unit change (impulse) in some period t; then the immediate impact on y is given
by �0; �1 is the impact on y after one period, �2 is the impact after two periods,
and so on. The �nal impact on y is �k and it occurs after k periods. So speaking,
it takes k periods for the full e¤ects of the impulse to be realised. The sequence
of coe¢ cients f�0; �1; �2; :::; �kg constitutes the impulse response function of the
mapping from xt to yt:
Furthermore, the dynamic behaviour of an economy can reveal itself through

a dependence of the current value of an economic variable on its own past values.
Speci�cally, models of how decision makers� expectations are formed, and how
they react to changes in the economy, result in the value of yt depending on
lagged y�s. So, an additional/alternative way to capture the dynamic component
of economic behaviour is to include lagged values of the dependent variable on the
right-hand side of the regression together with the exogenous variable.



In time-series econometric modeling a dynamic regression will usually include
both lagged dependent and independent variables as regressors:

yt = �0 + �1yt�1 + :::+ �pyt�p + �0xt + �1xt�1 + :::+ �kxt�k + "t:

The above model is called the autoregressive distributed-lag model, abbrevi-
ated as ARDL(p; k). The values of p and k (i.e how many lags of y and x will
be used) are chosen (i) on the basis of the statistical signi�cance of the lagged
variables, and (ii) so that the resulting model is well speci�ed (e.g. it does not
su¤er from serial correlation).

1.1. The Lag and Di¤erence Operators

In examining dynamics it is useful to use the lag operator (L), also known as the
backward shift (B) operator. The lag operator can be manipulated in a similar
way to any other algebraic quantity:

Lyt = yt�1; L
2yt = yt�2; L

3yt = yt�3; ::::::; L
pyt = yt�p;

yt � yt�1 = (1� L) yt; yt � yt�1 � yt�2 =
�
1� L� L2

�
yt;

yt + �yt�1 + �
2yt�2 + :::+ �

pyt�p =
�
1 + �L+ �2L2 + :::+ �pLp

�
yt;�

1 + �L+ �2L2 + �3L3:::::::::
�
=

1

1� �L; if j�j < 1:

Another operator which is commonly used in dynamic analysis is the �rst di¤er-
ence operator (�) ; given below:

� � 1� L; i.e. �yt = (1� L) yt = yt � yt�1;
�2 � (1� L)2 ; i.e. �2yt = (1� L)2 yt = �yt ��yt�1;
�k � (1� L)k ; k = 1; 2; 3; :::

1.2. The �rst order autoregressive distributed-lag model: ARDL(1,1)

The ARDL(1,1), or alternatively the �rst orderDynamic Linear Regression Model,
takes the form:

yt = �0 + �1yt�1 + �0xt + �1xt�1 + "t; t = 1; 2; :::; T: (1)

Note that yt is stable (i.e. it will converge to its equilibrium) if �1 < � < 1:
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� If the above stability condition is satis�ed, the long-run solution (or steady
state) of eq. (1) is given by

yt =
�0

1� �1
+

�
�0 + �1
1� �1

�
xt +

"t
1� �1

(2)

= c0 + c1xt +
"t

1� �1
:

The above equation (2) is obtained by assuming that in equilibrium yt =
yt�1; and xt = xt�1: So speaking, the long-run equilibrium or target value
for y at time t is given by

y�t = c0 + c1xt: (2�)

Calculating the long-run solution is a way of recovering the information
about the equilibrium provided by the dynamic model (1).1 One should
adopt the static model (2) if agents are always at their target value except
for a random error. If, on the other hand, yt is not in equilibrium then the
appropriate speci�cation is a dynamic one.

� The dynamic linear regression model (1) can be reparameterised as:

�yt = d0 + d1yt�1 + d2�xt + d3xt�1 + "t; (3)

where d0 = �0; d1 = �1�1; d2 = �0; d3 = �0+�1:2 Observe that eq. (1) and
(3) are alternative representations of the same statistical model; they only
di¤er in their economic interpretations. In other words, model (1) cannot
be tested versus model (3). Also note that in both eq. (1) and (3) we are
estimating the same number of parameters. Since eq. (1) and (3) represent
the same statistical model, their residual series, sum of squared residuals,
and standard errors of the regression will be identical.3

1If the variables are in logs then c1 is the long-run elasticity of y with respect to x:
2The relationship between the parameters of eq. (1) and (3) can be obtained by writing (3)

as:

yt � yt�1 = d0 + d1yt�1 + d2xt � d2xt�1 + d3xt�1 + "t )
yt = d0 + (1 + d1) yt�1 + d2xt + (d3 � d2)xt�1 + "t:

3One way to give an economic motivation for the dynamic eq. (3) or (1) is to assume that
agents adjust both to the change in the target value (�y�t ) and the deviation from target in the
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� Let us examine now the case where xt is added to the right-hand side (RHS)
of eq. (3):

�yt = d0 + d1yt�1 + d2�xt + d3xt�1 + d4xt + "t: (4)

The regression model (4) cannot be estimated due to the problem of perfect
multicollinearity. Note that the RHS variable �xt is a linear combina-
tion of the RHS variables xt and xt�1 : �xt = xt � xt�1: In other words,
the matrix of explanatory variables does not have full rank (not all of its
columns/vectors are linearly independent).

� Next, suppose that in the context of the dynamic linear regression model
(1) we wish to test the joint statistical signi�cance of the lagged variables.
The null and alternative hypotheses are:

H0 : �1 = 0 and �1 = 0;

H1 : �1 6= 0 and �1 6= 0:

When we impose the above restrictions on the (unrestricted) dynamic model
(1) we get the static model:

yt = a+ bxt + ut: (5)

We can test the restricted model (5) against the unrestricted model (1) by
using either the F � test :

F � test =

�P
t

bu2t �P
t

b"2t� =2�P
t

b"2t� = (T � 4) � F (2; T � 4) ;
or the asymptotic Likelihood Ratio test (LR� test) computed as:

LR� test = 2 (MLLUR �MLLR) � �2 (r) ;

previous period
�
yt�1 � y�t�1

�
:

�yt = �1�y
�
t � �2

�
yt�1 � y�t�1

�
+ "t;

where y�t is given by eq. (2�).
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whereMLLUR denotes the maximum log-likelihood of the unrestricted model
(regression (1) in this example),MLLR denotes the maximum log-likelihood
of the restricted model (regression (5) in this example), and r denotes the
number of restrictions (two in this example). Rejection of the restrictions
means that the dynamic linear regression model �ts the data better than
the static one. When testing one model versus another note that: (i) the
restrictions are always expressed in terms of the parameters of the unre-
stricted model, (ii) in the restricted model we always have to estimate fewer
parameters than in the unrestricted one, and (iii) an F � test can be used
only when the restrictions are linear ; non-linear restrictions can be tested
using an LR � test or some other asymptotic testing procedure (e.g. an
LM � test).

� Finally, in the context of model (3), suppose that we are interested in testing
the restriction:

H0 : d1 = �d3;
H1 : d1 6= �d3:

This restriction implies that the long-run coe¢ cient of x is unity. When we
impose the above restriction on (3) we obtain the following model:

�yt = b0 + b1�xt + b2 (yt�1 � xt�1) + ut: (6)

We can test the restricted model (6) against the unrestricted model (3) by
using either an F � test :

F � test =

�P
t

bu2t �P
t

b"2t� =1�P
t

b"2t� = (T � 4) � F (1; T � 4) ;
or a Likelihood Ratio test (LR� test) computed as:

LR� test = 2 (MLLUR �MLLR) � �2 (1) ;

whereMLLUR denotes the maximum log-likelihood of the unrestricted model
(3), andMLLR denotes the maximum log-likelihood of the restricted model
(6).
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� Suppose that a researcher estimates the static linear regression model and
�nds evidence of �rst order residual serial correlation. If the observed resid-
ual serial correlation is due to the omission of dynamics, then the appropri-
ate model to use is the dynamic linear regression (1). If on the other hand,
the observed residual serial correlation is due to �rst order autocorrelated
disturbances, then the appropriate way to model y as a function of x is:

yt = a+ bxt + ut; ut = �ut�1 + vt; vt � IN
�
0; �2

�
: (7)

The above is the static model with an error term (ut) which has serial
correlation of order one. After some algebraic manipulation4 we can rewrite
model (7) as:

yt = a (1� �) + �yt�1 + bxt � �bxt�1 + vt: (7�)

Now compare models (1) and (7�). What is the relationship between them?
Observe that in both equations the same dependent variable (yt) is regressed
on the same set of variables (i.e. a constant, yt�1; xt; and xt�1). However,
in regression (1) we estimate four parameters (�0; �1; �0; �1), whereas in
regression (7�) we only need to estimate three parameters (a; b; �) : Therefore,
(7�) is a restricted version of (1); we need to impose one5 restriction on model
(1) to obtain model (7�). This particular restriction is called the common
factor restriction:

H0 : �1 = ��1�0;
H0 : �1 6= ��1�0:

Since the above restriction is nonlinear we cannot use an F � test; we can
only use an asymptotic testing procedure, like an LR � test; to test the

4

yt = a+ bxt + ut ) yt�1 = a+ bxt�1 + ut�1 )
�yt�1 = �a+ �bxt�1 + �ut�1;

yt � �yt�1 = a+ bxt + ut � �a� �bxt�1 � �ut�1
a (1� �) + bxt � �bxt�1 + ut � �ut�1 )

yt = a (1� �) + �yt�1 + bxt � �bxt�1 + vt;

since ut = �ut�1 + vt:
5Note that the number of restrictions is equal to the number of parameters in the unrestricted

model minus the number of parameters in the restricted one (1 = 4� 3 in this case).
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validity of the common factor restriction

LR� test = 2 (MLLUR �MLLR) � �2 (1) ;

whereMLLUR denotes the maximum log-likelihood of the unrestricted model
(1), andMLLR denotes the maximum log-likelihood of the restricted model
(7). Note that while (1) is estimated with least squares, (7) has to be es-
timated with generalised least squares (e.g. the Cochrane-Orcutt method)
in order to take into account the serial correlation. (Try to estimate models
(1) and (7) in MFIT using the dataset IE98.FIT. Which model do you pre-
fer?) If we accept the restriction, then model (7) is preferred; otherwise the
dynamic linear regression model (1) is the appropriate one to use.

2. Use of Dummy Variables

The simplest way to accommodate changes in the structure of a regression model
is to use a dummy variable, i.e. a variable which takes the value one or zero.
The classic example is the case of the aggregate consumption function, in which

rationing, saving campaigns, and so on, make wartime consumption behaviour
di¤erent from peacetime behaviour. In what follows, Ct denotes the (natural)
log of real consumption expenditure, and Yt denotes the (natural) log of real
personal disposable income. Without loss of generality, we will use the static
linear regression model to demonstrate the use of a dummy variable. We shall
distinguish between four di¤erent cases:

� The case in which peacetime and wartime consumption behaviour are as-
sumed to be identical in all respects:

Ct = �+ �Yt + "t; t = 1; 2; :::; S; S + 1; S + 2; :::; T;

where 1; 2; :::; S are the wartime years and S+1; S+2; :::; T are the peacetime
years.

� The case where we assume that the intercept of the consumption function
changes during wartime but the slope parameter (i.e. the elasticity of con-
sumption with respect to income, since the variables are in logs) stays the
same:

Ct = �+ b0Dt + �Yt + "t;

7



where Dt =

�
1; t = 1; 2; :::; S; i.e. if it is wartime
0; t = S + 1; S + 2; :::; T; (peacetime)

�
: A test of whether

such a change is statistically signi�cant is provided by a test of the null
hypothesis H0 : b0 = 0: (One way to test is by employing a t� test:)

� The case in which the intercept is assumed to remain constant but the slope
coe¢ cient is di¤erent during wartime:

Ct = �+ �Yt + b1 (DtYt) + "t:

Again we can test the statistical signi�cance of this structural change by
using a t� test; the null hypothesis is H0 : b1 = 0:

� The case where both the intercept and the slope parameter are assumed to
change during wartime:

Ct = �+ b0Dt + �Yt + b1 (DtYt) + "t:

A test of whether such a change is statistically signi�cant is provided by a
test of the null hypothesis H0 : b0 = 0; b1 = 0:

Note that in all the above cases the variance of the error term is assumed to be the
same in war and peace years. If we wish to test whether this is indeed the case,
then we need to estimate two separate regressions and use the Goldfeld-Quandt
test (see Lecture Notes 6).
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