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Lecture Notes 6

1. Diagnostic (Misspeci�cation) Tests: Testing the Assump-
tions and Consequences of their Failure

Having completed a discussion of the classical normal linear regression model, it
seems natural to review each of the model�s assumptions in turn. It is important
to test the validity of the assumptions which underlie our model because when one
or more assumptions fail our inference might be misleading. The properties of the
least squares estimator depend on the assumptions of the CLRM. The derivation
of the t� and F � tests also depends on these assumptions. Much of econometrics
is about testing whether these assumptions hold. If they do not, then the model
should be respeci�ed and perhaps estimated by a di¤erent method, depending on
the exact nature of the misspeci�cation.
The various diagnostic tests will be presented in the context of the classical

multiple linear regression model:

yt = �0xt + "t; t = 1; :::; T

or yt = �1 + �2tx2t + �3tx3t + :::+ �ktxkt + "t: (1)

1.1. No Serial Correlation

When the error terms from di¤erent time periods (or cross-section observations)
are correlated, we say that the error term is serially correlated. Serial correlation
occurs in time-series studies when the errors associated with observations in a
given time period carry over into future time periods. For example, if we are
predicting the growth of stock dividends, an overestimate in one year is likely to
lead to overestimates in succeeding years.
Serial correlation (also called autocorrelation) in the residuals means that they

contain information, which should itself be modelled. First order serial correlation
arises when the residuals in one time period are correlated directly with the resid-
uals in the ensuing time period; second-order serial correlation refers to correlation



between residuals two periods apart, third-order serial correlation refers to corre-
lation between residuals three periods apart, and so on. (With annual data the
most common form of serial correlation is �rst order, with quarterly data there is
usually fourth order serial correlation.) A pattern where successive residuals tend
to have the same sign indicates positive �rst order serial correlation, whereas a
pattern where successive residuals tend to have opposite signs indicates negative
�rst order serial correlation. (Observe that we need to use the words �tend to�
because not all the residuals can have the same sign - they must sum to zero.)
The assumption of no serial correlation can be expressed as

E ("t"s) = 0; t 6= s; or V (yt=xt) � E (""0) = �2I:

On the other hand, the presence of serial correlation can be expressed as

E ("t"s) 6= 0; t 6= s; or V (yt=xt) � E (""0) = �2
;

where the o¤-diagonal elements of 
 are not all equal to zero (the diagonal ele-
ments are all equal to one).

1.1.1. Testing for �rst order serial correlation: the Durbin-Watson sta-
tistic (DW)

The DW statistic is a test for the detection of �rst order serial correlation in the
residuals. It is printed out by every econometric package, and is computed as:

DW =

TP
t=2

(b"t � b"t�1)2
TP
t=2

b"2t�1
�= 2 (1� b�) ;

where b� is the �rst order autocorrelation coe¢ cient of the residuals, i.e. it is the
coe¢ cient in the regression: b"t = �b"t�1 + ut; �1 < � < 1; ut � iid (0; �2u). The
null hypothesis is no serial correlation (H0 : � = 0) : The DW statistic will lie in
the 0 to 4 range, with a value near 2 indicating no �rst order serial correlation.
The tabulated values of the DW statistic have one peculiar feature. For any
signi�cance level, sample size and number of regressors, two values of the statistic
are tabulated: these are usually referred to as dL (lower value) and dU (upper
value). Positive serial correlation is associated with DW values below 2 (in this
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case the alternative hypothesis is H1 : � > 0 ). The decision rule is as follows:

If: 0 < DW < dL| {z }; dL < DW < dU| {z }; dU < DW < 2| {z }
then: Reject H0; No Conclusion; Accept H0:

Negative serial correlation is associated with DW values above 2 (i.e. the alter-
native hypothesis is H1 : � < 0 ). In this case we subtract the value of the DW
from 4 and proceed as follows:

If: 0 < 4�DW < dL| {z }; dL < 4�DW < dU| {z }; dU < 4�DW < 2| {z }
then: Reject H0; No Conclusion; Accept H0:

Note: if R2 > DW; then we are probably dealing with a spurious regression. That
means that despite the apparent statistical signi�cance of the explanatory vari-
ables there is no underlying relationship between the dependent and explanatory
variables. Time series can appear highly correlated because of common trends
and not because one a¤ects the other (spurious correlation).
In the presence of a lagged endogenous variable in the model the DW statistic

becomes unreliable. Instead we can use Durbin�s h statistic:

h =

�
1� DW

2

�s
T

1� Ts2l
;

where s2l is the estimated variance of the coe¢ cient of the lagged dependent vari-
able. Since Durbin has shown that the h statistic is approximately normally
distributed, the test for �rst order serial correlation can be done directly by using
the normal distribution table.
To conclude, the drawbacks of the DW statistic are: (i) it can only test for

�rst order serial correlation in the residuals, (ii) it is not reliable in the presence
of lagged endogenous variables, (iii) no decision can be reached when it lies in
the dL to dU range. As a result, it is better to adopt the testing procedure given
below.
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1.1.2. Testing for �rst and higher order serial correlation

We test by running the following (auxiliary) regression:

b"t = 
1 + 
2tx2t + :::+ 
ktxkt +

NX
i=1

�ib"t�i + ut; (2)

H0 : �i = 0; i = 1; :::; N

H1 : �i 6= 0;

where b"t are the residuals of eq.(1). It is not di¢ cult to see that model (2) is the
unrestricted model, while model (1) is the restricted one. We can test the above
hypotheses individually, using t� tests; or jointly using an F � test :

F � test =

 X
t

b"2t �X
t

bu2t
!
=N X

t

bu2t
!
= (T � k �N)

� F (N; T � k �N) :
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Alternatively, we can test the joint signi�cance of the ��s by using the asymp-
totic Lagrange-multiplier test (LM � test) : The operational version of the test
is carried out by obtaining the product of the number of observations (T ) and the
coe¢ cient of determination (R2) of the auxiliary regression (2):

LM � test = TR2 � �2 (N) :

Decision rule: if the test statistic is smaller than its critical value we cannot reject
the null.

1.1.3. What are the e¤ects of serial correlation?

Exactly what e¤ect serial correlation has on the properties of the OLS estimator
depends on why it arises:

� If the residuals are serially correlated because of serial correlation in the
disturbances (the unsystematic part), then the OLS estimator

�b�� remains
unbiased and consistent but ceases to have minimum variance. In particular,
OLS produces biased estimates of the standard errors of the coe¢ cients; this
renders hypothesis testing unreliable. In this case consistent estimators of
the standard errors can be obtained by appropriately transforming the vari-
ables and then estimate the transformed model with OLS (this estimation
procedure is called feasible or estimated Generalized Least Squares (GLS));
note that Micro�t provides consistent standard errors on request.

� The most usual cause of serial correlation in the residuals is the omission of
relevant variables as regressors (in other words, the cause of residual serial
correlation lies in the systematic part of the regression). In this case the
coe¢ cient estimates themselves will be biased and inconsistent. The most
obvious candidates for the omitted variables which produce serial correlation
are lagged values of the regressors already included and of the dependent
variable itself. Therefore, the appropriate way to deal with the problem of
serial correlation is to respecify the model by including these lagged vari-
ables.
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1.2. Homoscedasticity

There are occasions in econometric modeling when the assumption of constant
variance, or homoscedasticity, will be unreasonable. For example, consider a cross
section study of family income and expenditures. It seems plausible to expect that
low-income individuals would spend at a rather steady rate, while the spending
patterns of high-income families would be relatively volatile. This suggests that in
a model where expenditures are the dependent variable, error variances associated
with high-income families would be greater than their low-income counterparts.
In other words, heteroscedasticity is present in the model.
The assumption of homoscedasticity can be expressed as

E
�
"2t
�
= �2; for all t; or V (yt=xt) � E (""0) = �2I:

On the other hand, heteroscedasticity can be expressed as

V (yt=xt) � E (""0) = �2
;

where the diagonal elements of 
 are not all equal to one (the o¤-diagonal elements
are all equal to zero).

1.2.1. Testing for heteroscedasticity

There are various types of tests depending on the nature of heteroscedasticity. In
what follows we are going to examine two of the most commonly used tests.

� The Reset-type test involves the estimation of the following (auxiliary)
regression:

b"2t = 
0 + 
1by2t + ut; (3a)

H0 : 
1 = 0;

H1 : 
1 6= 0;

i.e. we regress the squared residuals of model (1) on a constant and on the
squared �tted values of model (1). Under the assumption of homoscedas-
ticity, the slope coe¢ cient of eq. (3a) is zero. We can test the statisti-
cal signi�cance of 
1 by using a t � test; or an F � test (in this case the
F � test � F (1; T � 2) and is given by the square of the t � test), or an
LM � test (in this case it follows a �2 (1) distribution):
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� (This is optional) The (autoregressive conditional heteroscedasticity test)
ARCH-test involves the estimation of the following (auxiliary) regression:

b"2t = 
0 + 
1b"2t�1 + 
2b"2t�2 + :::+ 
pb"2t�p + ut (3b)

= 
0 +

pX
i=1


ib"2t�i + ut;
H0 : 
i = 0; i = 1; 2; :::; p

H1 : 
i 6= 0:

We can use individual t � tests or we can test the joint signi�cance of the

i�s with an F � test and/or an LM � test :

F � test =

 X
t

bv2t �X
t

bu2t
!
=p X

t

bu2t
!
= (T � 1� p)

� F (p; T � 1� p) ;

LM � test = TR2 � �2 (p) ;

where bvt is the residual series obtained from a regression of b"t on a constant.
1.2.2. What are the e¤ects of heteroscedasticity?

When the residuals are heteroscedastic the OLS estimator
�b�� remains unbiased

and consistent but ceases to have minimum variance. In particular, OLS produces
biased estimates of the standard errors of the coe¢ cients; this renders hypothesis
testing unreliable. In this case consistent estimators of the standard errors can
be obtained by appropriately transforming the variables and then estimate the
transformed model with OLS (this estimation procedure is called feasible or es-
timated Generalized Least Squares (GLS)); note that Micro�t provides consistent
standard errors on request.

1.3. Linearity

The assumption of linearity can be expressed as follows:

E (yt=xt) = �1 + �2tx2t + �3tx3t + :::+ �ktxkt:
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This speci�cation is not as limiting as it might seem, because the linear regression
model can be applied to a more general class of equations that are inherently
linear. Inherently linear models can be expressed in a form that is linear in the
parameters by a transformation of the variables. Inherently nonlinear models, on
the other hand, cannot be transformed to the linear form. The non-linearities of
interest here are the ones which cannot be accommodated into a linear conditional
mean after transformation.

� One of the most common ways to test the linearity assumption is to use
the Reset-type test. This testing procedure involves the estimation of the
following (auxiliary) regression:

b"t = 
1 + 
2tx2t + :::+ 
ktxkt + �by2t + ut; (4)

H0 : � = 0;

H1 : � 6= 0:

It is not di¢ cult to show that (4) is the unrestricted model, whereas model
(1) is the restricted one. We can now test the statistical signi�cance of � by

using the t� test
�
= estimate of �

standard error of b�
�
, or the F� and/or LM � tests :

F � test =

 X
t

b"2t �X
t

bu2t
!
=1 X

t

bu2t
!
= (T � k � 1)

� F (1; T � k � 1) ;

LM � test = TR2 � �2 (1) :

� The failure of linearity has major consequences for our estimation. In par-
ticular, when linearity does not hold the OLS estimators are biased and
inconsistent. In other words estimation and testing results are invalid and
we need to respecify our model.

1.4. Normality

The assumption of normality can be expressed as follows:

"t � N
�
0; �2

�
; or (yt=xt) � N

�
�0xt; �

2
�
:
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If the assumption of normality does not hold, then the OLS estimator
�b�� remains

the Best Linear Unbiased Estimator (BLUE), i.e. it has the minimum variance
among all linear unbiased estimators. It remains consistent, but is not the max-
imum likelihood estimator which can only be de�ned if a particular distribution
is speci�ed for yt: However, without normality one cannot use the standard for-
mulae for the t and F distributions to perform statistical tests. Fortunately, the
central-limit theorem provides a rational for using standard statistical tests as
approximately correct for reasonably large sample sizes.

Before we proceed with the normality tests let us specify the null hypothesis.
The null is that the skewness (�3) and kurtosis (�4) coe¢ cients of the condi-
tional distribution of yt (or, equivalently, of the distribution of "t) are 0 and 3,
respectively:

H0 : �3 = 0; (if �3 < 0 then f (yt=xt) is skewed to the left)
�4 = 3; (if �4 > 3 then f (yt=xt) is leptokurtic)

(This is optional) The above assumptions can be tested jointly using the Jarque-
Bera test (JB) which follows asymptotically a chi-square distribution:

JB � test =

�
T

6
b�23 + T

24
(b�4 � 3)2� � �2 (2) ;

where b�3 =

24 1
T

X
t

b"3t
!
=

 
1

T

X
t

b"2t
!3=235 ;

and b�4 =

24 1
T

X
t

b"4t
!
=

 
1

T

X
t

b"2t
!235 :

Note that the JB � test is sensitive to outliers. The above assumptions can also
be tested individually, using the asymptotic distributions of b�3 and b�4 :

H0 : �3 = 0;

test� statistic =

r
T

6
b�3 � N (0; 1) :

H0 : �4 = 3;

tets� statistic =

r
T

24
(b�4 � 3) � N (0; 1) :
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1.5. No Perfect Multicollinearity: Rank (X) = k

If there is an exact linear relationship among the right-hand side variables of our
model, then we say that we have the problem of perfect multicollinearity:
rank (X) < k; and so (X 0X) is not invertible, and as a consequence estimation
of the model is not feasible.
Multicollinearity arises when two or more variables (or combinations of vari-

ables) are highly (but not perfectly) correlated with each other. In this case the

estimated coe¢ cients
�b�� remain unbiased but their standard errors get very

large. Generally, worrying about multicollinearity does more damage than multi-
collinearity itself.
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1.6. Parameter Time Invariance

Without loss of generality we are going to present and test the above assumption
in the context of the following bivariate linear model:

yt = �xt + "t; t = 1; 2; :::; T: (5)

Under the null hypothesis the parameters � and �2 remain constant throughout
the sample period. Under the alternative hypothesis � and �2 change between
two speci�ed time periods:

yt = �xt + u1t; u1t � iid
�
0; �21

�
; t = 1; 2; :::; T1; (6a)

yt = 
xt + u2t; u2t � iid
�
0; �22

�
; t = T1 + 1; T1 + 2; :::; T: (6b)

It is easy to see that the number of observations of the �rst subsample is T1;
whereas the number of observations of the second subsample is T2 = T � T1:
Below we present three tests depending on whether �; �2; or both may change.

� Testing Variance Equality (H0 : �21 = �22) :�
s21
s22

�
� F (T1� k; T2� k) ;

where s21 =
Pbu21t
T1�k ; s

2
2 =

Pbu22t
T2�k ; and k is the number of coe¢ cients we estimate

in eq. (5) (note that in this case k = 1). The larger variance should be
used as the numerator. This is the Goldfeld-Quandt Variance Ratio test, for
heteroscedasticity of a very speci�c type; it is sensitive to the failure of the
normality assumption.

� Testing Coe¢ cient Equality (H0 : � = 
) conditional on variance equal-
ity:

F � test =

 
TX
t=1

b"2t � T1X
t=1

bu21t � TX
t=T1+1

bu22t
!
=k 

T1X
t=1

bu21t + TX
t=T1+1

bu22t
!
= (T � 2k)

� F (k; T � 2k) :

Note that in the context of model (5) k = 1: The unrestricted model com-
prises of eq. (6a) and (6b), while the restricted model is given by eq. (5).
The above is Chow�s test for coe¢ cient equality and it can be used when
T1 > k and T2 > k:
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� Testing Predictive Failure (i.e. whether the model of the �rst subsample
predicts the second subsample):

F � test =

 
TX
t=1

b"2t � T1X
t=1

bu21t
!
=T2 

T1X
t=1

bu21t
!
= (T1� k)

� F (T2; T1� k) :

The above test is particularly useful when the observations of the 2nd sub-
sample do not allow us to estimate the model. In this case eq. (5) is the
restricted model, whereas eq. (6a) is the unrestricted one.

� Observe that the all three tests above assume that you know the point
at which the parameters change, i.e. you know when the structural break
occurs. If you do not, thenMicro�t provides theCUSUM andCUSUMSQ
plots to test for structural stability. If the plots cross the two lines denoting
the 95% con�dence interval bounds, they indicate that there has been a
structural shift.
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