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1. Estimation

The probability distributions serve as models for the underlying processes that
produce our observed data. The goal of statistical inference in econometrics is
to use the principles of mathematical statistics to combine these theoretical dis-
tributions and the observed data into an empirical model of the economy. The
classical theory of statistical inference centers on rules for using the sampled data
e¤ectively.
A sample of n observations on one (or more) variable x is a random sam-

ple if the n observations are drawn independently from the same population, or
probability density f (x; �) ; where � denotes the population parameters (i.e. the
parameters of interest). Data are generally drawn in one of two settings. A cross
section is a sample of a number of observational units all drawn at the same point
in time. A time series is a set of observations drawn on the same observational
unit at a number of (usually evenly spaced) points in time. Our objective is to
use the sample data to infer the value of a parameter or set of paramaters, �:
An estimator is a rule or strategy for using the data to estimate the parame-

ters. An estimator is a random variable, thus it has a distribution characterized by
an expectation and a variance. The estimator corresponding to a speci�c sample
is called an estimate and it is a number. In other words, an estimator is simply
an algebraic function of a potential sample of data; once the sample is drawn,this
function creates an actual numerical estimate. Econometric theory focuses not
on the estimate itself, but on the estimator because the justi�cation of an esti-
mate computed from a particular sample rests on a justi�cation of the estimation
method. So, the search for good estimators constitutes much of econometrics.
Estimators are compared on the basis of a variety of attributes.

Finite sample properties of estimators are those attributes that can be com-
pared regardless of the sample size.
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The above discussion was restricted to unbiased estimators. However, a biased
estimator might be preferred to an unbiased estimator with a much larger variance.
A criterion that recognizes this possible tradeo¤ is the mean squared error.

� The mean squared error of an estimator is
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if � is a scalar. The estimator with the smaller MSE is preferred.

� An estimator is minimum variance linear unbiased (MVLUE) or best
linear unbiased (BLUE) if it is a linear function of the data and has
minimum variance among all the linear unbiased estimators.

Some estimation problems involve characteristics that are not known in �nite
samples. In these instances, estimators are compared on the basis of their large
sample, or asymptotic properties.

� Let xn be a random variable (r.v) indexed by the size of a sample. xn
converges in probability to a constant, c, if

lim
n!1

Prob (jxn � cj > ") = 0;
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for any positive ". Convergence in probability can also be expressed as

plim xn = c, xn
P! c

� A special case of convergence in probability is convergence in mean square or
convergence in quadratic mean. xn converges in mean square to a constant,
c, if

lim
n!1

E (xn) = c and lim
n!1

V (xn) = 0:

Convergence in mean square implies convergence in probability, the converse
is not true.

� An estimator
^
�n of a parameter � is a consistent estimator if and only if

plim
^
�n = �:

(Note: an asymptotic distribution is a distribution that is used to approximate
the true �nite sample distribution of a random variable.)

1.1. The Method of Least Squares

The method of least squares was �rst introduced by Legendre in 1805 and Gauss in
1809 in the context of astronomical measurements. The principle of least squares
involves minimising the sum of squared errors.
Consider a random sample, yi; i = 1; ::n; drawn from some population with

mean � and variance �2: We can write:

yi = E (yi) + "i; where "i � iid
�
0; �2

�
;

or yi = �+ "i:

Thus

min
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gives the least-squares estimator (OLS) of the population mean

b� = � 1
n

� nX
i=1

yi;
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which is the sample mean. In this case, we say that the least squares estimate for
the population mean is obtained by regressing y on a constant.
Regression analysis is concerned with describing and evaluating the rela-

tionship between a given variable (dependent) and one or more other variables
(independent). The term regression was coined by Sir Francis Galton (1822-1911)
who was studying the relationship between the height of children and the height of
parents. He observed that although tall (short) parents had tall (short) children,
there was a tendency for children�s heights to converge toward the average.

1.2. The Method of Maximum Likelihood

The maximum likelihood method of estimation was formulated by Fisher in a
series of papers in the 1920�s and 30�s.
Consider a random sample, yi; i = 1; ::n; drawn from a normal distribution

with mean � and variance �2; i.e.

f (yi) =
1p
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Suppose that we are interested in estimating the population mean �: The like-
lihood function (L) is the joint probability density function of the yi�s (times a
constant which plays no role in the estimation). Since the sample is independent
we can write

L � f (y1; y2; :::; yn) =
nY
i=1

f (yi) :

The principle of maximum likelihood involves maximising the likelihood function
with respect to the papameters of interest. It has to be noted that the logarithm
of the likelihood function represents the same information. So we can maximise
the log-likelihood funcion (LL):

max
�
LL =

nX
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log f (yi))
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�
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2
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2
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and obtain the maximum-likelihood estimator (MLE) of the population mean

b� = � 1
n

� nX
i=1

yi:
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Observe that the above, as in the case of least squares, is the sample mean.
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