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This article analyses the statistical properties of that general class of conditional heteroscedasticity models
in which the conditional variance is a linear function of squared lags of the process. GARCH, IGARCH,
FIGARCH, and a newly proposed generalization, the HYGARCH model, belong to this class. Conditions
are derived for the existence of second and fourth moments, and for the limited memory condition of
near-epoch dependence. The HYGARCH model is applied to 10 daily dollar exchange rates, and also to
data for Asian exchange rates over the 1997 crisis period. In the latter case, the model exhibits notable
stability across the pre-crisis and post-crisis periods.
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1. INTRODUCTION

Many variants of Engle’s (1982) ARCH model of conditional
volatility have been proposed, including GARCH (Bollerslev
1986), IGARCH (Engle and Bollerslev 1986), and FIGARCH
(Baillie, Bollerslev, and Mikkelsen 1996; Ding and Granger
1996). All of these models, and many other cases that might be
devised, fall into the class in which the conditional variance at
time ¢ is an infinite moving average of the squared realizations
of the series up to time  — 1. Formally, let

Uy = Oyéy,

ey

where o; > 0, ¢, ~iid(0, 1), and

o0
of=w+ Y Oul,  6;=0foralli, 2)
i=1

where 6; are lag coefficients typically depending on a small
number of underlying parameters. By adding an error term,
V= ut2 — otz, to both sides, (2) can be viewed as an AR(o0) in
the squared series, and hence is commonly called an ARCH(o0)
model.

In the well-known case of the GARCH(1, 1) model,

3
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solves to give (2) with 6; = alﬂi_l fori>1, and w = y/
(1 — B1). The stationarity condition is well known to be o1 +
B1 < 1, which is equivalent to

o0
Z@i < 1.
i=1

The IGARCH case is the variant in which o1 + 81 = 1, and
hence the sum of the lag coefficients is also unity, where the
0;’s form a convergent geometric series.

Generalizing to the higher-order cases, let (L) =1 — ;L —
cee— SPLP and(L)y=1—-p1L—---— ,3pr denote polynomials
in the lag operator. The GARCH( p, ¢) model can be expressed
in the “ARMA-in-squares” form,

$(Lyu; =y + BLvr,

“

®)
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where v; = u? — 6 = (¢? — 1)0?, as well as in the more con-
ventional representation,

BLyor =y + (B(L) — 8(L))u?, (©6)

so that o) = §; — B in the notation of (3). The model is re-
arranged into the form of (2) as

S(L)

2_ Y ( ) 2 _ 2

o =——+ 11— u; =w—+0(L)u;, (7)
1¢)) B/ !

where 6 (L) = ?21 6,L’. Note that 6y = 0 by construction here.

The general IGARCH( p, ¢) can be represented by (7) subject
to the constraint §(1) = 0, such that the lag coefficients sum to
unity. More explicitly, it might be written in the form

3(L)

oL)y=1-———->10-10L),

BL)
where §(L) is defined appropriately. However, it is important
to note the fact that there is no explicit requirement for the
roots of §(L) to be stable. Nelson (1990) showed that in the
GARCH(1, 1) case, 61 > 1 is compatible with strict stationarity,
but not with covariance stationarity. See Section 3.2 for more on
this case.

The FIGARCH( p, d, g) model replaces the simple difference
in (8) with a fractional difference, such that
0(L) =1 O ¢!

B(L)
for 0 < d < 1. The FIGARCH is a case where the lag coef-
ficients decline hyperbolically, rather than geometrically, to 0,
and it is on these cases that this article focuses. This form has
been used in a number of recent works to model financial time
series (see, e.g., Baillie et al. 1996; Beltratti and Morana 1999;
Baillie, Cecen, and Han 2000; Baillie and Osterberg 2000;
Brunetti and Gilbert 2000). As is well known,

o0

1-Lf¥=1-) al,

i=1

®)

L )

(10)
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where
L dij—d)
T Rl-dRj+ D)

This article focuses attention on these linear-in-the-squares
models, in contrast to such cases as EGARCH (Nelson 1991),
where the logarithm of the conditional variance is modeled.
As will become clear in the sequel, the moment and mem-
ory properties of the latter type of model must be analyzed
in a different way. An important related study by Giraitis,
Kokoszka, and Leipus (2000) (henceforth GKL) studied the
squared process {utz} itself, and some of the results here can
be seen as complementary to theirs. The focus here is on
the process {u;} itself, primarily because, as discussed in Sec-
tion 3.1, the results have a direct application to the asymptotic
analysis of conditionally heteroscedastic series. The existence
of moments and also the conditions for limited memory, char-
acterized here as near-epoch dependence on the independent
process ¢;, are considered.

Section 2 considers the conditions for second-order station-
arity, and also sufficient conditions for fourth-order stationarity.
Section 3.1 addresses the near-epoch dependence question, and
Section 3.2 proves a modified short-memory property for the
class of non-wide sense stationary cases, such as the IGARCH,
for which the variance does not exist, subject to strict stationar-
ity. Section 4 further discusses some features of the IGARCH
and FIGARCH models. Some puzzles and paradoxes that have
been discussed in the literature are resolved by noting that in-
dependent parameter restrictions control the existence of mo-
ments and the memory of the volatility process. IGARCH and
FIGARCH models have been described in the literature as
“long memory,” by an implicit analogy with the integrated or
fractionally integrated linear model of the conditional mean.
However, a conclusion that is emphasized is that such analo-
gies are generally misleading. It turns out that ARCH(c0) mod-
els cannot exhibit long memory by the usual criteria. Both
the sequence of lag coefficients and the autocorrelations of the
squared process when these are defined must be summable, to
avoid nonstationary (explosive) solutions.

Section 5 introduces a new model, the HYGARCH, gener-
alizing the FIGARCH, that can be covariance stationary while
exhibiting hyperbolic memory. Section 6 reports some applica-
tions of the latter model. Section 6.1 applies it to some famil-
iar series, and Section 6.2 considers Asian exchange rate data
covering the 1997-1998 crisis period. Section 7 concludes the
article.

=03, (11)

2. MOMENT PROPERTIES

Volatility models of the ARCH(o0) class have two salient
features, which in this article will be referred to as, respec-
tively, the amplitude and the memory. The amplitude deter-
mines how large the variations in the conditional variance
can be, and hence the order of existing moments, whereas
the memory determines how long shocks to the volatility take
to dissipate. The amplitude is measured by

oo
S=) 6
i=1

(12)
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Regarding the phenomenon of (limited) memory, two cases are
recognized. Hyperbolic memory is measured by the parame-
ter 8, such that

0;=0G"'7%). (13)

Geometric memory is measured by the parameter p, where

0i=0(p™"). (14)

Note that the “length” of memory varies inversely with these
parameters. In the geometric-decay GARCH(1, 1) model, for
example, S =o1 /(1 — B1), and p = 1/B1. Although in the case
where p > 1, the hyperbolic memory assumes the value +00, it
is more realistic to recognize that these represent two different
modes of memory decay in which the low-order lags of one
can dominate those of the other in either case. What is true is
that the hyperboliclags must always dominate the geometric by
taking i large enough.
The condition

S<1 (15)

is generally necessary and sufficient for covariance stationarity.
To see this, write M), = Euf, assumed to not depend on 7. Then
for the case p = 2, by the law of iterated expectations,

o0
Eat2 = Eut2 =w+ Z 9,~Eut2_l~,

i=1

(16)

with the stationary solution

w

M, = .
2T 1 s

(17)
Next, consider the fourth moment. Letting u4 = Eef, note
that Eu;‘ = ,u4Eot4 , Where

o0 oo o0
Eof =’ +20 Y 6Eul;+ Y Y 06Eu ul ;. (18)
i=1 i=1 j=1

Even assuming that these expectations do not depend on ¢, to
solve the equality in (18) exactly is intractable. However, the
Cauchy-Schwarz inequality will imply Euf_iutz_j < My, and
hence

, 20,
My < g a)+ﬁ+SM4 (19)
or, equivalently,
2
paw-(1+S)
4 < 5 - (20)
(I =81 — puaS?)
The condition
naS? <1 (21)

is therefore sufficient, although not necessary, for the exis-
tence of M4 and fourth-order stationarity. Conditionsequivalent
to (15) and (21) were also derived by GKL, who considered the
conditions for a weakly stationary solution of the process utz.

It is of interest to evaluate the bound in (21) for a case where
the exact necessary condition for fourth-order stationarity is

known. The GARCH(1, 1) in (3) has S = o¢1 /(1 — B1). Straight-
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forward manipulations show that

pay’ (L= B’ (L+ o1+ f1)
(1= o1 = B — paof — 20081 = )’
subject to second-order stationarity and satisfaction of the extra
inequality

My = (22)

(23)

This result may be derived as a special case of that given by
Davidson (2002) for the GARCH( p, p). (For another version of
the general formula, see He and Terdsvirta 1999, and for the
Gaussian case see Karonasos 1999.) Note that (21) can be re-
arranged as

alpa < 1—20181 — B

atps <1-281+ 67 (24)

The majorants of (23) and (24) differ by 281(1 — a1 — B1),
and therefore the latter condition binds as this quantity ap-
proaches 0. In this example, the sufficient condition imposes
too tough a constraint on the kurtosis of the shocks when the
variance is not too large. However, note that the two conditions
are identical in the ARCH(1) model, when 8; = 0. They are
also similar in the region where the second-order stationarity
condition is tending to bind, and eventually coincide, although
note that to fall in this region requires that 4 be close to 1.

3. MEMORY PROPERTIES

3.1 Near-Epoch Dependence

There are a number of ways to measure the memory of a
process, some specific to the model structure (e.g., the rate
of decay of the weights of a linear process) and some model-
independent, (e.g., the various mixing conditions). The correlo-
gram measures only one facet of the memory of a nonlinear
process, although the correlogram of the squared process
supplies additional information relevant to conditional het-
eroscedasticity in particular. The analysis of GKL is germane
to this case. The motivation for studying memory properties
is sometimes related to forecastability at long range, but more
often concern focuses on checking the validity of applying av-
eraging operations to a time series, to estimate parameters and
undertake statistical inference. As is well known, the validity
of the central limit theorem (CLT) and law of large numbers
depends critically on remote parts of a sequence being indepen-
dent of each other, in an appropriate sense.

Uncorrelatedness at long range is not a sufficient condition
to validate the CLT, and although the mixing property is often
invoked, it is difficult to verify. However, the property of near-
epoch dependence on a mixing process can suffice. This is the
property that the error in the best predictor of the process, based
on only the “near epoch” of an underlying mixing process, is
sufficiently small. Thus, letting }"St =o(es, ..., e) bethesigma
field generated by the collection {e;, s < j < t}, a process u;
is said to be L,-near-epoch—dependent (L,-NED) on {e;} of
size —Ag if

lluy — E(u FED N < dm™

(25)

for A > A¢. In the general definition, d; is a sequence of posi-
tive constants, but subject to stationarity, as here, one may sim-
ply write di =d < 0o (see Davidson 1994, chap. 17, among
other references, for additional details). If m~ can be replaced
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with o™ in (25), then the process will be said to be geomet-
rically NED. There is no accepted “size” terminology associ-
ated with this case, but obviously one can speak of “geometric
size p” in a consistent manner, if it is convenient to do so.

In the present application, the process {e;} will be taken as the
driving process in (1). Because this is not merely mixing butiid,
by assumption, the conditionin (25) alone constrains the mem-
ory of the process. The application of this approach to a range
of nonlinear processes, including GARCH processes, has been
studied earlier (Davidson 2002). Following the same approach,
the present work now derives conditions for u,; defined by (1)
plus (2) to be L; or L,-NED on {e;}. In the following result
for the hyperbolic memory case, the model is formalized just to
the extent of specifying the lag coefficients to be bounded by
a regularly varying function. This strengthens the summability
requirement, but only slightly.

Theorem 1. a. 1f 0 <6; < Ci~'=% fori > 1, for C > 0, and
§>Xo>0and S < 1, then u; is L{-NED on {e;}, of size —Ag.
b. If in addition S < i /*, then u, is Lr-NED of size —Ao.

The proof, given in the Appendix, follows GKL in working
with a Volterra-type series expansion of the process to construct
the near-epoch-based predictor and bound its residual.

GKL have shown that the process {utz} has absolutely sum-
mable autocovariances,subject only to the condition$ < 12,
No separate constraint on the rate of convergence of the lag
coefficients is specified in their result, although summability
obviously requires 8 > 0, so that their conditions match those
for Ly-NED of size 0. These authors also proved a CLT for the
process {ut2 = Eutz} subject only to the same condition on the
sum. The CLT for Ly-NED processes of De Jong (1997), such
as might be applied to {u;} using the present result, calls for
Ao = 1/2. This provides what to the author’s knowledge is the
best CLT currently available for ARCH(00) processes. Extend-
ing the result of GKL to the same case is not trivial, because the
reverse mapping from ut2 to u; is not single valued, but there is
the strong suggestion that still-sharper conditions for the CLT
for {u;} might be obtainable by exploiting the properties of the
process more directly. Essentially, even with decay rates slower
than —1/2, the restriction on the sum of the coefficients may
force them to be individually so small that negligibility argu-
ments can be applied to the tail of the lag distribution. This is
an interesting direction for further research.

The following is the corresponding result for the geometric
memory case.

Theorem 2. a. If 0<6; < Cp i fori>1, with0<C < p
and p > 1 and S < 1, then u, is geometrically L1 -NED on {e,}.

b. If in addition, C < pu; '/
metrically L,-NED.

and S < ,uZl/z, then u; is geo-

The GARCH(p, g) is the leading example of the geometric
case, and this result may be compared with proposition 2.3 of
Davidson (2002). Note that because 8; < Cp~! and necessar-
ily 81 < S, the sufficient restrictions on C in Theorem 2 are
minimal, in view of the restrictions on S. In effect, they forbid
isolated influential lags of higher order. Inspection of the proof
show that they could be relaxed, at the cost of more complex or
specialized conditions. The important point to note about both
of these results is that the existence of second (fourth) moments
is necessary and nearly sufficient for the L;-NED (L;-NED)

property.
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3.2 The Nonstationary Geometric Lag Case

Nelson (1990) gave an insightful analysis of persistence
(memory) in the GARCH(1, 1) model. The key condition that
he derived for limited persistence (what he would call “nonper-
sistence”) is

Eln(f) +aie?) <0, (26)

and the Jensen inequality easily shows that the condition
a1 < 1 — By is sufficient for (26). This condition is necessary
and sufficient for the process to be strictly stationary and er-
godic (Nelson 1990, thm. 2).

Necessary conditions for strict stationarity of the
GARCH(1, 1) depend on the distribution of e;, and are shown
for the standard Gaussian case in Nelson’s (1990) figure 8.1 as
a nonlinear trade-off between the values of «; and 8;. In that
case, note that strict stationarity is compatible with nonexis-
tence of second moments, and Nelson’s figure shows that, for
example, a1 > 3 is permitted when f is close enoughto 0.

The NED measure of memory is unavailable without first
moments, but an alternative is provided by the notion of
Lo-approximability due to Potscher and Prucha (1991) (see
also Davidson 1994, chap. 17.4). This is the condition that
there exists a locally measurable (finite-lag) approximation
to u;, which is a uniform mixing process, given that ¢; is in-
dependent (e.g., Davidson 1994, thm 14.1). Let A" denote
a }"ffg -measurable approximation function, depending only
on €, ..., € in the present case. Then define /4" to be a geo-
metrically Lo-approximator of otz if

P(lo? — K > di8) = 0(p™™) 27)

for p > 1 and all § > 0, where, subject to stationarity as as-
sumed here, we may set d; = 1. The following result can now
be obtained.

Theorem 3. Let u; be a strictly stationary process, and
0<6; <Cp~* fori> 1 with p > 1. In either of the following
cases, otz is geometrically Lo-approximable:

a. C<p.
b. C < p(p — 1) and log(C'** [(p !¢ — 1)) < ¢ for some
e >0, where ¢ = E(—loge%).

Note that S < C/(p — 1), and hence the restriction on C in
part (b), as well as that in part (a), implies that S < p. However,
S can substantially exceed 1 in either case, if p is large enough.
In addition, inspection of the proof shows that these conditions
are only sufficient, and the Lo-approximability property still ob-
tains in numerous cases where (a) and (b) are violated, but are
awkward to state compactly.

Taking the GARCH(1, 1) as an example, we find p = ,31_1
and C = o1 /B 1, so the condition to be satisfied in (a) is o1 < 1,
and that in (b) is o1 < 1/81 — 1. It is an interesting ques-
tion to relate the conditions of the theorem to conditions for
strict stationarity such as (26). Kazakevicius and Leipus (2002,
thm. 2.3) have shown that log(C/(p — 1)) < ¢ is a necessary
condition for strict stationarity, although not sufficient, because
in the case of the GARCH(1, 1) this is actually a weaker con-
dition than (26). When C < p, then Cp~/ < 1 forall j > 1, and
also note that C' ™ f(p'T¢ — 1) < C/(p — 1) for € > 0, which
guarantees that the second conditionin (b) holds in a stationary
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process. But, when C > p, condition (b) can evidently fail in
a stationary process. Note that although the present proof es-
tablishes independence of initial conditions, it makes use of the
stationarity assumption and thus cannot provide a proof of sta-
tionarity as such.

The conceptual importance of this result is chiefly to show
the way in which short memory is a feature of the strictly
stationary case, whether moments exist or not. From a more
practical viewpoint, though, the property might be used in con-
junction with mixing limit theorems to show that, for example,
a law of large numbers applies to integrable transformations of
the process, such as truncations. (See Potscher and Prucha 1991
and Davidson 1994 for more details of this approach.)

4. THE IGARCH AND FIGARCH MODELS

The interesting feature of ARCH(oco) models revealed by
the foregoing analysis is that the rate of convergence of the
lag coefficients to O is irrelevant to the covariance stationar-
ity property, provided that these are summable. The key con-
straint is the relationship of their sum to unity. When this is
equal to or exceeds unity, no second moments exist regard-
less of the memory of the process. The familiar example is the
IGARCH(1, 1) model, which, according to Theorem 3, is geo-
metrically Lo-approximable, or in other words, short memory.

This appears to be paradoxical, because the IGARCH model
is often spoken of in the literature as a “long memory” model,
the volatility counterpart of the unit root model of levels. Con-
sider the k-step-ahead “volatility forecast” from the model rep-
resented by

oo

4 i—1

of = 1_—131-1-(1—,31) E B utz—j
j=1

=y+0-Bu +Biol,.

Applying the law of iterated expectations would appear to yield
the solution

(28)

En = ky +u, (29)

which, although diverging, remains dependent on current con-
ditions even at long range. Thus it appears that ut2 fulfils the
condition for long memory proposed by Granger and Terasvirta
(1993, p. 49)—that s, to be forecastable in mean at long range.
But this is a paradox, because otz clearly depends only on the re-
cent past. Theorem 3a shows that o> can be reconstructed from
the shock history, {e;—1, e;—2, .. ., e;/—n}, with an error that van-
ishes at an exponential rate as m increases, so clearly it cannot
be forecast at long range.

Ding and Granger (1996) discussed this apparent paradox of
memory by considering the extreme case in which 81 =0 and
y =0, so that (29) reduces to E[utz+k = utz. This model can be
written in the form

uy = efu;_1|.

(30)

Although a succession of larger-than-average independent
shocks (¢;’s) may produce very large deviations of the observed
process, such that their variance is infinite, the e;’s are still
drawn independently from a distribution centered on 0. Note
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how a single “small deviation” of ¢; (having the highest prob-
ability density of occurrence, in general) kills a “run” of high
volatility instantly. That the probability of such an event occur-
ring in (30) converges rapidly to 1, is the essential message of
Theorem 3. Nelson (1990) showed that this particular process
converges to 0 in a finite number of steps, with probability 1.

The present results allow consideration of a still more ex-
treme case, that of otz = autz_l for @ > 1. Some substitutions
yield

2 _ 2 2 o o.om 2 2 2 2
Oy =0 10, = =0"€ 1€ 2 € nOt_m-

€2y

Noting that in this case the sum of the lag coefficents is « (this
can be treated as the limiting case as p — oo and C = ap),
applying Theorem 3b shows that the steady state solution is
otz =0 whenever loga < —Elog etz. In this case, the right side
of (31) convergesto 0 in probability (in fact, with probability 1)
as m =t increases, starting from any fixed og > 0.

The straightforward solution to the paradox presented by
these cases is that although otz in (28) or (31) is a natural in-
dicator of conditional volatility, depending on the near epoch, it
is not the conditional variance. Because the unconditional vari-
ance does not exist in these cases, the conditional variance is
not a well-defined random variable. Note that the application
of the law of iterated expectations is not valid here, so (29) has
no meaningful interpretation. These examples highlight the im-
portant distinction to be maintained between the moment and
memory properties of a sequence.

The FIGARCH model defined by (9) is a generalization of
the IGARCH, of particular interest because this is the one
application to date using hyperbolic lag weights. Note that
Y2, a; =1 in (10) for any value of d, and this therefore be-
longs to the same “knife-edge-nonstationary” class represented
by the IGARCH, with which it coincides for d = 1. However,
note the interesting and counterintuitive fact that the length of
the memory of this process is increasing as d approaches 0.
[Note the error in Baillie et al. 1996, p. 11, line 6, where the
lag coefficients are said to be of O(kd_l). This should read
O(k~%=1).] This is, of course, the opposite of the role of d in the
fractionally integrated process in levels. Note that when d =1,
then a; = 1, and a; = 0 for i > 1. In this particular case, of
amplitude S = 1, the memory [measured by —46 in (13)] is dis-
continuous, jumping to —oo at the point where it attains —1.

At the other extreme, as d approaches 0, the lag weights are
approaching nonsummability. However, again because of the
restriction S = 1, the individualg;’s are all approaching 0. The
limiting case d = 0 is actually another short-memory case, in
this case the stable GARCH rather than the IGARCH repre-
sented by d = 1. At d = 0, the memory jumps from 0 to —oo,
and the amplitude is also discontinuous at this point, jumping
from a fixed value of 1 to some value strictly below 1. The char-
acterization of the FIGARCH model as an intermediate case
between the stable GARCH and the IGARCH, just as the I(d)
process in levels is intermediate between I(0) and I(1) is there-
fore misleading. In fact, it has more memory than either of these
models, but behaves oddly owing to the rather arbitrary restric-
tion of holding the amplitude to 1 (the knife-edge value) while
the memory increases.

The term “long memory” has been applied to the FIGARCH
model by several authors, for understandable reasons, but our
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discussion has made clear that the analogy with models of the
conditional mean is also misleading in this respect. To illus-
trate the dangers of taking the “AR-in-squares” characterization
of these models too literally, consider the simplest FIGARCH
model,

ol =w+(1-1-L)")?, (32)

rearranged as

(1-D% =w+v, (33)

with v, = (et2 = 1)Uz2 as earlier. This equation might appear to
represent ut2 as a classic fractionally integrated process. How-
ever, just as the temptation to write E(v;) = 0 must be re-
sisted, in the absence of second moments, so it is important
to not confuse this formal representation (in which v; does
not represent a forcing process and is serially dependent) with
the data-generation process. Indeed, were one to replace v;
in (33) by (say) an independent disturbance with mean of 0 for
t >0, and by 0 for < 0, then one would actually obtain a non-
stationary trending process with expected value wt? for t > 0
(see Granger 2002). This clearly contradicts what is known
about the actual characteristics of the u? process.

As remarked earlier, GKL showed that whenever fourth mo-
ments exist, the autocovariances of the squared process are
always summable. Kazakevi¢ius and Leipus (2002) further
showed that summability of the ARCH(o0) lag weights is a nec-
essary condition for stationarity. Long memory in mean, char-
acterized by nonsummable autocovariances, does not appear to
have a well-defined counterpart in the ARCH(c0) framework,
whether or not moments exist, because in any such cases the
processes must diverge rapidly. The term “hyperbolic memory”
is therefore preferable to distinguish FIGARCH from the geo-
metric memory cases such as GARCH and IGARCH.

5. THE HYGARCH MODEL

The unexpected behavior of the FIGARCH model may be
due less to any inherent paradoxes than to the fact that the unit-
amplitude restriction, appropriate to a model of levels, has been
transplanted into a model of volatility. In a more general frame-
work, there are good reasons to embed it in a class of models
in which such restrictions can be tested, and also to adhere to
the approach of modeling amplitude and memory as separate
phenomena, just as is done in the ordinary GARCH model.

In view of these considerations a new model is here pro-
posed, the “hyperbolic GARCH,” or HYGARCH model. Con-
sider, for comparability with the previous cases, the form

S(L) d
mmzl—RBU+ma—m-4», (34)
where o > 0, d > 0. Note that, provided that d > 0,
S:l—@(l—a). (35)
B(1)

The FIGARCH and stable GARCH cases correspond to o = 1
and o = 0, respectively, and in principle, the hypothesis of ei-
ther of these two pure cases might be tested. However, in the
latter case the parameter d is unidentified, which poses a well-



Davidson: Linear Conditional Heteroscedasticity Models

known problem for constructing hypothesis tests. Therefore,
also note that when d = 1, (34) reduces to
o) =1 O (1—-oal)
B(L) ’
In other words, when d = 1, the parameter o reduces to an au-
toregressive root, and hence the model becomes either a stable
GARCH or IGARCH, depending on whethera < 1 or o = 1.
For this reason, testing the restriction d = 1 is the natural way
to test for geometric memory versus hyperbolic memory. Also
note that @ > 1 is a legitimate case of nonstationarity. For ex-
ample, in the case where §(L) =1 and B(L) =1 — BiL, the
model reduces when d = 1 to the covariance nonstationary
GARCH(1, 1) discussed in Section 3.2, with « corresponding
to a1 + B1 in the notation adopted there.
When d is not too large, this model will correspond closely
to the case

a>0.

(36)

0w =1- 22 (1 —ap(w) (37)
AW ’
where
¢ =c+a~' Y D d>0 (38

j=1

and ¢(-) is the Riemann zeta function. Note, however, that the
models behave quite differently when d is close to 1. In (34),
d > 1 givesrise to negative coefficients and so is not permitted,
whereas in (38), d can take any positive value, and the model
approaches the GARCH case only as d — oo. It can therefore
encompass arange of hyperboliclag behaviorexcluded by (34).
In practice this is probably not a serious restriction, because it
will become increasingly difficult to discriminate between hy-
perbolic decay, and geometric decay represented by 8 (L) /B(L),
when d is very large. In this context, it is in fact an arbitrary
choice to assume the hyperbolic decay pattern implied by (11)
rather than use weights directly proportionalto j~!=¢. The chief
motivation for using (34) must be to nest the FIGARCH and
IGARCH cases, but should d be found close to 1, then the op-
tion of comparing GARCH with (37) might be considered.

If the GARCH component observes the usual covariance sta-
tionarity restrictions, which imply that 6(1)/8(1) > 0, then
with o < 1, these processes are covariance stationary and
L1-NED of size —d, according to Theorem 1. They are also
Ly-NED of size —d if (1—a)8(1)/8(1) > 1—u; /*; for exam-
ple, with Gaussian disturbances, 1 — ,u; 12— .422. Therefore,
noting the discussion of Section 3.1, the CLT holds at least for
d > 1/2 in that case.
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6. APPLICATIONS

This section discusses two applications of the HYGARCH
model. The first application is a rather conventional one with
the aim of relating these models to the substantial existing liter-
ature on modeling exchange rates. The second is more unusual,
and possibly controversial, in which the aim is to argue that
these models may play a distinctive and importantrole in more
difficult cases.

6.1 Dollar Exchange Rates, 1980—-1996

Table 1 summarizes estimates of the HYGARCH model
for a collection of the (logarithms of) major dollar exchange
rates, obtained using the Ox package Time Series Model-
ing 3.1 (Davidson 2003; Doornik 1999). The data, sourced from
Datastream, are in each case daily for the period January 1,
1980-September 30, 1996 (4,370 observations). The model fit-
ted to all of the series is a first-order ARFI-HYGARCH, taking
the form

(1 — L) (1 — g1 L)Y, = o+ u, (39)
and
_ _ 1-6,L dro 2
h=w+ (1 1_ﬁ1L(1+a((1 L) 1)))%. (40)

The estimates of © and @ have been omitted to save space.
In the interests of comparability, the same model is fitted to
all the series, even though in some cases the parameters are in-
significant.

It may appear surprising to model exchange rates with long
memory in mean, but this turns out, with dagr suitably small,
to be a good, parsimonious representation of the autocorrela-
tion. This is not negligible but is not concentrated at low orders
of lag, so that the geometric memory decay of ARMA compo-
nents cannot capture it. In view of the characteristic incidence
of outliers in these data, the Student ¢, rather than the normal,
distribution is assumed for the disturbances. The criterion func-
tion for estimation is the Student ¢ log-likelihood,

o v +1)/2)
Vv =2)Iv/ 2)

1 ! u?
- _r
> ;:1 <logh; + v+ 1)10g<1 + o 2)h;))'

As a practical matter, observe that small innovations, u,
contribute to this criterion in much the same way as to

Lr=Tlo

Table 1. The ARFI-HYGARCH Model of Exchange Rates

Currency dre o 84 B1 darrF 1 v1/2 Q(25)  Qsq(25)
Danish Kroner .600 (.081) .962 (.021) .188 (.045) .722 (.051) .056 (.017) —.055 (.021) 2.31 (.092) 25 34
Deutschmark .681 (.077) .975 (.017) .190 (.047) .789 (.038) .045 (.022) —.038 (.022) 2.25(.082) 27 23
Finnish Mark .714 (.079) .946 (.023) 177 (.054) .782 (.046) .013(.015) —.043 (.020) 2.22 (.109) 29 1.24
GB Pound .656 (.103) .991 (.017) .229 (.056) .795 (.056) .016 (.016) .005 (.022) 2.27 (.0907) 32 31
Irish Punt .641 (.087) .991 (.018) .241 (.057) .787 (.048) .030(.017) —.049 (.022) 2.23 (.087) 27 15
ltalian Lire .556 (.075) .991 (.025) .264 (.052) .699 (.064) .038(.015) —.0045 (.021) 2.20 (.077) 37 32
Japanese Yen .564 (.144) .952 (.041) .253 (.071) .696 (.091) .045(.015) —.081 (.020) 1.96 (.059) 34 23
Port. Escudo .613 (.162) .986 (.029) .291 (.081) .747 (.099) .026 (.013) —.079 (.019) 1.99 (.074) 28 1.44
Spanish Peseta .515 (.060) 1.04 (.021) .258 (.044) .697 (.047) .039 (.020) —.067 (.020) 2.20 (.083) 25 13
Swiss Franc .819 (.092) .956 (.017) .100 (.059) .835(.046) .027 (.017) —.015 (.022) 2.38 (.097) 23 16
NOTE: Robust standarderrors are given in parentheses.
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the Gaussian log-likelihood, but large innovations, such that
utz/(v — 2)h; > 1, make a much smaller contribution to the ag-
gregate than in the Gaussian case, depending on the size of v.

The last two columns of Table 1 show the Box—Pierce (1979)
O(r) statistic for r = 25 lags, as well as the Qy,, the O sta-
tistic computed from the squared residuals. This test was pro-
posed by McLeod and Li (1983) and studied by Li and Mak
(1994) for application to testing neglected heteroscedasticity in
ARCH residuals. Li and Mak showed that using the nominal
chi-squared distribution with r degrees of freedom would give
an excessively conservative test, similar to the Box—Pierce re-
sult for ARMA residuals. The asymptotic distributions of these
statistics for the cases of hyperbolic lags in mean and variance
have not yet been studied, so both must be treated with cau-
tion, as diagnostic tests. What can be stated is that examina-
tion of the residual correlograms in each case tends to show the
largest (absolute) values at rather high lags (10 or 15 is typical).
The neglected autocorrelation, in levels or squares, thus can-
not be accounted for by simply adding terms to the ARMA or
GARCH components, a conclusion reinforced by conventional
significance tests.

Caution must also be observed in interpreting conventional
confidence intervals, because although the samples are large,
the asymptotic properties of the estimates are not yet well
established. Lumsdaine (1996) and Lee and Hansen (1994)
considered the IGARCH(1, 1) case and showed that covari-
ance stationarity of the processes is not a necessary condition
for consistency and asymptotic normality of the usual quasi-
maximum likelihood. However, note that the conjecture of
Baillie et al. (1996, p. 9), to the effect that the properties of the
FIGARCH model are subsumed under those of the IGARCH
model, is in doubt in view of the analysis of this article.

Even with these caveats in mind, these results show a remark-
able degree of uniformity. The point estimates of each parame-
ter seem to differ by hardly more than the sampling error to
be expected from identical data-generation processes. Because
these are rates of exchange determined in closely related mar-
kets, this perhaps is not unexpected. Some of these currencies
were, of course, in the Exchange Rate Mechanism for some
part of the sample period, and to the extent that they were
tied together, they may be expected to move similarly against
the dollar. However, the exceptional cases (Yen, Swiss franc)
do not appear to diverge from the general pattern. It therefore
can be conjectured that the similarity of these structures goes
deeper than the fact of some correspondencein their movement
in levels.

Looking now at the estimates themselves, note that although
the dagrr estimates are small, they are generally significant. On
the other hand, the hyperbolic memory in variance, measured
by dFg, is generally pronounced. In most cases the amplitude
parameter « is not significantly different from 1, while gen-
erally a little below it. The FIGARCH model explains these
data pretty well. Also, note that the estimate of d for the
Deutschmark is similar to the FIGARCH estimations reported
by Baillie et al. (1996) and also Beltratti and Morana (1999).
A noteworthy feature is that the Student ¢ degrees-of-freedom
parameter, v, is generally close to its lower bound, correspond-
ingto v!/2 > 1.414.
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6.2 The Asian Crisis

The second application considered is to the dollar exchange
rates for three Asian currencies, for periods covering the Asian
crisis of 1997-1998. The series in question, in logarithms, are
shown in panels (a) of Figures 1-3. At first sight, it might ap-
pear that these data represent two quite distinct regimes. Before
the crisis, the Won and the Rupiah, at least, appear to be follow-
ing a creeping peg to the dollar; after the crisis, they are floating
and subject to violent fluctuations. The hypothesisthat the same
time series model might account for both periods is evidently
a strong one. However, it is not wholly unreasonable. These
models may be seen as representing mechanisms by which ex-
change markets filter new information, in the process of form-
ing a price. The new information takes the form, by hypothesis
(or by definition, even), of an independent random sequence.
The distribution of this sequence, and the time series model,
are distinct contributing factors in the formation of the series. It
may be that when unusual events occur the model changes, but
a simpler hypothesisis that it does not.

Tables 2—4 show estimated models for the three currencies.
The models were selected by individual specification searches
on the complete samples, and parameters not shown in the ta-
bles were restricted to 0. Lagrange multiplier (LM) statistics
for the exclusion of some additional dynamic parameters are
shown, to justify these choices. The intercepts in the mean
processes were never significantly different from O when fitted,

1 201 401 801 1001 1201 1401

0.003 : @
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0.000 ; -
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Figure 1. Korean Won. (a) Korean Won/US Dollar exchange rate
(logarithms), observed time series; (b) unadjusted residuals (i;), model
in Table 2, Column 1; (c) adjusted residuals (G;/6¢), model in Table 2,
Column 1; and (d) conditional variances (512 ), model in Table 2, Col-
umn 1.
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Figure 2. Indonesian Rupiah. (a) Indonesian Rupiah/US Dollar ex-
change rate (logarithms), observed time series; (b) unadjusted resid-
vals (4y), model in Table 3, Column 1; (c) adjusted residuals ((;/64),
model in Table 3, Column 1, and (d) conditional variances (612 ), model
in Table 3, Column 1.

and are constrained to 0 in these estimates. Note that the fourth
root of w has been estimated. Because w is close to 0 in these
models, this transformation is found to improve numerical sta-
bility, probably by giving better numerical approximations to
derivatives.

Along with the full sample, the same models were also fitted
to “pre-crisis” and “post-crisis” subsamples. The breakpoints
were in each case chosen by eye, at the point just preceding
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Figure 3. Taiwan Dollar. (a) Taiwan Dollar/US Dollar exchange rate
(logarithms), observed time series; (b) unadjusted residuals (0;), model
in Table 4, Column 1; (c) adjusted residuals ((;/;), model in Table 4,
Column 1; and (d) conditional variances (612 ), model in Table 4, Col-
umn 1.

the first large fall of the currency. Using the methodology of
Lavielle and Moulines (2000), Andreou and Ghysels (2002) de-
tected multiple breaks in the volatility dynamics of stock mar-
ket indices during the Asian crisis. However, in this instance
there is inevitably a moment in the crisis at which the monetary
authorities allow the currencies to float freely, leading to precip-
itate devaluations. It is these events that are taken to mark the
regime switch dates. These are marked by the vertical lines in
the figures, which show in panels (b), (c), and (d) respectively,

Table 2. Korean Won

12/13/94-6/15/00 12/13/94—10/16/97 10/17/97—-6/15/00

(1,424 observations) (730 observations) (694 observations)
drg .669 (.046) 667 (.121) .686 (.066)
o 1.252 (.149) 1.265 (.275) 1.226 (.177)
B1 .339 (.092) .318 (.143) .363 (.140)
wl/4 .0184 (.0018) .0186 (.0026) .021 (.0091)
dARF .073 (.031) .072 (.038) .076 (.059)
1 116 (.039) 110 (.051) .122 (.068)
> —.097 (.028) —.044 (.038) —.152 (.044)
p1/2 1.73  (.080) 171 (.1113) 1.74 (.116)
Kurtosis 8.65 7.16 7.93
Q(25) 44 21 34
Qsq(25) 39 17 47
LM(81) .204 — —
Log likelihood 7,421.85 4,314.09 3,109.97

LR statistic (8 df) = 4.42

NOTE: Robuststandard errors are given in parentheses.
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Table 3. Indonesian Rupiah

1/01/96-12/31/99
(1,045 observations)

1/01/96-7/11/97
(400 observations)

7/14/97-12/31/99
(645 observations)

deg 496 (.042) .588 (.104) 54 (.054)
o 2.94 (.85) 1.81 (1.49) 2.92 (1.59)
wl/4 .0099 (.0015) .011 (.002) .037 (.007)
1 .047 (.032) —.038 (.055) .097 (.041)
pl/2 1.52  (.038) 1.54 (.120) 1.51 (.071)
Kurtosis 14.6 2.4 1.1
Q(25) 37 22 29
Qsq(25) 27 19 22
LM(daRF) 012 = =
LM(81) 2.31 - -
Log likelihood 5,889.68 2,978.46 2,917.85

LR statistic (5 df) = 12.18

NOTE: Robuststandard errors are given in parentheses.

the estimated series i, i;/0;, and 53 from the HYGARCH
model in each case.

An examination of these results leads to three conclusions.
First, the three structures estimated are not wholly dissimilar,
but each has distinctive features. In particular, the Won exhibits
quite a complex structure of autocorrelation, although this may
be due to the fact that the higher leptokurtosis of the other two
shock series has the effect of masking any autocorrelation that
may be present. Second, however, they more closely resemble
each other than the currencies analyzed in Table 1. The most
noteworthy feature is, of course, the large values of the « para-
meter in each case, especially for the Rupiah and Taiwan dollar.

Third, and perhaps most remarkable, is the stability of these
models across the pre-crisis and post-crisis regimes. In all three
cases the large @ value is common to both periods, and the other
parameters are also generally close. The last line of each table
shows the likelihood ratio statistic for the test of model stabil-
ity across the sample. Note that this cannot be interpreted as an
asymptotic chi-squared test, because the breakpoints have been
chosen with reference to the data—that is, the most extreme
contrasthas been drawn in each case. Therefore, the correct null
distribution of this statistic is the distribution of the maximum
log-likelihood ratio over all breakpoints. These critical values
must exceed the nominal chi-squared values. The statistic for
the Won is actually within the nominal acceptance region for
the 5% test, and that for the Rupiah is only slightly outside it.
Overall, these results provide little evidence for changes in the

model following the crisis, and the residual plots in panels (c)
of Figures 1-3 (from the model fitted to the full sample) pro-
vide another view of this evidence. In two out of three cases, at
least, it would appear impossible to detect the breakpoint with
confidence “by eye.”

One further piece of evidence on the performance of these
models is presented in Figure 4. This is a simulation using
the model of the Korean Won, driven by shocks randomly re-
sampled from the residuals of the same model, as shown in
Figure 4(c). The data shown were generated after letting the
process run for 2,000 presample periods, to remove dependence
on initial conditions. A “crisis” was introduced by inserting into
the (otherwise randomly drawn) sequence a succession of five
positive shocks, beginning at period 801. The values arbitrar-
ily chosen were 4.2, 6.0, 3.3, 2, and 5.1, expressed in standard
deviations, because that of the shock distribution is 1 by con-
struction. Such a realization would be a fairly rare event under
random resampling, although major exchange crises are simi-
larly rare, so this is not inappropriate.

There is, of course, no suggestion that the model (essen-
tially, a heteroscedastic random walk) always generates runs
of this appearance. Several repetitions of the experiment were
required to produce the case illustrated, selected for its resem-
blance to the observed data. The point to be made here is merely
that the observed data, taken as a whole, are compatible with
this type of data-generation process. Specifically, the pre-crisis

Table 4. Taiwan Dollar

01/03/94-6/15/00 01/03/94-10/15/97  10/16/97-6/15/00

(1,683 observations) (988 observations) (695 observations)
drg .860 (.079) 1.001 (.010) 667  (.073)
o 2.96 (.466) 2.956 (.466) 2.946  (.877)
81 .242 (.138) .009 (.187) 568 (.221)
B1 .635 (.043) .606 (.042) 726 (.136)
wl/4 .021 (.006) .022 (.006) .000037 (.004)
b1 —.075 (.024) —.131(.031) —.007  (.037)
p1/2 1.47 (.010) 1.46 (.010) 1.46 (.019)
Kurtosis 336 21 184
Q(25) 9.40 49 527
Qsg(25) 21 23 A1
LM(dagF) .037 — —
Log likelihood 8,631.47 5,263.64 3,38.61

LR statistic (7 df) = 25.56

NOTE: Robuststandard errors are given in parentheses.
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Figure 4. Korean Won Simulation. (a) Stochastically simulated se-
ries, using model in Table 2, Column 1; (b) HYGARCH shocks of simu-
lated series; (c) shocks randomly resampled from series in Figure 1(c),
with inserted “crisis” at period 801; and (d) conditional variances of sim-
ulated series.

“pegged-rate” segments of the series in Figures 1(a)-3(a), al-
though possibly appearing “stationary,” are actually well ex-
plained by a I(1 + d) process, provided that the innovations
are small enough. To switch to the post-crisis behavior, all that
is required are some unusually large shocks and a conditional
variance process with hyperbolic memory and large amplitude.
As can be seen, the resulting pattern of high volatility can per-
sist without further external stimulus, for scores and even hun-
dreds of periods.

This analysis points to the possibility that the behavior of
currency markets as filters of new information could be sim-
pler in structure than many observers seem to believe. The
natural rivals for the type of model presented here feature ex-
ogenous variables, either measured variables or dummies in-
dicating the new environment, or, alternatively, are Markov-
switching (SWARCH) models in which the deus ex machina
takes the form of an autonomous stochastic process to pro-
vide the switching mechanism (see, e.g., Hamilton and Susmel
1994). What we aim to show is that although any of these may
be the true explanations, there is no need to introduce them. The
crisis behavior can be well described by a very simple endoge-
nous mechanism, driven solely by the information contained in
the shock process itself.
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7. CONCLUSION

In this article, conditions have been derived for the exis-
tence of moments and near-epoch dependence of the general
class of ARCH(o0) processes. This class includes the GARCH,
IGARCH, and FIGARCH models, among other alternatives. It
has been argued that the properties of these processes should be
represented as varying in the two dimensions of amplitude and
memory, relating to the magnitude of the sum of the lag coeffi-
cients and their rate of convergence. The proposed HY GARCH
model generalizes the FIGARCH model to permit both the exis-
tence of second moments on the one hand, and greater extremes
of amplitude on the other. Application of the model to exchange
rates is illustrated by two contrasting sets of examples.

An importantimplication of the results is the danger of press-
ing too far the analogy between integrated (i.e., fractional) mod-
els in levels, and models whose conditional variances have an
apparently similar dynamic structure. The relationship between
the degree of persistence and the wide-sense stationarity of
the process obeys very different rules in the two cases. The
IGARCH is a short-memory process having no variance, the
FIGARCH(d) model has shortest memory with d closest to 1,
and in general ARCH(o0) processes can be persistent and yet
wide-sense stationary.

A further implication is the inability of the ARCH(o0) class
to represent the degree of persistence commonly called “long
memory.” An interesting commentary on this question is pro-
vided by Andersen and Bollerslev (1997), who considered
a semiparametric model in which the spectrum of absolute re-
turns is treated as unboundedat the origin, diverging like || =2
for a parameter d > 0, as @ — 0. Their d was estimated by
the method of Geweke and Porter-Hudak (1983) from high-
frequency data under varying degrees of time aggregation. It
is important to stress that this d parameter is different from
the d parameter defined by (9) or (34). A spectrum diverging
at the origin implies nonsummable autocorrelations, which are
not permitted in the ARCH(o0) framework. If true long mem-
ory in variance is to be represented parametrically, it will have
to be in the context of a different class of models.

The exponential ARCH(o0) class, in which log#h; is mod-
eled by a distributed lag of some appropriate indicator of re-
alized volatility, could be a plausible candidate for this role.
Andersen and Bollerslev (1997) derived an exponential model,
but also argued that persistence characteristics should be pre-
served under monotone-increasing transformations, so that the
spectrum of absolute returns should capture the same long-
memory characteristics. The EGARCH model of Nelson (1991)
may be taken as a case in point. Here log A, is represented as an
infinite moving average of a function g(e;), where e, is the iid
driving process. If (34) were allowed to represent (in a purely
formal way) the lag structure in this model, then the interpre-
tation of the coefficients o« and d would, of course, be entirely
different. In particular, « would be irrelevant to the existence
of moments, and d < O (such that the lag coefficients are not
absolutely summable) would not necessarily be incompatible
with stationarity. One might even speculate that the parame-
ter estimated by Andersen and Bollerslev (1997) corresponds
to —d in this setup. Investigating these issues goes well beyond
the scope of this article, but represents an interesting avenue for
further research.
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APPENDIX: PROOFS OF THEOREMS
A.1 Proof of Theorem 1

Because 0, > w and E,"lo? > w, the inequality

11252 _ pl4my2

1+ 2
lue — E;Spuellp < 0™ = lloy i lp

follows by a minor extension of lemma 4.1 of Davidson (2002),
replacing 2 with p > 1. Therefore, in view of stationarity, it suf-
fices to prove the inequalities

2 _ Et+m

lo — ElXlo? |, < Cpm™ (A.1)

for C, > 0, for p =1 and p = 2. Repeated substitutionleads to,
for given m, the decomposition
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To prove part (a), first note that
2 2 (2 2 1+m
Ele;_;, Crjy—-—p E(et—jl et—jl—---—jp|‘7:t—m)|

{20 Jit--+jp<m
<2 otherwise,

using the Jensen inequality and law of iterated expectations in
the second case. Similarly,

2 2 2
2 2 2 t+m
_ Ceee? ) . ) <
where M5 is defined after (15). Next, define
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Jj=m/p+1
=0(p’ m=’8"™h),

where the first inequality uses the fact that max{ji,...,jp} >
m/p when ji + - -- +j, > m. Because S < 1, applying the trian-
gle inequality yields

m
Elo? — Efnol| <20 ) T, +2Mp8™"!

p=1
m
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=0(m™®).
To prove part (b), note similarly that
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Therefore, Minkowski’s inequality gives
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A.2 Proof of Theorem 2

The proof of Theorem 1 is modified as follows. For part (a),
note that because p > 1 and S < 1, there exists € > 0 such that
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T 1—¢

S= E Gj <1
J=1

There is no loss of generality in setting 1 < C < p. In this case,
defining p = p® > 1 and C = C®, note that 1 < C < p. Then
note that
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< cP ~—m§p
= CP"mSP(Cp ™. (A.4)
Therefore,
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p=1
= O(mmax{C™™,§"}(Cs~ ™). (A.5)

To prove part (b), choose £ > 0 such that S= Zfil Gjl_g <
,u‘(f_l)/z. On the assumptions, C can be chosen without loss of

generality such that 1 < ,uj/ 20 < p. Therefore,
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A.3 Proof of Theorem 3
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2 m
o —nh
oo
=w Z O er . +
J15t—j
Jji=m+1
oo oo
.. 2 2
+ D0 Lm0, 0er e+
J1=1j=1
oo oo
+ Z e Z ]]‘{jl+"'+jm>m} (-11’ M ’Jm)efl . ]m
J1=1 Jm=1
2 2
et_jl o et_jl_"'_jm>
oo oo
+ Z Z 9]1 fm+1
J1=1 Jm+1=1
2 2 2
O T R M e

=owU;+ -+ Up) + Vi,

where the last equality defines Uy, ..., Uy and V. The depen-
dence of these terms on ¢ is implicit but not indicated for ease
of notation. By subadditivity,

P(lo2 1" > 8) < P(@|U1+---+Un| > 8/2)+P(Vi > 8/2),
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and the approach is to bound each term separately. First, note
that E|Up| = T, as defined in (A.4). Under the assumptions,

00 0
Ty <Cp™" D D Wivtotinm Uit -

J1=1 jpzl
=0 p™™), (A.6)

and note that S < C/(p — 1). Therefore, by subadditivity and
the Markov inequality,

(o $y-) o Ui 2

) "I

p:l p:l
“ Sw
< P\U —
<Y p(0,>22)
p=1
< — T,=0|m
Sw; p(p—1)

Next, consider V. Let
o0
T _ 1+
5= 01",
Jj=1

where € > 0 is to be chosen. [Note that although (A.7) is similar
to the expression in (A.3), here the sign on ¢ is reversed, and in
this case the sum may exceed 1.] By subadditivity,note that

P(Vyy > 8/2)

<P Sm+19 A
(U O

(A7)

|—8

]m+1
J1=1 Jm+1=1
2 2 2
X € €1y = —imir =1 = —jms1 = 8/2}>

o0
cm+1 —&
Z P S |9] : ]m+1

=
J1=1 jm+1:1
2 2 2
X et—jl e et_jl_"'_jm+1Ut_jl_"'_j111+l e 8/2)
(A.8)
Rewrite the probabilities in (A.8) in the form
P(e[—fl i T B(ji, - .- a]m+1))7
where
316j, - |®
. . J1 fm+1
B(j1, ..., =
(1 Jm+1) 2S’"+1at2_. o
J1 Im+1

For brevity, write
P(.) = P(. |ft_j1_"'_jm+lfl )’

where F; represents the sigma field generated by {es, s < t}, and

hence otz_ iy, MY be held conditionally fixed under P.

Consider the sequence

m
2 _ Z 2
log(erj, €1y —vmipyr) = 2108,
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form=1,2,.... Because the ¢; are iid random variables, the
CLT implies that for large m, the distribution of the sum is

approximately Gaussian with mean —m¢ and variance mt?,

where 72 = var(log etz). Note that by the Jensen inequality,
;= —E(logef) > — logE(ejz) =0.
Hence, for large enough m,

15(62 e

t=j1’ =j1—="=Jm+1
2 2
_ P(IOg(et—h o ef—fl—“'—fmﬂ)
N T /m
> 10gB(j17 000 7jm+1) + m;)
T/m

108 B(j1,-sm )+mC)2
) T —

V22108 BU1 - jme1) + M)
X (1 + O(ogB(ji1, - jm+1) + mf)_2)~

7jm+l))
+ m¢

> B(j1, .- -

(A9)
Here the second equality is obtained, assuming that

10gB(j17 . '7jm+1) +m§ >0

(to be established below) from the asymptotic expansion of the
Gaussian probability function, (see 26.2.12 of Abramowitz and
Stegun 1965). Note that the error in the expansion is condition-
ally of o(m™2).

Because {log atz} is a stationary sequence by assumption, and
hence 0, (1),

logB(j1, .-\ Jjm+1)

m

- %log 16, 6., — logS + 0,(1/m). (A.10)
As m increases, the conditional probability expression in (A.9)
(suitably renormalized so that it does not vanish) is con-
verging in probability to a nonstochastic limit, which neces-
sarily matches that of the large-m unconditional probability.
Henceforth, this formula is modified by neglecting the terms
of Op(1/m). First, note that

1
0 == E log |9]1 e 9]111+1 == logemax,

where Omax = max;j>16;. The denominator in (A.9) is there-
fore always positive if ¢ > log S, which henceforth is assumed.
Next, note that

expl—((e1og 6y, - 03, | — mlogS + m¢)*) /2% m}
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Combining (A.8)—(A.11) yields, for large enough m,
PV, >38/2)

1 exp{ _m( (108 Omax —log2§)22+2§ log S4¢2 ) }

\/Z_Hm(g“ — logS')

< §m+

m = 0. x
=0\ exp —27(2§10g5—2t log$S

+ (eloghy — logS)* + {2)}).

For the right side expression to vanish as m — 00 requires
that the sum of terms in parentheses in the exponentbe positive.
Using ¢ > logs, the sufficient condition,

3log? S > 272 log S, (A.12)

is obtained. Consider the “worst case” in which 6; = Cp /. Sub-
stitutingS = C1*¢ /(p '+¢ — 1) and § = CEL/T J(p 47 — 1) into
(A.12) gives

3((1 4 &) log C — log(p' ™ — 1))’
> 2t%(e¢ /r?log C — log(,o‘gg/f2 —-1)).
By taking ¢ large enough, this can be made arbitrarily close to
3((1 + s)z(logC — log,o))2 > 2(e¢logC — et logp)
> 2¢(logC —log p)z,

which holds for any choice of C and p. It follows that ¢ > logS'
is sufficient, which proves part (b) of the theorem. In turn,
C < p ensures that logS' < 0 for large enough ¢ > 0, which
proves part (a).

[Received June 2001. Revised April 2003.]
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