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1. The Classical Linear Regression Model: The Bivariate
Case

Suppose that economic theory suggests that Y = f (X)), and in particular that YV’
depends linearly on X :
Y = a+ BX. (1)

(You can think of Y and X as representing consumption and income, respec-
tively.) This theoretical model provides the basis for an empirical study. Note
that the deterministic (exact) relationship (1) serves as a rule and specifies that
a unit change in X will produce a 8 units change in Y, on average. In order to
incorporate in the above model the inherent randomness in its real world counter-
part we introduce a stochastic element, ¢ : Y = f (X, ¢). The standard approach
to incorporate this random element in the relationship between Y and X is to
assume that it is additive. So, our stochastic equation becomes:

Y =a+pX +¢, (2)

where ¢ is a random disturbance (error term). The disturbance (so named
because it “disturbs” an otherwise stable relationship) is justified in three main
ways:

(i) omission of the influence of innumerable chance effects;

(ii) measurement error (in the dependent variable);

(iii) human indeterminacy (human behaviour can be such that actions taken under
identical circumstances will differ in a random way, and so the disturbance term
can be thought of as representing this inherent randomness in human behaviour).

The above stochastic equation (2) is the empirical counterpart of the theoreti-
cal model (1). We assume that each observation in our sample (Y3, X;),t =1,.., T,
is generated by an underlying process described by

Y, = a+ BX; + &, (3)



where, o and 3 are called parameters of interest, Y is the dependent (endoge-
nous,or explained, or regressand) variable, X is the independent (exogenous, or
explanatory, or regressor) variable, and ¢ indexes the T' sample observations.



For any set of values of the parameters, a and B, values of the dependent
variable (}Aﬁ) can be calculated using the values of the independent variable in
the data set:

YVi=a+ BXt, (4)
where }Aft, t =1,..T, are called the fitted or predicted values of Y;. Subtraction of

the fitted values from the actual values (Y;) produces the residuals &;, ¢t = 1,...T'
(they can be thought of as estimates of the disturbances):

Y,-Y, =%, andso Y; = & + BX, + .. (5)

A different set of values of the parameters would create a different estimated
line and thus a different set of residuals. It seems natural to ask that a “good” esti-
mator be one that generates a set of estimates that makes these residuals “small”.
The most popular definition of “small” is the minimisation of the sum of squared
residuals. The estimator generating the set of values of the parameters that min-
imize the sum of squared residuals is called the ordinary least squares estimator
(OLS).

Assumptions of the Bivariate CLRM:

[A1] Functional form: Y; depends linearly on X;.

[A2] Zero mean of the error term: F (¢;) = 0, for all ¢.
[A3] Homoscedasticity: Var (g;) = o2, for all .

[A4] No serial correlation: Cov (g4,e5) =0, if t # s.
[A5] X, is non stochastic.

[A6] the error term is normal.

e Assumption [A5] can be relaxed by assuming that Cov (X, &) = 0 (e
allowing X; to be stochastic and uncorrelated with the disturbance).

e Assumptions [A2]-[A4] can be summarised as
e ~ iid (0,07)
which reads: “the disturbances are independently, identically distributed

with zero mean and constant variance”, whereas assumptions [A2]-[A4] and
[A6] can be summarised as

e~ IN (0,0%).
e The deterministic part of equation (3) is the expectation of Y; given X :
E(Y,/ X)) = a+ BX,.
e The variance of the error term is the conditional variance of Y; on X :
V(Y1) X,) = o>

So speaking, the parameters of interest in the context of the bivariate linear
regression model are «, 3, and o2



1.1. Deriving the OLS Estimators

One of the several ways to derive the OLS estimators in the context of the bivariate
linear regression is the following;:
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Substitute the above into (5) to get
Y, =Y - BX + BX; + 8 =y = Ba + &, (57)

where y; and x; denote the variables in deviation from their means. So we can
write:
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Observe that the above estimator is the sample covariance between X and Y
divided by the sample variance of the independent variable X.



Finally, we compute our estimate of o2 by

which is called the variance of the regression. It can be shown that s? is an
unbiased estimator of o2.

1.2. Gauss-Markov Theorem

Under assumptions [A1]-[A5], the least squares estimators (a and B) are BLUE,
i.e. best, linear, unbiased estimators.

1.3. Expectation and Variance of the OLS Estimators

T
o3 X}
E(@) = a, Var(a)= t? ,
Tyt
t=1
~ Xo?
Cov(@,ﬁ) = —TU ,
> i
t=1
2 4
E (82) = o2 Var (32) = Ti2‘

Using sf instead of o2 in the above formulae, we obtain the sample variances of
a and . R
(Note: in what follows, we will denote the sample standard errors of & and by
sg and 55, respectively.



1.4. Goodness of Fit (R?)

The total variation of Y can be decomposed as follows:
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We define the goodness of fit (or the coefficient of determination) as
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It can be shown that R*> = 72, , where ry, is the sample correlation between X

and Y.



1.5. Hypothesis Testing

A major group of statistical inference procedures is hypotheses tests. Hypothesis
testing is a way of confronting prior beliefs with sample information. The classical
testing procedures involve:

e a “null” or maintained hypothesis, Hy, which states that the data in the
sample have been generated by a particular population;

e an alternative hypothesis, Hy;

e a test-statistic, with a known distribution under the null and the alternative,
which will enable us to decide whether H, should be rejected or not. The
same test procedure can lead to different conclusions in different samples.
So speaking, the test procedure can lead to two different types of error: type
I error, i.e. rejection of Hy when it is true, and type II error, i.e. failure to
reject the null when it is false. The probability of a type I error is the size
of the test, usually denoted «; (1 — «) is usually called the significance level.
The probability of a type II error is denoted 3. The power of the test is the
probability that it will reject the null when it is false, i.e. power =1 — .
The above can be summarised in the following table:

Accept H Reject H
Hy is true ok type I error
Hy is false | type II error ok

The size of the test is under the control of the analyst, so a fourth ingredient
of a testing procedure is

e a specified size of the test , usually a = 0.05.



1.6. Testing A single Linear Restriction Which Involves One Parameter

As an example consider that, in the context of the bivariate CLRM (eq.(3)) and
under the assumption of normality, we wish to test

Hy : [ =p", where " is some constant

Hy @ B#p3

We can follow two alternative testing procedures:
(I) The sample evidence on (3 is given by 5. The obvious way to measure the

distance between the hypothesized value ( 5*) and the sample evidence (B) is

the difference (B — B*) . We need to divide the latter by the standard error <S’B>

of B, so that our distance measure does not depend on the units of measurement
of the data. The resulting test-statistic is called a ¢t — test, since it can be shown
that, under Hy, it follows a t-distribution with 7" — 2 degrees of freedom:

B—p
5B

t —test =

~t(T - 2).

Decision rule: if (negative critical value)< t —test <(positive critical value), then
we cannot reject Hy. (Note that as the degrees of freedom increase the distribution
of the t — test approximates the standard normal.)

The above testing procedure can also be followed to test that the intercept is equal
to a particular value.

(IT) Alternatively, we can impose the restriction on eq. (3), estimate the resulting
model, and then use an F' — test.
Decision rule: if F — statistic <critical value, then accept H.

For example, suppose that we need to test

H() : 5:0
H1 : 6%0



In this case the F' — test is usually called the F' — statistic and we have:

Unrestricted model (UR) : Y, =a+ X, + ¢y,
Restricted model (R) : Y, =a+ uy,
T T
(za-xe)n
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T
where URSS denotes the unrestricted residual sum of squares, > &7, and RRSS
t=1

T

denotes the restricted residual sum of squares, > uZ. It can be shown that:
t=1

Rip (T —2)
(1 - Rip)

In this sense, the ' — statistic tests the statistical significance of the coefficient
of determination of the bivariate linear regression model (3).

F — statistic =

1.7. Models with Logs

In econometrics we often estimate models in log-linear form. It is convenient to
work with log-linear models for two reasons:
(1) The slope coefficient in a log-linear model

logY; = a+ Blog X; + &
is the elasticity of Y; with respect to X, i.e.
e () (3)- -
v \dx, ) \Y, ) dlogX,
(ii) The difference of the logarithms of a (time) series is approximately the
growth rate (g) of the series:

i = (1+9)Yia=
logY; = log(1+g)+logY; 1,
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So
logY; —logY;_1 =log (1+g).

But for small g, we have that log (1 + ¢) is approximately equal to g. i.e.

logy; —logY; 1 = g, or
Yi—Yi

logV; —logV; ; & %
-1

(Note: we use natural logs, i.e. logs to the base e.)
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