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Lecture Notes 1

1. Random Variables and Probability Distributions

Consider a random experiment with a sample space 
:A functionX, which assigns
to each element ! 2 
 one and only one real number, is called a random variable.
Example: We toss a coin twice. The sample space is


 = f(HH) ; (HT) ; (TH) ; (TT)g ;

and the probabilities of its events are

P (HH) = 1=4; P (HT) = 1=4; P (TH) = 1=4; P (TT) = 1=4:

We now de�ne the function X-number of �heads�. In this case the outcome set,
i.e. the space of the random variable X is

S = f0; 1; 2g :

Thus we can write

P (X = 0) =
1

4
; P (X = 1) =

2

4
; P (X = 2) =

1

4
:



Let X be a random variable. The function F (�) de�ned by

F (x) = P (X � x) ; for all x 2 R;

is called the Distribution Function (D.F.) of X and satis�es the following proper-
ties:

(i) F (x) is non-decreasing,

(ii) F (�1) = lim
x!�1

F (x) = 0; and F (1) = lim
x!1

F (x) = 1;

(iii) F (x) is continuous from the right.

F (x) is also called the Cumulative Distribution Function of X; it is a distribution
function inasmuch as it tells us how the values of the random variable are distrib-
uted, and it is a cumulative distribution function since it gives the distribution of
values in cumulative form. The counterdomain of F (x) is the interval [0; 1] :

For the example in page 1 we have

F (0) = P (X � 0) = 1

4
;

F (1) = P (X � 1) = 3

4
;

F (2) = P (X � 2) = 1:
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The Distribution Function describes the distribution of values of the random
variable. For two distinct classes of random variables, the distribution of values
can be described more simply by using density functions. These two classes are:

1.1. Discrete Random Variable

A random variable (r.v.) X will be de�ned to be discrete if the range of X is
countable. If X is discrete then F (x) will be de�ned to be discrete.
If X is a discrete random variable with distinct values x1; x2; :::; xn; then the

function f (�) de�ned by

f (x) =

�
P (X = xj)
0

if
x = xj; j = 1; 2; :::; n
x 6= xj

�
is called the probability density function (p.d.f.) of the discrete X: Note that f (�)
is a non-negative function.

The values of a discrete r.v. are often called mass points and f (xj) denotes
the mass associated with the mass point xj: The distribution function of a discrete
random variable has steps at the mass points; at the mass point xj, F (�) has a
step of size f (xj), and F (�) is �at between mass points.

For the example in page 1 we have

f (0) = P (X = 0) =
1

4
;

f (1) = P (X = 1) =
1

2
;

f (2) = P (X = 2) =
1

4
:
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For a discrete random variable we have that

F (x) =
X
u�x

f (u) , and
X
x

f (x) = 1:

1.2. Continuous Random Variable

A random variable X is called continuous if there exists a function f (�) such that

F (x) =

Z x

�1
f (u) du , for every real number x:

If X is a continuous r.v. then F (�) is de�ned to be continuous. The function
f (�) is called the probability density function of the continuous random variable
X: In this case we have Z 1

�1
f (x) dx = 1:

Note that f (�) can be obtained by di¤erentiation, i.e.

f (x) =
dF (x)

dx

for those points x for which F (x) is di¤erentiable.

Caution:
The notations for the density function of discrete and continuous random vari-

ables are the same, yet they have di¤erent interpretations.
For discrete r.v.�s f (x) denotes probabilities, i.e.

f (x) = P (X = x) :

For continuous r.v.�s f (x) is the derivative of the distribution function, whereas
the probability that the r.v. will take a particular value is zero:

f (x) =
dF (x)

dx
; P (X = x) =

Z x

x

f (u) du = 0:

In addition, for a continuous r.v. we can write

P (a < X < b) = P (a � X � b) =
Z b

a

f (x) dx = F (b)� F (a) :
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2. Numerical Characteristics of Random Variables

2.1. (Mathematical) Expectation of a r.v.

Let X be a random variable. The (mathematical) expectation of X, E (X) ; or
the mean of X; �; is de�ned by

(i) � � E (X) =
X
j

xjf (xj) ; if X is discrete with mass points x1; x2; :::

(ii) � � E (X) =

Z 1

�1
xf (x) dx; if X is continuous with p.d.f. f (x) :

So E (X) is an �average� of the values that the random variable takes on,
where each value is weighted by the probability that the r.v. is equal to that
value; the expectation of a r.v. X is the centre of gravity of the unit mass that
is determined by the density function of X: Thus the mean of X is a measure of
where the values of the random variable X are �centred�.

It should be noted that the expectation or the expected value of X is not
necessarily what you �expect�. For example, the expectation of a discrete r.v.
is not necessarily one of the possible values of X, in which case, you would not
�expect�to get the expected value.

2.1.1. Example

You roll a (fair) die and you receive as many sterling pounds as the number of
dots that appear on the die. In this case we have that

E (X) = 1

�
1

6

�
+ 2

�
1

6

�
+ 3

�
1

6

�
+ 4

�
1

6

�
+ 5

�
1

6

�
+ 6

�
1

6

�
= 3:5:

The above does not imply that if you roll a die you can win 3.5 sterling pounds,
but if you play the game n times, with n su¢ ciently large, you expect to win
3:5 (n) sterling pounds.

2.1.2. Example

You are presented with two choices:

(i) Toss a coin with the possibility to
�
win $100 if heads
loose $50 if tails

�
:
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(ii) Receive $25.

Note that the expectation of choice (i) is $25.

The above game is a fair game because the mean of the risky choice (i) equals the
certain alternative (ii).

2.2. Expectation of a function of a r.v.

Let X be a random variable and g (�) be a function with both domain and counter-
domain the real line. The expectation of the function g (�) of the r.v. X, denoted
by E [g (X)], is de�ned by

(i) E [g (X)] =
X
j

g (xj) f (xj) ; for a discrete r.v.

(ii) E [g (X)] =
Z 1

�1
g (x) f (x) dx; for a continuous r.v.

2.3. Properties of expected value

(i) E (c) = c;

(ii) E (cX) = cE (X) ;

where c;X denote a constant and a r.v., respectively.

(iii) E (X1 +X2 + :::+Xn) = E (X1) + E (X2) + :::+ E (Xn) ;

(iv) E [c1g1 (X) + c2g2 (X) + :::+ cngn (X)] = c1E [g1 (X)] +

+c2E [g2 (X)] + :::+ cnE [gn (X)] ;

where c1; c2; :::; cn are constants, X1; X2; :::; Xn are r.v.�s, and gi (X), i = 1; 2; ::; n;
are functions of a r.v. X:
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2.4. Variance of a r.v.

The variance of a random variable X is denoted by �2 or V (X) ; and is given by

(i) �2 � V (X) =
X
j

(xj � �)2 f (xj) ; when X is a discrete r.v.,

(ii) �2 � V (X) =

Z 1

�1
(x� �)2 f (x) dx; when X is a continuous r.v..

The standard deviation of X is de�ned as � =
p
V (X): Note that the variance

of a r.v. is nonnegative.
The mean of a random variableX is a measure of central location of the density

of X: On the other hand, the variance of a r.v. X is a measure of the spread or
dispersion of the density of X:

Remark: Let g (X) = (X � �)2 : Then we can write that

E [g (X)] = E
�
(X � �)2

�
= V (X) :

Thus, the variance of a discrete or continuous r.v. X can be de�ned as

V (X) = E
�
(X � �)2

�
) V (X) = E

�
X2
�
� [E (X)]2 :

Chebyshev�s inequality:

P (�� r� < X < �+ r�) � 1� 1

r2
, for every r > 0:

When r = 2; we get that

P (�� 2� < X < �+ 2�) � 3
4
;

i.e. at least three fourths of the mass of any r.v. X fall within two standard
deviations of its mean.

2.5. Properties of Variance

(i) V (a) = 0; where a is a constant,

(ii) V (aX) = a2V (X) ; where a is a constant,

(iii) V (X � Y ) = V (X) + V (Y ) ; where X and Y are independent r.v.�s.
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2.6. Example

Consider a random experiment where there are only two possible outcomes; the
conventional practice is to call them �success�and �failure�. the r.v. X will take
the value 1, if the outcome is a �success�, with probability p; X will take the
value 0, if the outcome is a �failure�, with probability 1�p: The r.v. X is called a
Bernoulli random variable and the random experiment is called a Bernoulli trial.

The probability density function of X takes the following form:

f (x) =

�
px (1� p)1�x ; x = 0; 1

0; , otherwise

�
:

Therefore, we have that

� � E (X) =
X
j

xjf (xj) = 1 (p) + 0 (1� p) = p;

E
�
X2
�
=

X
j

x2jf (xj) = 1
2 (p) + 02 (1� p) = p;

�2 � V (X) = E
�
X2
�
� E (X)2 = p� p2 = p (1� p) ; or

V (X) =
X
j

(xj � �)2 f (xj) = (1� p)2 p+ (0� p)2 (1� p) =

= (1� p) p (1� p+ p) = p (1� p) :
An example of a Bernoulli trial is a toss of a coin.

2.7. Example

Let X be a continuous r.v. with the following p.d.f.

f (x) =

�
1
2
x ; 0 � x � 2
0 ; otherwise

�
:

The mean and the variance of X are given by

� � E (X) =

Z 2

0

xf (x) dx =

Z 2

0

1

2
x2dx =

�
1

6
x3
�2
0

=
4

3
;

E
�
X2
�
=

Z 2

0

x2f (x) dx =

Z 2

0

1

2
x3dx =

�
1

8
x4
�2
0

= 2;

�2 � V (X) = E
�
X2
�
� E (X)2 = 2� 16

9
=
2

9
; and � =

p
2

3
:
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The distribution function of X is given by

F (x) =

Z x

�1
f (u) du =

Z x

0

1

2
udu =

�
1

4
u2
�x
0

=
1

4
x2:

2.8. Example

Let X be a continuous r.v. with p.d.f. constant on an interval and 0 elsewhere,
i.e.

f (x) =

�
k; a < x < b
0; elsewhere

�
:

Such a random variable is said to be uniformly distributed on the interval [a; b].
Note that k is a function of b; a :Z 1

�1
f (x) dx = 1)

Z b

a

kdx = [kx]ba

) k =
1

b� a:

The expectation and the variance of X are given by

� � E (X) =

Z 1

�1
xf (x) dx

=

Z b

a

x

b� adx =
a+ b

2
;

E
�
X2
�
=

Z b

a

x2

b� adx =
b3 � a3
3 (b� a) ;

�2 � V (X) = E
�
X2
�
� E (X)2

=
(a� b)2

12
; and � =

b� ap
12
:

3. The Normal Distribution

We say that X is a normal random variable, or simply that X is normally distrib-
uted, with parameters � and �2; if the density function of X is given by

f (x) =
1p
2��2

exp

(
�(x� �)

2

2�2

)
; �1 < x <1:
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A normal r.v. is a continuous one. The parameters � and �2 represent the
mean and variance of X, respectively. The above p.d.f. is a bell shaped curve
that is symmetric about �. Alternatively, we can write:

X � N
�
�; �2

�
;

which reads as �X follows the normal with mean � and variance �2�.

The normal distribution was introduced by the French mathematician Abra-
ham de Moivre, back in the 18th century, and was used by him to approximate
probabilities associated with binomial random variables when the binomial pa-
rameter n is large. This result was later extended by Laplace and others and is
now encompassed in a probability theorem known as the Central Limit Theorem
(C.L.T.). The C.L.T. gives a theoretical base to the often noted empirical ob-
servation that many random phenomena obey, at least approximately, a normal
probability distribution.
By the beginning of the 19th century, the work of Gauss on the theory of

�errors�placed the normal distribution at the centre of probability theory.

An important fact about normal random variables is that if X is normally
distributed with parameters � and �2; then a linear transformation of X, Y =
�X + �; is normally distributed with parameters ��+ � and �2�2; i.e.�

X � N (�; �2)
Y = �X + �

�
) Y � N

�
��+ �; �2�2

�
;

since E (Y ) = E (�X + �) = �E (X) + � = ��+ �;

and V (Y ) = V (�X + �) = �2V (X) + 0 = �2�2:

An important implication of the preceding result is that�
if X � N (�; �2)
and Z = X��

�

�
then Z � N (0; 1) ;

since E (Z) = E

�
X

�

�
� E

��
�

�
=
�

�
� �
�
= 0;

and V (Z) = V

�
X

�

�
+ V

��
�

�
=
V (X)

�2
+ 0 =

�2

�2
= 1:
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Such a random variable Z is said to have the standard, or unit, normal distribution.

It is traditional to denote the distribution function of a standard normal r.v.
by � (x) : From the symmetry of the standard normal distribution it follows that

� (�x) = 1� � (x) ;

in other words that
P (Z � �x) = P (Z > x) :

When X � N (�; �2) ; then the distribution function of X, F (x) ; can be
expressed as:

F (a) = P (X � a) = P
�
X � �
�

� a� �
�

�
=

= P

�
Z � a� �

�

�
= �

�
a� �
�

�
:

3.1. Example

Let X � N (3; 9) : Find (i) P (2 < X < 5) ; (ii) P (X > 0) ; (iii) P (jX � 3j > 6) :

(i) P (2 < X < 5) = P

�
2� 3
3

< Z <
5� 3
3

�
=

= P

�
�1
3
< Z <

2

3

�
= 0:1293 + 0:2486 = 0:3779:

(ii) P (X > 0) = P

�
Z >

0� 3
3

�
= P (Z > �1) = P (Z � 1) =

= P (Z � 0) + P (0 < Z � 1) = 0:5 + 0:3413 = 0:8413:

(iii) P (jX � 3j > 6) = P (X > 9) + P (X < �3) =

= P

�
Z >

9� 3
3

�
+ P

�
Z <

�3� 3
3

�
=

= P (Z > 2) + P (Z < �2) = 2 (0:0228) ' 0:05:
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4. Functions of Normally Distributed Random Variables:A
Summary

(1) If xi � N (�i; �2i ) ; i = 1; :::; n are independent r.v.�s, then 
nX
i=1

xi

!
� N

 
nX
i=1

�i;

nX
i=1

�2i

!
[normal]

(2) If xi � N (0; 1) ; i = 1; :::; n are independent r.v.�s, then 
nX
i=1

x2i

!
� �2 (n) [chi-square with n degrees of freedom]

(3) If x1 � N (0; 1) ; x2 � �2 (n) ; x1 and x2 are independent r.v.�s, then
x1p
x2
n

� t (n) [Student�s t with n degrees of freedom]

(4) If x1 � �2 (n1), x2 � �2 (n2) ; x1 and x2 are independent r.v.�s, then

x1=n1
x2=n2

� F (n1; n2) [Fisher�s F with n1and n2degrees of freedom]

5. Random Vectors and their Distributions: a Summary

There are many observable phenomena where the outcome comes in the form of
several quantitative attributes. For example, data on personal income might be
related to social class, type of occupation, age class, etc. In order to be able to
model such real phenomena we need to extend the above framework for a single
r.v. to one for multidimensional r.v.�s or random vectors.
For expositional purposes we shall restrict attention to the two-dimensional

(bivatiate) case, which is adequate for a proper understanding of the concepts
involved.
Consider the random experiment of tossing a fair coin twice (the sample space


 is given in page 1). De�ne the function X (�) to be the number of �heads�, and
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Y (�) to be the number of �tails�. Both of these functions map 
 into the real line
R: The bivariate random variable (or two-dimensional random vector) (X; Y ) can
be considered as a function which assigns to each element of 
 a pair of ordered
numbers (x; y) ; i.e. fX (�) ; Y (�)g : 
! R2:
If both the r.v�s X and Y are discrete, then (X; Y ) is called a discrete bivariate

r.v. If both the r.v�s X and Y are continuous, then (X; Y ) is called a continuous
bivariate r.v.

� The Distribution Function of the vector of random variables is called the
joint distribution function of the r.v.�s:

F (x; y) � Pr (X � x; Y � y) :

� The Probability Density Function (pdf.) of the random vector is called the
joint probability density function of the r.v.�s:

f (x; y) � Pr (X = x; Y = y) ; (discrete case);

f (x; y) � @2F (x; y)

@x@y
; (continuous case).

The joint probability function f (x; y) of the above example is:
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Y = 0 Y = 1 Y = 2
X = 0 0 0 1=4
X = 1 0 1=2 0
X = 2 1=4 0 0

 Pr (X = 0; Y = 2)

� A marginal probability density function is de�ned with respect to an
individual random variable. Knowing the joint pdf, we can obtain the mar-
ginal pdf. of one r.v. by summing or integrating out the other r.v.:

fx (x) =

( P
y

f (x; y) ; discrete caseR
y
f (x; y) dy; continuous case

)
;

fy (y) =

( P
x

f (x; y) ; discrete caseR
x
f (x; y) dx; continuous case

)
:

� Two random variables are statistically independent if and only if their
joint density is the product of the marginal densities:

f (x; y) = fx (x) fy (y), x and y are independent.

� The covariance (�xy) provides a measure of the linear relationship between
the two random variables:

�xy � Cov (X; Y ) = E
�
(X � �x)

�
Y � �y

��
= E (XY )� �x�y; where �x = E (X) ; �y = E (Y ) :

IfX and Y are independent r.v.�s, then it holds thatE (XY ) = E (X)E (Y ) ;
i.e. Cov (X; Y ) = 0: In other words independence implies linear indepen-
dence; the converse is not true. Properties of the Covariance operator:

Cov (a;X) = 0;

Cov (X;X) = V ar (X) ;

Cov (aX; bY ) = abCov (X; Y ) ;

Cov (aX + bY; cX + dY ) = acV ar (X) + bdV ar (Y )
+ (ad+ bc)Cov (X; Y )

;

where a; b; c; d are constants.
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� A standardised form of covariance is the correlation coe¢ cient
�
�xy
�
:

�xy =
�xyp
�2x�

2
y

; where �2x = V ar (X) ; �
2
y = V ar (Y ) :

Note that �1 � �xy � 1: If X and Y are independent r.v.�s, then they
are also uncorrelated. Note that in this case we have that V ar (X � Y ) =
V ar (X) + V ar (Y ) : If �xy = 1 we say that X and Y are perfectly posi-
tively correlated; if �xy = �1 we say that X and Y are perfectly negatively
correlated.

� Conditioning and the use of conditional distributions play a pivotal role in
econometric modelling. In a bivariate distribution, there is a conditional
distribution over Y for each value of X: We de�ne the conditional prob-
ability density function of Y given X as

f (y=x) =
f (x; y)

fx (x)
:

Similarly to its unconditional density, the conditional density of Y on X
can be numerically characterised by its conditional expectation, E (Y=X) ;
and its conditional variance, V ar (Y=X) : If X and Y and independent,
f (y=x) = fy (y) : Furthermore, the de�nition of conditional densities implies
the important result

f (x; y) = f (y=x) fx (x) :
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