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1. The Multivariate Classical Linear Regression Model

The general form of the multiple linear regression model is

yt = �1x1t + �2x2t + :::+ �kxkt + "t; (1)

where t = 1; :::T; indicates the observation number, xit and "t are the observations
of the ith regressor and the error term at period t, respectively. yt denotes the
observation of the dependent variable at period t and the ��s are (scalar) parame-
ters. It is customary to set xit = 1 for all t, in which case �1 is the constant term
of the regression and �2; :::; �k are the slope coe¢ cients of the regression:

yt = �1 + �2x2t + :::+ �kxkt + "t: (1�)

Using matrix notation, (1�) can be written as

yt = �
0xt + "t; t = 1; :::; T; (1a)

where � and xt are (k � 1) vectors of parameters and exogenous variables, respec-
tively. Alternatively,

y = X� + "; (1b)

where y and " are (T � 1) vectors of the endogenous variable and the error term,
respectively. X is a (T � k) matrix of exogenous variables with 1�s in its �rst
column, and � is a (k � 1) vector of parameters.

Assumptions
[A1] Functional form: the relationship between y and X is linear.
[A2] Zero mean of the disturbance: E ("t) = 0; for all t:
[A3] Homoscedasticity: V ("t) = �2; for all t:
[A4] No serial correlation: C ("t; "s) = 0; if t 6= s:
[A5] No perfect multicollinearity: rank(X) = k; k < T:
[A6] Non stochastic regressors.
[A6�] Uncorrelatedness of X and ": E (X 0") = 0:
[A7] Normality: " � N (0; �2I) ; where I is a (T � T ) identity matrix.



Assumptions [A2]-[A4] can be summarised as "t � iid (0; �2) . Furthermore,
using matrix notation, assumptions [A2]-[A4] can be written as

E (")
(T�1)

= 0

V (")
(T�T )

= E (""0)
(T�1)(1�T )

=

26666664
E ("21) E ("1"2) : : : E ("1"T )
E ("2"1) E ("22) : : : E ("2"T )

: : : : : :
: : : : : :
: : : : : :

E ("T "1) E ("T "2) : : : E ("2T )

37777775

= E (""0) =

26666664
�2 0 : : : 0
0 �2 : : : 0
: : : : : :
: : : : : :
: : : : : :
0 0 : : : �2

37777775 = �
2I

So we can write: " � D (0; �2I)

1.1. Least Squares Estimation

The least squares coe¢ cient vector
�
^
�OLS

�
minimizes the sum of squared resid-

uals
�b"0b" =PT

t=1b"2t� : From (1b) we have that y = by + b", where y and by are the
actual and �tted values of the endogenous variable, respectively. We also have
that by = Xb�; and so b" = y �Xb�: Thus the sum of squared residuals is given by

b"0b" =
�
y �Xb��0 �y �Xb��

= y0y � b�0X 0y � y0Xb� + b�0X 0Xb�
= y0y � 2y0Xb� + b�0X 0Xb�:
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The solution to the above minimization problem is1

min
�b"0b"� :

@
�b"0b"�
@b� = �2X 0y + 2X 0Xb� = 0

) b�
(k�1)

=
�
X

0
X
��1

X
0
y: (2)

To derive (2) we used the following matrix di¤erentiation rules: @(X�)
@�

= X
0
and

@
�
�
0
X
0
X�

�
@�

= 2X
0
X� , since X

0
X is a symmetric matrix.

� Note that
�
X

0
X
�
has an inverse, and consequently least-squares estimation

is feasible, because of assumption [A5].

1.2. Gauss-Markov Theorem

Under assumptions [A1]-[A6] the least squares estimator b� is BLUE
(best linear unbiased estimator).

Proof: From eq. (2) we have that b� = Ay; where A
(k�T )

=
�
X

0
X
��1

X
0
; i.e. b� is a

linear estimator. In addition, observe that b� can be expressed as
b� =

�
X

0
X
��1

X
0
y =

�
X

0
X
��1

X
0
(X� + ")

= � +
�
X

0
X
��1

X
0
"; i.e.b� = � + A": (2�)

Thus
E
�b�� = � + AE (")) E

�b�� = �; (2a)

1The second order conditions of the above minimisation problem are

@2
�b"0b"�

@b�@b�0 = 2X 0X;

where X 0X is a positive de�nite matrix. To see this consider an arbitrary (k � 1) vector � and
the quadratic form q = �

0
X

0
X� = v

0
v =

P
i v
2
i > 0; since q > 0 we have that X

0
X is positive

de�nite.
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and so b� is an unbiased estimator of �:
Furthermore, the variance covariance matrix of b� is given by

V
�b��

(k�k)

= E

��b� � ���b� � ��0�
= E

h
(A") (A")

0
i
= E

�
A""

0
A
0
�

= AE
�
""

0
�
A
0
= A

�
�2I
�
A
0
= �2AA

0 )

V
�b�� = �2

�
X

0
X
��1

; (2b)

since AA
0
=
�
X

0
X
��1

X
0
X
�
X

0
X
��1

=
�
X

0
X
��1

: It can also be shown that any
other linear unbiased estimator b of � has greater variance than b�: In this sense,b� is best (it has the minimum variance among all linear unbiased estimators of
�)2.

2To complete the proof of the Gauss-Markov theorem we need to show that any other linear
unbiased estimator, b; has greater variance than b�. Without loss of generality we can write:

b = (A+ C) y = b� + Cy = b� + CX� + C";
E (b) = E

�b��+ CX� + CE ("))
E (b) = � if CX = 0:

Observe that

b� � = (A+ C) y � � = (A+ C) (X� + ")� �
= AX� + CX� + (A+ C) "� � = (A+ C) ";

since CX = 0 and AX =
�
X

0
X
��1

X
0
X = I: Therefore,

V (b) = E
h
(b� �) (b� �)

0i
= E [(A+ C) "] [(A+ C) "]

0

= E
h
(A+ C) ""

0
(A+ C)

0i
= (A+ C)E

�
""

0
�
(A+ C)

0

= �2 (A+ C) (A+ C)
0
= �2

��
X

0
X
��1

+ CC
0
�

= V
�b��+ �2CC 0

) V (b) � V
�b�� ;

since CC 0 is positive semide�nite.
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1.3. Maximum Likelihood Estimation

The joint density of the random variables yt and xt can be written as the product
of the conditional and marginal densities

f (yt; xt) = f (yt=xt) f (xt) :

We assume that X has rank k and is weakly exogenous with respect to the
parameters of interest �:Weak exogeneity requires that the parameters of interest
are only functions of the parameters of the conditional distribution and there are
no restrictions linking them with the parameters of the marginal distribution. In
other words, weak exogeneity allows us to ignore the marginal distribution of xt;
weak exogeneity is required for inference (estimation and testing). Essentially, a
variable xt in a model is de�ned to be weakly exogenous for estimating a set of
parameters � if inference on � conditional on xt involves no loss of information.
For the �rst two moments of the conditional distribution we assume that (i)

the conditional expectation is a linear function of xt,

E (yt=xt) = �
0
xt; (assumption [A1]) (3a)

and (ii) the conditional variance is a constant (independent of xt),

V (yt=xt) = �
2: (3b)

In addition, we assume that the parameters of interest, � = (�; �2) ; are time
invariant.

� The conditional expectation constitutes the systematic part of yt, whereas
the unsystematic part of yt is de�ned as

"t = yt � E (yt=xt)) E ("t) = 0 (assumption [A2]), (3c)

since E ("t) = E (yt) � E [E (yt=xt)] )(using the law of iterated expecta-
tions) E ("t) = E (yt)� E (yt) = 0:

� The (T � T ) conditional variance-covariance matrix of y is equal to the
variance-covariance matrix of ":

V (y=X) = V (") = E (""0) = �2I (assumptions [A3]-[A4]). (3d)
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� The conditional distribution is assumed normal (assumption [A7]):

f (yt=xt) =
1p
2��2

exp

8><>:�
�
yt � �

0
xt

�2
2�2

9>=>; : (3e)

� Observe that in the above discussion we expressed assumptions [A1]-[A7] in
terms of the observable y rather than the unobservable " :

(y=X) � N
�
X�; �2I

�
:

Following Kennedy(1985), �the maximum likelihood principle of estimation is
based on the idea that the sample of data at hand is more likely to have come from
a real world characterized by one particular set of parameter values than from a
real world characterized by any other set of parameter values...The maximum
likelihood estimate (MLE) is the particular set of values, b� and b�2, that creates
the greatest probability of having obtained the sample in question�.

In order to estimate the parameters of interest, � and �2, we need to write
down the likelihood function of yt. Since the sample is independent, the likelihood
function is proportional to the product of the distributions of each yt; i.e.

L =
TY
t=1

f (yt=xt)

The log-likelihood is given by

LL =
TX
t=1

log f (yt=xt) ; where

log f (yt=xt) = �1
2
log �2 � 1

2
log 2� �

�
yt � �

0
xt

�2
2�2

:

So the log-likelihood can be written as

LL = �T
2
log �2 � T

2
log 2� � 1

2�2

TX
t=1

�
yt � �

0
xt

�2
; or

LL = �T
2
log �2 � T

2
log 2� � 1

2�2

�
y
0
y � 2y0X� + � 0X 0

X�
�
:

6



Maximization of the log-likelihood gives:

@LL

@�
= � 1

2�2

�
�2X 0

y + 2X
0
X�
�
= 0) b� = �X 0

X
��1

X
0
y ; (4)

@LL

@�2
= � T

2�2
+
"
0
"

2�4
= 0) b�2 = �b"0b"� =T :

1.4. Sampling distribution of b�b� is a linear function of the normally distributed random vector y; b� = Ay; where
A =

�
X

0
X
��1

X
0
: Hence we have that

b� � N �AX�; �2AA0
�
) b� � N ��; �2 �X 0

X
��1�

;

1.5. Sampling distribution of b�2
(The following results are presented without proof)

(Optional)
Tb�2
�2

� �2 (T � k) ; E
�b�2� = T � k

T
�2; V

�b�2� = 2 (T � k)
T 2

�4;

so b�2 is a biased estimator. An unbiased estimator of �2 is given by
(Important) s2 =

b"0b"
T � k or s

2 =
T

T � kb�2; (5)

(Optional) E
�
s2
�
= �2; V

�
s2
�
=

2�4

T � k ; V
�
s2
�
> V

�b�2� :
Note that there is a trade-o¤ between unbiasdness and lower variance.

1.6. Degrees of Freedom

The residuals are the observable estimates of the unobservable disturbances. Even
when the disturbances are assumed uncorrelated (assumption [A4]), the residuals
are linearly dependent. This is just another way of looking at the fact that they
must sum to zero (if there is a constant term) and be uncorrelated with the
regressors. With a sample of T observations we estimate T residuals. However, k
parameters are employed to estimate these residuals, and so only (T � k) of the
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residuals are linearly independent. That is, given any (T � k) residuals, and the
original data, it is possible to deduce the other k residuals.
We say that the sum of squared residuals has (T � k) degrees of freedom. The

number of degrees of freedom of a sum of squares is just the number of independent
observations (in this case residuals) from which the sum of squares is constructed.

1.7. R2; and Corrected R2

The total variation of Y can be decomposed as follows:PT
t=1 (yt � y)

2 =
PT

t=1 (byt � y)2 +
PT

t=1b"2t
Total Variation of y Explained Variation of y Residual Variation of y

R2 measures the proportion of the variation in y which is explained by the multiple
regression equation:

R2 = 1�
PT

t=1b"2tPT
t=1 (yt � y)

2
:

It is called the (squared) multiple correlation coe¢ cient because it measures the
(square of) the correlation between y and a particular linear combination of the
x�s. If there is a constant term then 0 � R2 � 1:

� R2 can be used to compare regressions with the same dependent variable.

� The addition of more independent variables to the regression equation can
never lower R2 and is likely to increase it, since adding more variables cannot
worsen the explanation of y:

The di¢ culty with R2 as a measure of goodness of �t is that R2 pertains to ex-
plained and unexplained variation in y and therefore does not account for the
number of degrees of freedom. A natural solution is to use variances, not varia-
tions, thus eliminating the dependence of goodness of �t on the number of exoge-
nous variables in the model (variance equals variation divided by the degrees of
freedom). We de�ne the corrected R2 as

R
2
= 1� variance of the regression

sample variance of y
= 1� s

2

s2y
= 1�

PT
t=1 b"2t
T�kPT

t=1(yt�y)
2

T�1

:
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The relationship between R2 and R
2
is given by

R
2
= 1�

�
1�R2

��T � 1
T � k

�
:

Note that

� If k = 1; then R2 = R2:

� If k > 1; then R2 � R2:

� R2 can be negative.

� When new variables are added to the regression model, R2 always increases,
while R

2
may rise or fall (R

2
always increases when the t � ratio of an

additional explanatory variable is greater than 1).

1.8. Testing hypotheses about linear restrictions

1.8.1. Testing a single linear restriction which involves one parameter

In the context of eq. (1�) we wish to test

H0 : �i = �
�
i , where �

�
i is some constant

H1 : �i 6= ��i :

The sample evidence on �i is given by b�i: The obvious way to measure the dis-
tance between the hypothesized value ( ��i ) and the sample evidence

�b�i� is the
di¤erence

�b�i � ��i� : We need to divide the latter by the standard error (si) ofb�i, so that our distance measure does not depend on the units of measurement
of the data. The resulting test-statistic is called a t� test, since it can be shown
that, under H0; it follows a t-distribution with T � k degrees of freedom:

t� test =
b�i � ��i
si

� t (T � k) :

Decision rule: if (negative critical value)< t� test <(positive critical value), then
we accept H0: (Note that as the degrees of freedom increase the distribution of
the t � test approximates the standard normal.). Alternatively, we can use an
F � test (see below).
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1.8.2. Testing a single linear restriction which involves two parameters

As an example consider that in the context of eq. (1�) we wish to test

H0 : �2 + �3 = 0;

H1 : �2 + �3 6= 0:

In this case the t� test is

t� test =
b�2 + b�3
s(b�2+b�3) =

b�2 + b�3p
s22 + s

2
3 + s2;3

� t (T � k) ;

where s22 is the sample variance of b�2; s23 is the sample variance of b�3; and s2;3 is
the sample covariance between b�2 and b�3: Alternatively, we can use an F � test
(see below).

1.8.3. Testing more than one linear restrictions

In this case we can employ an F � test: To carry out this test we must formulate
the restricted model, by imposing the linear restrictions on the unrestricted one,
and estimate it. Suppose that the maintained or unrestricted model is

(UR) : yt = �0 + �1x1t + �2x2t + �3x3t + "t; t = 1; :::; T

We wish to test the joint signi�cance of the exogenous variables x2t; x3t; i.e.

H0 : �2 = 0; and �3 = 0

H1 : �2 6= 0; �3 6= 0:

The restricted model is

(R) : yt = �0 + �1x1t + ut; t = 1; :::; T:

The F � test is computed as follows:

F � test =

 
TX
t=1

bu2t � TX
t=1

b"2t
!
=2 

TX
t=1

b"2t
!
= (T � 4)

� F (2; T � 4) :
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Generally, the F � test is given by

F � test = (RRSS � URSS) =r
URSS= (T � k) � F (r; T � k) ;

where RRSS and URSS are the restricted and unrestricted residual sums of
squares, respectively; r is the number of restrictions, (T � k) are the degrees of
freedom of the UR model.
Decision rule: if F � test <critical value, then accept H0:

1.8.4. The F � statistic

The F�statistic; reported by most regression programs, tests the joint hypothesis
that none of the explanatory variables helps to explain the variation of y about
its mean. In other words, it tests the hypothesis that all the slope coe¢ cients of
regression (1�) are equal to zero:

H0 : �2 = �3 = ::: = �k = 0;

H1 : �2 6= 0; and �3 6= 0; :::; and �k 6= 0:

Therefore, the unrestricted and restricted models (recall that the restricted model
is obtained by imposing the restrictions on the unrestricted one) are:

Unrestricted model (UR) : yt = �1 + �2x2t + :::+ �kxkt + "t;

Restricted model (R) : yt = �1 + ut:

We can test the above null hypothesis by using an F � test; which we call the
F � statistic:

F � statistic =

�
TP
t=1

bu2t � TP
t=1

b"2t� = (k � 1)�
TP
t=1

b"2t� = (T � k) � F (k � 1; T � k) ;

F � statistic =
(RRSS � URSS) = (k � 1)

URSS= (T � k) ;

where URSS denotes the unrestricted residual sum of squares;
TP
t=1

b"2t ; and RRSS
denotes the restricted residual sum of squares,

TP
t=1

bu2t :
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Decision rule: if F � statistic <critical value, then accept H0:
It can be shown that

F � statistic = R2UR (T � k)
(1�R2UR) (k � 1)

:

So the F � statistic can be used in the multiple regression model to test the
statistical signi�cance of the R2 statistic.
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