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abstract

In this article we derive necessary and sufficient conditions for the nonnegativity of
the conditional variance in the fractionally integrated generalized autoregressive
conditional heteroskedastic ( p, d, q) (FIGARCH) model of the order p � 2 and
sufficient conditions for the general model. These conditions can be seen as being
analogous to those derived by Nelson and Cao (1992, Journal of Business &

Economic Statistics 10, 229–235) for the GARCH( p, q) model. However, the
inequality constraints which we derive for the FIGARCH model illustrate two
remarkable properties of the FIGARCH model which are in contrast to the
GARCH model: (i) even if all parameters are nonnegative, the conditional variance
can become negative and (ii) even if all parameters are negative (apart from d ), the
conditional variance can be nonnegative almost surely. In particular, the conditions
for the (1, d, 1) model substantially enlarge the sufficient parameter set provided
by Bollerslev and Mikkelsen (1996, Journal of Econometrics 73, 151–184).
The importance of the result is illustrated in an empirical application of the
FIGARCH(1, d, 1) model to Japanese yen versus U.S. dollar exchange rate data.
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The empirical relevance of long memory conditional heteroscedasticity, which

was initially addressed in the work of Ding et al. (1993) and Ding and Granger
(1996), has emerged in a variety of studies of economic and financial time series.

By now it is a widely accepted stylized fact that the empirical autocorrelation

functions (ACFs) of the squared or absolute values of many macro and financial

variables are characterized by a very slow decay, indicating long memory and

persistence.

The linear autoregressive conditional heteroskedastic model (LARCH) by

Robinson (1991) was the first model permitting long memory in the conditional

variance. Subsequently, many researchers have proposed extensions of general-
ized ARCH (GARCH)-type models which can produce long-memory behavior.

The fractionally integrated GARCH (FIGARCH) model by Baillie, Bollerslev, and

Mikkelsen (1996) can definitely be considered as the most established model

among those which have proved to be suitable to handle the typical data features

in many empirical applications [see, e.g., Bollerslev and Mikkelsen (1996), Beine

and Laurent (2003), Conrad and Karanasos (2005a,b)]. Alternative specifications

were suggested by Davidson (2004), Giraitis, Robinson, and Surgailis (2004),

Karanasos, Psaradakis, and Sola (2004), and Zaffaroni (2004). Recent research
has been aimed at a better understanding of the properties of these well-

established models; for instance, Karanasos, Psaradakis, and Sola (2004) derive

convenient representations for the ACF of the squared values of long-memory

GARCH (LMGARCH) processes, while in a related study Conrad and Karanasos

(2006) derive expressions for the impulse response function (IRF) of the LMGARCH

model. For an up-to-date overview of theoretical findings on long-memory GARCH

processes, see Giraitis, Leipus, and Surgailis (2005). Finally, Baillie (1996) and Henry

and Zaffaroni (2003) provide excellent surveys of major econometric work on long-
memory processes and their applications in economics and finance.

As in the Bollerslev (1986) GARCH model, conditions on the parameters of

the FIGARCH model have to be imposed to ensure the nonnegativity of the

conditional variance. Originally, Bollerslev (1986) imposed conditions on the

parameters of the GARCH(p, q) model, which were sufficient to ensure the

nonnegativity of the conditional variance, but these conditions simply required

the nonnegativity of all parameters in the conditional variance specification.

Nelson and Cao (1992) showed that the restrictions imposed by Bollerslev
(1986) can be substantially relaxed. By investigating the ARCH(1) representation

of the process, they derive necessary and sufficient conditions for the

GARCHðp, qÞ model with p ¼ 1 or 2 and sufficient conditions for the general

model. In particular, some of the parameters are allowed to have a negative sign.

This is important since empirical findings [see Nelson and Cao (1992) and the

references therein] suggest that for many financial time series typically the para-

meter associated with the second lag of the squared innovation in the GARCH

specification has a negative sign. The Bollerslev (1986) conditions rule out this
case and thereby unnecessarily limit the flexibility of the model. This is nicely

illustrated by He and Teräsvirta (1999) who have shown that for the
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GARCHðp, qÞ model with maxfp, qg ¼ 2, these weaker conditions imply richer

shapes of the ACF of the squared residuals.
An easy way to guarantee the nonnegativity of the conditional variance in the

GARCHðp, qÞ model with p � 2 is, therefore, firstly to estimate the unrestricted

model and then to validate the Nelson and Cao (1992) conditions only in case that

there are parameter estimates with a negative sign. By now the Nelson and Cao

(1992) conditions are implemented in econometric packages such as the financial

analysis package for GAUSS, PcGive, S-Plus, Rats, and G@RCH.

To validate whether a set of parameters suffices for the nonnegativity of the

conditional variance in the FIGARCH(p, d, q) model is substantially more difficult. In
contrast to the GARCH model, it is possible that (i) the conditional variance becomes

negative, although all the parameters are positive and (ii) the conditional variance is

nonnegative almost surely (a.s.) for all t, although all the parameters are negative

(apart from d). These two observations imply that—independent of the sign of the

estimated parameters—the nonnegativity conditions should always be verified.

Bollerslev and Mikkelsen (1996) provide sufficient conditions for the

FIGARCH(1, d, 1) model. These conditions are validated in programs such as the

G@RCH package for Ox developed by Laurent and Peters (2002). Since these condi-
tions are only sufficient, there exist parameter values for which the conditions are

violated, but still the conditional variance will be nonnegative almost surely. No

conditions (not even sufficient) are available for higher-order models.

Of course, for the FIGARCH( p, d, q) model to be well-defined and the

conditional variance positive almost surely for all t, all the coefficients in

the infinite ARCH representation must be non-negative [Bollerslev and

Mikkelsen (1996, p. 159)].

In this article we derive necessary and sufficient conditions for the FIG-

ARCH(p, d, q) model of orders up to p ¼ 2 and sufficient conditions for the

general (p, d, q) model, which reduce an infinite number of inequalities to a finite

number. Once the parameters are estimated, one can easily validate these condi-

tions. The results for the (1, d, 1) specification which is used most often in

empirical applications are discussed in detail. We illustrate graphically how

the necessary and sufficient conditions dramatically enlarge the feasible para-
meter set compared with the set given by the sufficient conditions provided by

Bollerslev and Mikkelsen (1996). For models of higher order ( p � 3), we derive

sufficient constraints which require only mild conditions on the parameters of the

process. However, in practical applications, one will rarely have to make use of a

specification with p > 2. We provide an efficient algorithm for computing the

coefficients in the ARCHð1Þ representation which can be used if the sufficient

conditions are violated. Plotting the sequence of coefficients indicates whether

the conditional variance can become negative or not.
Availability of these inequality constraints is of importance to any researcher

estimating FIGARCH models and in particular when utilizing parameter
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estimates to obtain volatility forecasts which are then employed, for example, for

long-term option pricing or value-at-risk computations.
An empirical example illustrates the importance of our results. We estimate a

FIGARCH(1, d, 1) model for Japanese yen versus U.S. dollar exchange rate data

using the G@RCH package for Ox. The parameter estimates clearly fail to satisfy

the Bollerslev and Mikkelsen (1996) conditions, which would lead any researcher

relying on these conditions to reject the model. The set of parameters does,

however, satisfy the necessary and sufficient conditions derived in this article

and hence guarantees the nonnegativity of the conditional variance.

We should mention that the conditions derived in this article also apply to
the LMGARCH model since the coefficients in the ARCHð1Þ representations of

the FIGARCH and the LMGARCH models coincide. Moreover, the results

directly extend to the multivariate constant correlation FIGARCH model and

to the fractionally integrated autoregressive conditional duration (FIACD)

model proposed by Jasiak (1998) which requires the nonnegativity of the con-

ditional duration time.

The article is organized as follows. Section 1 sets out the model of interest,

assumptions, and notation. In Section 2, we derive the necessary and sufficient
conditions for the nonnegativity of the conditional variance in the FIGARCH(p, d, q)

process. Section 3 discusses the empirical example. In Section 4, we suggest future

developments. All proofs are deferred to the appendix.

1 THE FRACTIONALLY INTEGRATED GARCH MODEL

Following Robinson (1991) and Zaffaroni (2004), we define an ARCHð1Þ process

fet, t 2 Zg by the equations

et ¼ Zt

ffiffiffiffi
ht

p
, ð1Þ

where fZt, t 2 Zg is a sequence of independent and identically distributed ran-

dom variables with EðZtÞ ¼ 0, �2
Z ¼ EðZ2

t Þ < 1, and

ht ¼ ~!þ
X1
i¼1

 ie2
t�i: ð2Þ

The parameter �2
Z 2 R

þ was introduced by Zaffaroni (2004) and relaxes the

assumption that EðZ2
t Þ ¼ 1 which is common in the GARCH literature. A major

issue in specifying a valid ARCHð1Þ process is to guarantee the nonnegativity of

the conditional variance a.s. for all t. For this to hold, it must be assumed that
~! � 0 and  i � 0 for all i � 1.1 Now, define vt ¼ e2

t � �2
Zht which is, by

1 Requiring that  i � 0 for all i implies that Pðht < ~!Þ ¼ 0. Hence, ~! is the lower bound for the conditional

variance. Note that the same statement holds for the GARCHðp,qÞ model [see Nelson and Cao (1992)].
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construction, a martingale-difference sequence with respect to the filtration gen-

erated by fes, s � tg. Let �ðLÞ ¼
P1

i¼1  iL
i with L being the lag operator, then e2

t

can be represented as

½1� �2
Z�ðLÞ�e2

t ¼ �2
Z ~!þ vt: ð3Þ

From Equation (1), we have E½et� ¼ 0, covðet, et�jÞ ¼ 0 for j � 1, and by Equation (3),

E½e2
t � ¼ ð�2

Z ~!Þ=ð1� �2
Z�ð1ÞÞ. Therefore, it follows that the covariance stationarity

of et in the ARCHð1Þ model requires ~!, �2
Z 2 R

þ, and �2
Z�ð1Þ < 1:

In the following, we explain how the Baillie, Bollerslev, and Mikkelsen (1996)

FIGARCH and the Karanasos, Psaradakis, and Sola (2004) LMGARCH models

relate to the ARCHð1Þ model given by Equations (1) and (2) under specific
assumptions on ~!, �2

Z, and for certain finite parameterizations of �ðLÞ.
Baillie, Bollerslev, and Mikkelsen (1996) introduce the FIGARCH(p, d, q) model

by assuming �2
Z ¼ 1 and defining e2

t via the well-known ‘‘ARMA in squares’’

representation2

ð1� LÞd�ðLÞe2
t ¼ !þ BðLÞvt, ð4Þ

for some ! 2 R
þ, 0 � d � 1 and lag polynomials �ðLÞ and BðLÞ defined as

�ðLÞ ¼ 1�
Xq

i¼1
�iL

i BðLÞ ¼ 1�
Xp

i¼1
�iL

i:

The FIGARCH model can be interpreted as a special case of Equation (2) with

~! ¼ !

Bð1Þ and �ðLÞ ¼ 1� ð1� LÞd�ðLÞ
BðLÞ :

For any 0 < d < 1, the  i coefficients will be characterized by a slow hyperbolic

decay implying persistent impulse response weights [see Conrad and Karanasos

2 Baillie and Mikkelsen (1996) alternatively proposed the Fractionally Integrated Exponential GARCH

(FIEGARCH) model which specifies the logarithm of the conditional variance as a fractionally integrated

process. This formulation allows to model the so-called leverage effect and nests the Nelson (1991)

Exponential GARCH (EGARCH) model as a special case when d ¼ 0. Moreover, the conditional variance

of the FIEGARCH is positive by construction, and hence no constraints on the parameters are required.

A discussion of the moment and memory properties of the FIEGARCH model can be found in Giraitis,

Leipus, and Surgailis (2005, p. 18). Despite the nice properties of the FIEGARCH model, it is evident that

the FIGARCH model is much more popular in empirical applications. One reason might be that the

leverage effect is primarily a short-run phenomenon. Therefore FIGARCH and FIEGARCH perform

very similar in modeling the long-run features of e.g. stock market volatility. However, the FIEGARCH

often encounters convergence problems in the estimation procedure due to the fact that the current

conditional variance is a highly nonlinear function of lagged conditional variances. Moreover, to our

knowledge, no distribution theory for the maximum likelihood estimator has been established even for

the EGARCH with d ¼ 0.
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(2006)]. However, the Baillie, Bollerslev, and Mikkelsen (1996) specification with

0 < d < 1 and �2
Z ¼ 1 is not compatible with the covariance stationarity of the et,

since in this case we have �ð1Þ ¼ 1 and the above covariance stationarity condi-

tion is violated. For 0 < d < 1, it is possible to obtain the covariance stationarity of

the et by assuming �2
Z < 1, but as shown by Zaffaroni (2004), Theorem 2 and

Remark 2.1, this implies absolute summability of the ACF of the e2
t , ruling out

long memory in e2
t .

The FIGARCH model nests the Bollerslev (1986) GARCH model for

d ¼ 0. Then the condition �2
Z�ð1Þ < 1 reduces to the well-known covariance

stationarity condition for et stated in Bollerslev (1986):
Pq

j¼1 �j < 1. This speci-
fication implies exponentially decaying coefficients  i which lead to an

absolutely summable exponentially decaying ACF of e2
t and hence to a short-

memory process. On the other hand, the IGARCH model is obtained under

the restriction d ¼ 1. Then �ð1Þ ¼ 1, and the model is again not covariance

stationary.

A model which is closely related to the FIGARCH model was suggested by

Karanasos, Psaradakis, and Sola (2004). They define the LMGARCH(p, d, q) model

also by assuming �2
Z ¼ 1 but model the squared residuals in terms of deviations

from ! 2 R
þ, that is, by the equation

ð1� LÞd�ðLÞðe2
t � !Þ ¼ BðLÞvt: ð5Þ

This small modification makes the LMGARCH model being analogously defined

to the Autoregressive Fractionally Integrated Moving Average (ARFIMA) model

for the mean and has important implications for the properties of et. Equations (1)

and (5) imply E½et� ¼ 0, covðet, et�jÞ ¼ 0 for j � 1, and E½e2
t � ¼ ! < 1. This means

that the LMGARCH model specifies a covariance stationary et process, although

�2
Z ¼ 1 and �ð1Þ ¼ 1 for any 0 < d < 1. Moreover, the LMGARCH specification

implies that the autocorrelations f�mðe2
t Þ, m ¼ 1,2, . . .g satisfy �mðe2

t Þ ¼ Oðm2d�1Þ.
Hence, provided that the fourth moment of the et is finite, e2

t exhibits long

memory for all 0 < d < 0:5, in the sense that the series
P1

m¼0 j�mðe2
t Þj is properly

divergent [see Karanasos, Psaradakis and Sola (2004)]. In summary, the advan-

tage of the LMGARCH model compared with the FIGARCH model is that it

combines the covariance stationarity of the et with the long memory in the e2
t . The

question whether the LMGARCH and the FIGARCH models are strictly station-

ary or not is still open at present [see Giraitis, Leipus, and Surgailis (2005, p. 11)].

The LMGARCH model leads to an ARCH(1) representation with ~! ¼ 0 and

�ðLÞ ¼ 1� ð1� LÞd�ðLÞ=BðLÞ.
Hence, both models obey ARCH(1) coefficients generated from the expan-

sion of

�ðLÞ ¼ 1� ð1� LÞd�ðLÞ
BðLÞ ¼

X1
i¼1

 iL
i:
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In the following section, we derive conditions on the parameters ð�1, . . . , �p,

d, �1, . . . , �qÞ which guarantee that  i � 0 for all i � 1. Since the ARCH(1)
coefficients are the same for the FIGARCH and the LMGARCH models, our

results hold for both models. Moreover, even if �2
Z 6¼ 1, this will not affect the

coefficients in the ARCH(1) representation, and hence our results hold for an

even broader class of ARCH(1) models than the FIGARCH and LMGARCH

models. Because of the predominant role played by the FIGARCH model in the

literature on empirical applications, we state all the results in the following

section in terms of this model.

Before we present our results, we state further assumptions and introduce
some more notation which we utilize in the proofs of all theorems. We assume

that the inverse roots �i, i ¼ 1, . . . , p, of the polynomial BðLÞ are real and 0 6¼
j�ij < 1 for i ¼ 1, . . . , p.3 Additionally, we assume that the roots of �ðLÞ lie outside

the unit circle, and �ðLÞ and BðLÞ have no common roots.4 The assumptions on

the roots of �ðLÞ and BðLÞ imply that �ð1Þ > 0 and Bð1Þ > 0.

The fractional differencing operator ð1� LÞd is most conveniently expressed

in terms of the hypergeometric function Hð�Þ

ð1� LÞd ¼ Hð�d,1; 1; LÞ ¼
X1
j¼0

gjL
j,

where the coefficients gj are given by

gj ¼ fj � gj�1 ¼
Yj

i¼1

fi with fj ¼
j� 1� d

j
for j ¼ 1,2, . . .

and g0 ¼ 1. Note that f1 ¼ �d < 0, f2 ¼ ð1� dÞ=2 > 0, and fj > 0 for all j > 2 and
hence gj < 0 for all j � 1. It is easy to see that fj < fjþ1 and fj ! 1 as j!1.

Furthermore, for i > q � 0, we define Fi ¼ �
Pq

l¼0 �l

Qq�1
j¼l fi�j with �0 ¼ �1

and
Q�1

j¼0 ¼ 1, Fi < Fiþ1 and Fi ! 1� �1 � � � � � �q > 0 as i!1.

Let ð�ð1Þ, �ð2Þ, . . . , �ðpÞÞ be an ordering of the roots �i and define �r ¼Pr
i¼1 �ðiÞ, r � p. Hence, it follows that

F
ðrÞ
i ¼ �rFi�1 þ Fifi�q ! ð�r þ 1Þð1� �1 � . . .� �qÞ, ð6Þ

and the limit is positive, provided that �r > �1.

3 Our analysis does not cover complex roots in BðLÞ. Since we could not find any article in which a

FIGARCH model was estimated with complex roots, we expect the empirical relevance of this case to be

rather small. However, most of the recursions we derive also hold for complex roots and hence in

principle it is possible to extend our results in this direction.
4 If �ðLÞ and BðLÞ have common roots, the FIGARCH process reduces to a model of lower order.
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2 INEQUALITY CONSTRAINTS FOR FIGARCH( p, d, q) MODEL

In this section we derive the inequality constraints which are necessary and suffi-

cient for the nonnegativity of the conditional variance in the FIGARCH(p, d, q)

model with p � 2 and sufficient conditions for the general model. The inequality

constraints provided in Bollerslev and Mikkelsen (1996) for the FIGARCH(1, d, 1)
model are substantially relaxed. As a special case ðd ¼ 0Þ, the results of Nelson

and Cao (1992) can be obtained.

As mentioned before, the nonnegativity of the conditional variance requires

that all  i coefficients in the ARCH(1) representation are nonnegative. In gen-

eral, this would mean imposing infinitely many inequality constraints on the  i.

By investigating the sequence for the different models, we find that the infinite

number of restrictions reduces to a finite number. This means that it suffices to

check the nonnegativity of  1, . . . ,  k to guarantee the nonnegativity of the
conditional variance. To relate the  i sequence to the parameters of the process,

we have to find convenient representations of the coefficients as functions of the

parameters.

2.1 FIGARCH(1, d, q)

We begin with deriving the inequality constraints for the FIGARCH(1, d, q)

process. Then we discuss the empirically important examples of the FIGARCH

(1, d, 1), FIGARCH(0, d, 1), and FIGARCH(1, d, 0) models in detail.

Theorem 1 The conditional variance of the FIGARCH(1, d, q) is nonnegative a.s. iff

Case 1: 0 <�1 < 1

1.  1, . . . ,  q�1 � 0 and

2. either  q � 0 and Fqþ1 � 0 or for k > qþ 1 with Fk�1 < 0 � Fk, it holds

that  k�1 � 0.

Case 2: �1 < �1 < 0

1.  1, . . . ,  q�1 � 0 and

2. either  q � 0,  qþ1 � 0, and F
ð1Þ
qþ2 � 0 or for k > qþ 2 with F

ð1Þ
k�1 < 0 � F

ð1Þ
k ,

it holds that  k�1 � 0 and  k�2 � 0.

In the proof of Theorem 1, we obtain an easily computable recursion for the

 i coefficients which can be used in practice to validate the requirements of
the theorem for a given set of parameter estimates. It is clear that in the FIG-

ARCH(1, d, q) model, it suffices to check qþ 1 conditions if �1 > 0 and qþ 2

conditions if �1 < 0 to ensure the nonnegativity of the conditional variance for all t.

420 Journal of Financial Econometrics



Because the FIGARCH(1, d, 1) model is definitely the most often used

specification in empirical applications, we intensively discuss the derivation of
the corresponding inequalities and their interpretation. The ARCH(1) represen-

tation of the FIGARCH(1, d, 1) model leads to following recursions (see proof of

Theorem 1) for the corresponding  i coefficients:

 1 ¼ dþ �1 � �1 ð7Þ

 i ¼ �1 i�1 þ ðfi � �1Þð�gi�1Þ for all i � 2 ð8Þ

and alternatively,

 i ¼ �2
1 i�2 þ ½�1ðfi�1�1Þ þ ðfi � �1Þfi�1�ð�gi�2Þ for all i � 3 ð9Þ

Corollary 1 The conditional variance of the FIGARCH(1, d, 1) is nonnegative a.s. iff

Case 1: 0 < �1 < 1

either  1 � 0 and �1 � f2 or for k > 2 with fk�1 < �1 � fk, it holds that

 k�1 � 0.

Case 2: �1 <�1 < 0

either  1 � 0,  2 � 0, and �1 � f2ð�1 þ f3Þ=ð�1 þ f2Þ or for k > 3 with

fk�2ð�1 þ fk�1Þ=ð�1 þ fk�2Þ < �1 � fk�1ð�1 þ fkÞ=ð�1 þ fk�1Þ, it holds that

 k�1 � 0 and  k�2 � 0.

This corollary can be derived from the recursions by the following considera-

tions. First, note that �gi > 0 for i � 1. The proof uses then the fact that Fi ¼
fi � �1 and F

ð1Þ
i ¼ �1ðfi�1 � �1Þ þ ðfi � �1Þfi�1 are increasing and that for both

expressions there exists a k such that Fk�1 < 0 � Fk and F
ð1Þ
k�1 < 0 � F

ð1Þ
k . For

example, consider Case 1. If  1 � 0 and �1 � f2, this implies �1 < fi for all i > 2

and hence the nonnegativity of all  i by Equation (8). If �1 > f2, then there exists a
k such that �1 � fk, and so  k�1 implies  i � 0 for all i � k because fi is increasing.

Also,  k�1 � 0 and fk�1 < 0 imply  i � 0 for all i � k� 2. Case 2 can be treated

analogously using Equation (9).

Next, we compare Corollary 1 with the already existing sufficient condi-

tions for the FIGARCH(1, d, 1) model suggested in Baillie, Bollerslev, and

Mikkelsen (1996), Bollerslev and Mikkelsen (1996), and Chung (1999). Baillie,

Bollerslev and Mikkelsen (1996, p. 22) provide the following sufficient

constraints

0 � �1 � �1 þ d and 0 � d � 1� 2�1
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which are equivalent to  1 � 0 and F2 � 0. Alternatively, Bollerslev and Mikkelsen

(1996, p. 159) state the inequality constraints

�1 � d � �1 �
2� d

3
and d �1 �

1� d

2

� �
� �1ð�1 � �1 þ dÞ

which are equivalent to  1,  2 � 0 and F3 � 0. Hence, these inequality constraints

reflect the first condition in Case 1 of Corollary 1 or the arbitrary choice of k ¼ 3

(again Case 1). The Bollerslev and Mikkelsen (1996) conditions are weaker than
the Baillie, Bollerslev, and Mikkelsen (1996) conditions but restrict �1 � f3. Note

that both sets of sufficient conditions do not cover Case 2 where �1 < �1 < 0,

since the corollary requires F
ð1Þ
3 � 0. Finally, Chung (1999) suggests a third set of

sufficient constraints which is given by

0 � �1 � �1 � d < 1 ð10Þ

and provides two examples:

(i) �1 ¼ 0:6, �1 ¼ 0:7, and d ¼ 0:8

(ii) �1 ¼ 0:5, �1 ¼ 0:2, and d ¼ 0:25.

The first set of parameters satisfies Equation (10) but not the Bollerslev and

Mikkelsen (1996) conditions, while the second satisfies the Bollerslev and

Mikkelsen (1996) conditions but not Equation (10). Chung (1999, p. 18) con-

cludes ‘‘The examples show that there may be parameter values that cannot

satisfy either set of sufficient conditions while still allow all  i coefficients to be
positive.’’

The corollary above provides necessary and sufficient conditions and thereby

solves this problem. One can easily check that the parameters in both examples

satisfy the conditions of Corollary 1. Moreover, in comparison with the Bollerslev

and Mikkelsen (1996) sufficient conditions, it widens the range of admissible

parameters: (i) if fk�1 < �1 � fk with k > 3 parameters can still be admissible and

(ii) we allow for �1 < 0.

Figure 1 illustrates how the inequality constraints from Corollary 1, Case 1,
extend the sufficient set from Bollerslev and Mikkelsen (1996) to the necessary

and sufficient set for two fixed values of d, that is, for d 2 f0:1, 0:9g and �1 > 0.5

The set denoted BþM is given by the Bollerslev and Mikkelsen (1996) condi-

tions, while the set denoted CþH is the area which is allowed for by Corollary 1,

Case 1, but not by the Bollerslev and Mikkelsen (1996) conditions. The dashed

line separating the two sets corresponds to �1 ¼ f3. For a given value of d, f3 is

the upper bound for �1 in the Bollerslev and Mikkelsen (1996) conditions. The

5 Note that we exclude �1 ¼ �1 by the assumption that �ðLÞ and BðLÞ have no common roots.
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Figure 1 Necessary and sufficient parameter set for FIGARCH(1, d, 1) model (Case 1 and �1 > 0)
with d ¼ 0:1 (upper) and d ¼ 0:9 (lower).
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joint set, that is, BþM [ CþH, is the necessary and sufficient one. The necessary
and sufficient set given by Figure 2 covers Case 1 and Case 2 for d ¼ 0:3 and

�1 < �1 < 1. As can be easily seen, Corollary 1 dramatically enlarges the set of

parameter values which is allowed for and thereby allows for a greater flex-

ibility in model specification. In particular, note that in contrast to the GARCH

model, the conditional variance of the FIGARCH can be nonnegative although

�1 < 0 and �1 < 0, and on the other hand, it can become negative although all

parameters are positive. When d is approaching 0, the parameter set described

by Corollary 1 converges to the well-known necessary and sufficient set for a
GARCH(1, 1) model with parameters �1 ¼ �1 � �1 and �1. When d approaches

1, the FIGARCH(1, d, 1) collapses to a GARCH(1, 2) model with parameters

�1 ¼ 1þ �1 � �1, �2 ¼ ��1 and �1, which add to 1. The admissible parameter set

again coincides with the parameter set given by Nelson and Cao (1992) for this

model.

For the GARCH(2, 2) model, He and Teräsvirta (1999) show that the

Nelson and Cao (1992) necessary and sufficient conditions imply richer

shapes of the ACF of the squared residuals compared with shapes implied
by the Bollerslev’s (1986) sufficient conditions. They discover four possible

types of ACFs which can be generated. Type 1 is characterized by a smooth

monotonic decay from �1 onward, while type 2 reaches its peak at �2 > �1 with

monotonic decay from �2 onward. The autocorrelations may be oscillating

with peak at either �1 or �2, which are the Cases 3 and 4. Expressions for the
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Figure 2 Necessary and sufficient parameter set for FIGARCH(1, d, 1) model with d ¼ 0:3.
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ACF of the squared residuals in the LMGARCH(p, d, q) were derived in Karanasos,

Psaradakis, and Sola (2004).6 While the long-run behavior of the ACF is governed by

the fractional differencing parameter d, the short-run behavior is determined by �1

and �1. We plot in Figure 3 the ACFs of a LMGARCH(1, d, 1) model with d ¼ 0:3

and certain combinations of parameters �1 and �1 lying in the necessary and

sufficient set (see Figure 2). It is evident that even the LMGARCH(1, d, 1) model
can generate all four types of ACFs described by He and Teräsvirta (1999) for the

GARCH(2, 2) model. Interestingly, type 4 is generated by parameter values which

do not lie in the Bollerslev and Mikkelsen (1996) sufficient set, and we could not

find any combination of parameters with �1 > 0 leading to this type. This finding

suggests that the enlarged parameter set directly translates into an increased

flexibility in characterizing the autocorrelation structure of the squared residuals.

Example 1 Baillie, Han, and Kwon (2002) can serve as an example which illus-
trates the importance of our result. ARFIMA-FIGARCH(1, d, 1) models are esti-

mated to several inflation series. In Table 3, p. 507, the estimated parameters for

the French inflation data are b�1 ¼ 0:899, bd ¼ 0:331, and b�1 ¼ 0:859. Even though

these parameters do not satisfy the Bollerslev and Mikkelsen (1996) conditions
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Figure 3 Four types of autocorrelation functions for LMGARCH(1, d, 1) model with d ¼ 0:3.
Type 1: �1 ¼ 0:7, �1 ¼ 0:5 (upper left), type 2: �1 ¼ �0:2, �1 ¼ 0:05 (upper right), type 3: �1 ¼ 0:3,
�1 ¼ 0:53 (lower left), and type 4: �1 ¼ �0:5, �1 ¼ �0:25 (lower right).

6 Recall that in contrast to the FIGARCH, the LMGARCH is covariance stationary. However, as pointed

out by Karanasos, Psaradakis, and Sola (2004), both models have the same ‘‘second-order structure.’’
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(clearly b�1 > bf3), the parameters are in accordance with the conditions given by

Corollary 1, Case 1.

Remark 1 Corollary 1 can be directly applied to the bivariate constant correlation

FIGARCH(1, d, 1) model given by the equations

h11,t ¼
!11

1� �11
þ 1� ð1� �11LÞð1� LÞd1

ð1� �11LÞ

" #
e2

1,t,

h22,t ¼
!22

1� �22
þ 1� ð1� �22LÞð1� LÞd2

ð1� �22LÞ

" #
e2

2,t,

and h12,t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h11,th22,t

p
:

Positive definiteness of the variance–covariance matrix is guaranteed if and only if j�j < 1

and the parameters ð�jj, dj, �jjÞ satisfy the condition given in Corollary 1 for j ¼ 1, 2.

This model is used, for example, by Brunetti and Gilbert (2000) to investigate long

memory in oil price data. Brunetti and Gilbert (2000) check the sufficient Bollerslev and

Mikkelsen (1996) constraints for each equation.

Remark 2 Jasiak (1998) extends the Engle and Russel (1998) ACD(p, q) model to

the FIACD(p, d, q) model, that is, he assumes that the duration time xi between the

i-th and ði� 1Þ-th event can be modeled as

xi ¼ �iZi and �i ¼
!

1� �1
þ 1� ð1� �1LÞð1� LÞd

ð1� �1LÞ

" #
x2

i

with Zi being a sequence of i.i.d random variables with expectation one and �i the

conditional expectation of the i-th duration. Applied in this context, Corollary 1 ensures

the nonnegativity of the conditional duration time �i.

The FIGARCH(1, d, 1) nests two interesting submodels: the FIGARCH(1, d, 0)

and the FIGARCH(0, d, 1). Although Corollary 1 does not explicitly cover the cases

with �1 ¼ 0 and �1 ¼ 0, they can be treated along the same lines of argumentation.

Corollary 2 The conditional variance of the FIGARCH(0, d, 1) model is nonnegative a.s. iff

1.  1 � 0, dþ �1 � 0

2. F2 � 0, ð1� dÞ=2� �1 � 0
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If �1 ¼ 0, the recursion given by Equation (8) reduces to  i ¼ ðfi � �1Þð�gi�1Þ
for i � 2. We impose  1 � 0. Recall that �gi > 0 for i � 1. The nonnegativity of  2

requires f2 � �1 � 0. Since fi is increasing,  2 � 0 implies  i � 0 for all i > 2.7

Example 2 Conrad and Karanasos (2005b) estimate ARFIMA–FIGARCH models

for the inflation rates of ten European countries. For Belgium, the preferred

specification for the conditional variance is a FIGARCH(0, d, 1) model with

estimated parameters bd ¼ 0:330 and b�1 ¼ �0:280. Since bd > �b�1 and b�1 < 0, it

follows from Corollary 2 that these parameters guarantee the nonnegativity of the

conditional variance for all t. The autocorrelation structure implied by these

parameters is of type 2.

Corollary 3 The conditional variance of the FIGARCH(1, d, 0) model is nonnegative

a.s. iff 8

Case 1: 0 <�1 < 1

 1 � 0, d� �1 � 0

Case 2: �1 < �1 < 0

 2 � 0, d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� dÞ

p� �
=2 � �1

If �1 ¼ 0, the recursions given by Equations (8) and (9) reduce to  i ¼
�1 i�1 � gi for i � 2 and  i ¼ �2

1 i�2 þ ð�1 þ fiÞð�gi�1Þ for i � 3. For 0 < �1 < 1,

assuming  1 � 0 together with �gi � 0 for all i � 1 implies  i � 0 for all i. For

�1 < �1 < 0, it is easy to see that  2 � 0 implies F
ð1Þ
2 ¼ �1 þ f2 � 0. Since fi is

increasing, it follows that F
ð1Þ
i ¼ �1 þ fi > 0 for all i � 3. Hence,  1 � 0 (ensured

by �1 < 0) and  2 � 0 imply  i � 0 for all i.

Above we illustrated the consequences of our less severe parameter con-

straints on the shapes of the ACF for the LMGARCH(1, d, 1) model. The

implications of allowing for �1 < 0 on the degree of persistence that can be

modeled are now illustrated by considering the ACF and the IRF of the

LMGARCH(1, d, 0) model. As an example, we assume d ¼ 0:45. According to

Corollary 3, the range of values for �1 which guarantee the nonnegativity of the

conditional variance is given by �0:1925 � �1 � 0:45. The LMGARCH(1, d, 0)
model with the restriction �1 � 0 cannot produce ACFs in the area above the

ACF with �1 ¼ 0, as can be seen from Figure 4 (upper), that is, the degree of

7 Similarly, from the proof of Theorem 1, it follows that the conditional variance of the FIGARCH(0, d, q)

model is nonnegative a.s. iff 1.  1, . . . ,  q � 0 and 2. Fqþ1 � 0. Note that Fqþ1 � 0 is trivially fulfilled, if

�i � 0 for i ¼ 1, . . . , q.
8 Note that in Baillie, Bollerslev, and Mikkelsen (1996, p. 11), only Case 1 was considered, and 0 �
�1 < d � 1 is stated as a necessary and sufficient condition for the conditional variance of the

FIGARCH(1, d, 0) model to be positive a.s. for all t.
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Figure 4 ACF of e2
t (upper) and impulse response function (IRF) function (lower) for

LMGARCH (1, d, 0) with d ¼ 0:45 and �1 ¼ 0:45 (solid), �1 ¼ 0 (dashed) and �1 ¼ �0:1925
(dotted), respectively.
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persistence is unnecessarily limited. Expressions for the IRF of the

LMGARCH(p, d, q) model have been obtained by Conrad and Karanasos
(2006). Figure 4 (lower) plots the IRF of the LMGARCH(1, d, 0) with d ¼ 0:45

and � 2 f�0:1925, 0, 0:45g. Clearly, allowing for �1 < 0 increases the flexibility

of the IRF. In accordance with the result for the ACF, a negative �1 increases the

persistence of the process.

2.2 FIGARCH(2, d, q)

Before we consider cases with p � 2, we derive a recursive representation of the
f ig sequence. Again, let ð�ð1Þ, . . . , �ðpÞÞ be some ordering of the �i. We make use

of the representation in the proofs of the subsequent theorems.

Lemma 1 The sequence f i, i ¼ 1, 2, . . .g can be written as

 i ¼  ðpÞi where

 
ðrÞ
i ¼ �ðrÞ 

ðrÞ
i�1 þ  

ðr�1Þ
i 1 < r � p, i � 1,

and the sequence of f ð1Þi g is given by

 
ð1Þ
i ¼ �ci þ

Xminfi;qg

j¼1

�jci�j for i ¼ 1; . . . ; q and with ci ¼
Xi

j¼0

�
i�j

ð1Þgj

 
ð1Þ
i ¼ �ð1Þ 

ð1Þ
i�1 þ Fið�gi�qÞ for i > q

with starting values  
ðrÞ
0 ¼ �1, r ¼ 1, . . . , p.

Now, we turn to the case p ¼ 2. Without loss of generality, we assume that
�1 � �2. No inequality constraints–not even sufficient—have been established for

p � 2 in the literature on long-memory GARCH models so far. We first consider

the FIGARCH(2, d, 0) model and then combine the results with those from the

FIGARCH(1, d, q) model.

Proposition 1 The conditional variance of the FIGARCH(2, d, 0) model is nonnegative

a.s. iff (recall that in this case �1 þ �2 ¼ �1 and �1 � �2 ¼ ��2)

Case 1: 1 > �1 � �2 > 0, that is, �1 > 0, �2 < 0

 1 � 0, d � �1 þ �2 ¼ �1

Case 2: 1 > �1 > 0 > �2 > � 1 and �1 � j�2j, that is, �1 � 0, �2 > 0

 1 � 0 and  2 � 0
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Case 3: 1 > �1 > 0 > �2 > � 1 and �1 < j�2j, that is, �1 < 0, �2 > 0

either if  
ð1Þ
2 � 0, �2ðd� �2Þ þ f2d � 0 or  2,  4, . . . ,  

k�2
� 0, where

k ¼ min
~k even

f ð1Þ~k
> 0g with �ð1Þ ¼ �2 and �ð2Þ ¼ �1.

Case 4: 0 > �1 � �2 > �1, that is, �1 < 0, �2 < 0

 
ð1Þ
2 � 0 and  2 � 0 where �ð1Þ ¼ �1 and �ð2Þ ¼ �2.

Proposition 1, Case 1, states that the conditional variance can be nonnegative,

although �2 < 0. Case 3 shows that with p ¼ 2, we can allow for �1 < 0 [in the

GARCH(2, 2) model, one needs at least �1 > 0]. Finally, Case 4 illustrates that in

contrast to the GARCH model with p ¼ 2, where at least one root must be
nonnegative, in the FIGARCH with p ¼ 2 we can allow for both roots being

negative. Note, however, that this case will rarely appear for financial data in

practice since estimating �1 < 0 and �2 < 0 is very unlikely. We are not aware of

any application where such a parameter combination has been estimated.

Example 3 Beine and Laurent (2003) estimate AR(1)-FIGARCH(2, d, 0) models

for the exchange rate of the Japanese yen, French franc, and British pound against

the U.S. dollar. The parameter estimates for all the three currencies presented in

Table 2, p. 651, are such that Case 2 applies. Checking b 1 and b 2 immediately
proves that all b i coefficients are nonnegative and thereby confirms the validity

of the chosen model specifications.

Theorem 2 The conditional variance of the FIGARCH(2, d, q) model is nonnegative

a.s. iff

Case 1: 1 > �1 � �2 > 0, that is, �1 > 0, �2 < 0

1.  1 � 0, and for q � 2:  1, . . . ,  q�1 � 0

2. either  
ð1Þ
q � 0 and Fqþ1 � 0 or for k with Fk�1 < 0 � Fk either  

ð1Þ
k�1 � 0 or

 
k�1
� 0, where

k ¼ min
~k>k

��ð1Þ ð1Þk�1<
X~k

j¼0

Fkþjð�gk�qþjÞ��j

ð1Þ

8<:
9=;

and �ð1Þ ¼ �1, �ð2Þ ¼ �2.

Case 2: 1 > �1 > 0 > �2 > �1, �1 � j�2j, that is, �1 � 0, �2 > 0

1.  1 � 0, and for q � 2:  1, . . . , q�1 � 0 and

2. either  q � 0 and Fqþ1 � 0 or for k � qþ 2 with Fk�1 < 0 � Fk, we have

 1, . . . ,  k�1 � 0.
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Case 3: 1 > �1 > 0 > �2 > �1, �1 < j�2j, i.e. �1 < 0,�2 > 0

1.  1 � 0, and for q � 2:  2, . . . ,  q�1 � 0

2. either  
ð1Þ
q � 0,  

ð1Þ
qþ1 � 0, and F

ð1Þ
qþ2 � 0 or for k with F

ð1Þ
k�1 < 0 � F

ð1Þ
k either

 
ð1Þ
k�1 � 0 and  

ð1Þ
k�2 � 0 or  qþ1, . . . ,  

k�1
� 0, where

k ¼min
~k>k

��2
ð1Þ 

ð1Þ
k�2<

X~k

j¼0

F
ð1Þ
kþ2jð�gk�qþ2j�1Þ��2j

ð1Þ ,

8<:
��2
ð1Þ 

ð1Þ
k�1<

X~k

j¼0

F
ð1Þ
kþ2jð�gk�qþ2j�1Þ��2j

ð1Þ

9=;
and �ð1Þ ¼ �2, �ð2Þ ¼ �1.

Case 4: 0 > �1 � �2 > �1, �1 þ �2 > �1, that is, �1 < �1 < 0, �2 < 0

1. ð�1, d, �1, . . . , �qÞ satisfy the conditions for the FIGARCH(1, d, q) model

2.  1, . . . ,  k�1 � 0, where k > qþ 2 is s.t. F
ð2Þ
k�1 < 0 � F

ð2Þ
k

Case 5: 0 > �1 � �2 > �1, �1 þ �2 � �1 that is, �1 � �1, �2 < 0

1. ð�ð1Þ, d, �1, . . . , �qÞ satisfy the conditions for the FIGARCH(1, d, q) model

2. There exists a �k such that S�k,k > 0, where k such that F
ð1Þ
k�1 < 0 � F

ð1Þ
k and

Sj,i ¼ �ð1Þ�2

Xj

l¼1

�
2ði�lÞ
ð1Þ F

ð1Þ
iþ2lð�gi�qþ2l�1Þ þ F

ð2Þ
iþ2jð�gi�qþ2j�1Þ

3.  1, . . . ,  �k � 0

Again, note that Cases 4 and 5 are not of empirical interest, and in particular

Case 5 which implies �1 <� 1. Moreover, Theorem 2 illustrates that with increas-

ing p the number of cases which have to be analyzed grows exponentially. As the
conditions are already quite complex when p ¼ 2, the analysis becomes even

worse when p � 3.

Remark 3 [Relation to GARCH(p, q)] Since the simple GARCH model is nested

within the FIGARCH, we treat it as a special case. If we set d ¼ 0, we obtain

�ðLÞ ¼ BðLÞ � �ðLÞ
BðLÞ ¼ �ðLÞ

BðLÞ ¼
X1
i¼1

 iL
i:
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In analogy to Lemma 1, the f ig sequence can be obtained in the GARCH(p, q) as

 i ¼  ðpÞi where

 
ðrÞ
i ¼ �ðrÞ 

ðrÞ
i�1 þ  

ðr�1Þ
i for 1 < r � p, i � 1 with  

ðrÞ
0 ¼ 0,

where  
ð1Þ
i in the GARCH(1, q) is given by  

ð1Þ
i ¼

Pi
j¼1 �

i�j

ð1Þ�j for i ¼ 1, 2, . . . , q, and

 
ð1Þ
i ¼ �

i�q

ð1Þ  q for all i > q, and for some ordering ð�ð1Þ, . . . , �ðpÞÞ.
For p ¼ 1 or p ¼ 2, it can be easily shown that our methodology leads to the same

necessary and sufficient nonnegativity constraints as were derived by Nelson and Cao

(1992).

2.3 FIGARCH( p, d, q)

As in the GARCH(p, q) model, necessary and sufficient conditions are more

difficult to derive for the general FIGARCH(p, d, q) process. Instead, we state

two sets of sufficient conditions. A first set which is more restrictive on the

parameters but—when satisfied—immediately implies  i � 0 for all i. A second

set which is less restrictive on the parameters but requires to check the nonnega-

tivity of the first k  i.

Theorem 3 The conditional variance of the FIGARCH(p, d, q) model is nonnega-

tive a.s. iff

1. Let s be the number of inverse roots of B(L) which are positive. If p is even we

require s � p=2� 1 and if p is odd we require s � ðp� 1Þ=2.

2.  1 ¼ dþ �1 � ð�1 þ �2 þ . . .þ �pÞ � 0.

3. a. If p ¼ s, then there must be a �i s.t. ð�i, d, �1, . . . , �qÞ satisfy the condi-

tions for the FIGARCH(1, d, q) model

b. If p > s, then there must exist an ordering ð�ð1Þ, �ð2Þ, . . . , �ðpÞÞ of the roots

�i s.t.

(i) ð�ð1Þ, d, �1, . . . , �qÞ satisfy the conditions for the FIGARCH(1, d, q) model

(ii) 0 > �ð2ðp�s�1Þþ1Þ � �ð2ðp�s�1�1Þþ1Þ � . . . � �ð5Þ � �ð3Þ and �ð2Þ � j�ð3Þj,
�ð4Þ � j�ð5Þj, . . . , �ð2ðp�s�1ÞÞ � j�ð2ðp�s�1Þþ1Þj

(iii)  
ð3Þ
2 ,  

ð5Þ
2 , . . . ,  

ð2ðp�s�1Þþ1Þ
2 � 0

where 1 ¼ 1, if �ð1Þ < 0 and 0 otherwise.

In a slightly modified version, the same arguments can be applied to the

GARCHðp, qÞ model using the representation given in Remark 3. Such a suffi-

cient condition is more restrictive than the sufficient condition stated in Nelson
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and Cao (1992), which is given by �ð1Þ > max
i¼2,..., p

fj�ðiÞjg, but—in contrast to the

Nelson and Cao (1992) condition—directly implies  i � 0 for all i.

Now, we come to the second and less restrictive sufficient condition. For this

condition, we have to find 0 � p1 � p2 � p with p2 � p1 even, such that the

ordering of the p inverse roots of BðLÞ is in the following way

�ð1Þ � . . . � �ðp1Þ< 0

�ðp1þ1Þ > 0, �ðp1þ2Þ< 0, . . . , �ðp2�1Þ > 0, �ðp2Þ< 0

with �ðp1þ2i�1Þ þ �ðp1þ2iÞ � 0, i ¼ 1, . . . , ðp2 � p1Þ=2

�ðp2þ1Þ � . . . � �ðpÞ > 0

This ordering is of course not unique as there can always be taken positive and

negative roots to build a new pair as well as pairs can be separated, such that p1

and p2 differ. But it is always possible to find such an ordering.

Theorem 4 If in the FIGARCH(p, d, q), there exists an ordering of the roots such that

�p1
> �1 then there exists a k such that  i � 0 for all i > k.

From this theorem, it is clear that if �p1 > �1 it is sufficient to check a

finite number of  i, i � k to find out if for specific parameter values the

conditional variance is nonnegative a.s. for all t. The existence of such a k

under a weak condition is a strong result, since  i is an i-th order polynomial

in all parameters. The unknown k can be found going along the proof of this

theorem. This procedure can easily be implemented. However, the condition

is not necessary, that is, it is possible to find parameter values such that  i � 0

for all i and �p1 <� 1 for every ordering of the roots. The set which is not

covered by this theorem is expected to be small, for example, in the FIG-

ARCH(2, d, q), the theorem would cover four of the five cases considered in

Theorem 2.
Since for economic data we always would expect that �p ¼ �1 > 0, it suffices

to check a finite number of coefficients. In this case, the theorem provides a

necessary and sufficient condition.

For higher-order models—in which the estimated parameters do not satisfy

the sufficient condition given by Theorem 4—the sequence  i can be calculated

using Lemma 1. By plotting the sequence for sufficiently high lags, one can obtain

an indication whether the conditional variance will stay positive or not. How-

ever, this does of course not guarantee the nonnegativity of the conditional
variance for all t.

Theorem 4 can be seen as being analogous to the sufficient condition stated in

Nelson and Cao (1992) for the GARCH(p, q) model.
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3 EMPIRICAL EXAMPLE

To illustrate the importance of our results, we investigate an empirical time series.

We employ daily exchange rate data for the Japanese yen versus, U.S. dollar sourced

from the Datastream database for the period November 1, 1993 to November 18,

2003, giving a total of 2621 observations. The continuously compounded returns
are computed as rt ¼ 100 � ½logðptÞ � logðpt�1Þ� where pt is the price on day t.

Table 1 presents the quasi-maximum likelihood parameter estimates for a FIG-

ARCH(1, d, 1) model ðrt ¼ 	þ etÞ estimated with the G@RCH package.

In addition to these parameter estimates, G@RCH provides the following

output:

The positivity constraint for the FIGARCH (1, d, 1) is not observed [see

Bollerslev and Mikkelsen (1996) for more details].

Obviously, b�1 > bf3 in this case, and thus the Bollerslev and Mikkelsen (1996)

conditions are violated. We check the conditions from Corollary 1, since it allows

for b�1 > bf3. Step 1 is to determine k which is given by ð1þ bdÞ=ð1� b�1Þ � k, and so

Step 2 is to verify that b k�1 � 0 which suffices for b i � 0 for all i ¼ 1, 2, . . .. For our

empirical example, we find k ¼ 4 and so b 3 has to be calculated by the recursions

for the (1, d, 1) model. It can be easily seen that b 3 > 0 for our parameter estimates.

Hence, the set of parameters guarantee that the conditional variance is nonnegative

a.s. for all t. Figure 5 illustrates the set of necessary and sufficient ð�1 > 0, �1 > 0Þ
parameter values for bd ¼ 0:264. The dashed line bounds the Bollerslev and

Mikkelsen (1996) set and is given by �1 ¼ bf3. The cross represents the estimated

parameter combination which lies in the necessary and sufficient set.9 The

practitioner solely relying on the G@RCH output—and hence on the Bollerslev

and Mikkelsen (1996) conditions—would have falsely rejected the model.

4 CONCLUSIONS

In this article, we derive necessary and sufficient conditions which ensure the

nonnegativity of the conditional variance in the FIGARCH model of the order
p � 2 and sufficient conditions for the general model. These conditions are

Table 1 FIGARCH(1, d, 1) estimates for Japanese yen versus U.S. dollar exchange rate

b	 b! bd b�1
b�1

0.012 (0.928) 0.027 (0.896) 0.264 (2.899) 0.592 (2.131) 0.727 (2.821)

Note: Numbers in parentheses are t-statistics.

9 Note that the estimated parameters also violate the sufficient constraints suggested by Chung (1999).
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important since any practitioner estimating FIGARCH models—in particular,

when using parameter estimates for forecasting volatility—has to make sure

that the model is well defined in the sense that it cannot lead to negative

conditional variances. This issue is even more important when considering

long-memory GARCH models since—unlike with the short-memory GARCH

models—one cannot easily deduce the nonnegativity of the conditional variance

from the sign of the estimated parameters. So far only a sufficient condition for
the FIGARCH(1, d, 1) model was available, and no conditions existed for

higher-order models. We demonstrate graphically how the necessary und suffi-

cient conditions for the (1, d, 1) model enlarge the feasible parameter set which

has important implications for the permitted shapes of the ACFs and IRFs of the

LMGARCH model and thereby widens the range of data features that can be

handled. The lack of knowledge concerning conditions which ensure the non-

negativity of the conditional variance in higher-order models is presumably one

reason why these models have been applied rarely in the literature. Studies
as Caporin (2003) which are concerned with identification and order selection in

long-memory GARCH models restrict their analysis to the set of parameters defined

by Bollerslev and Mikkelsen (1996) and hence to models of orders (1, d, 1), (1, d, 0),

and (0, d, 0) only. Our work is intended to close this gap. As with the Nelson

and Cao (1992) conditions, we suggest that econometric packages should state

not only the estimated parameters but also whether those satisfy the neces-

sary and sufficient conditions derived in this article. An interesting avenue
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Figure 5 Necessary and sufficient parameter set for FIGARCH(1, d, 1) model (Case 1 and �1 > 0)
with bd ¼ 0:264.
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for future research would be to analyze the implications of imposing the

necessary and sufficient restrictions directly on the maximum likelihood
estimation.

Our results extend to more sophisticated long-memory specifications such as

the asymmetric power FIGARCH, the multivariate constant correlation FIGARCH

model, and long-memory ACD models in which it must be ensured that the

conditional duration time does not take negative values.

APPENDIX

We begin by deriving a recursive representation of the  i sequence for the

FIGARCH(1, d, q) model. This representation will be used to prove Theorem 1.

In the FIGARCH(1, d, q) model, we can write

�ðLÞ ¼ 1� �ðLÞð1� LÞdð1� �1LÞ�1

¼ 1� ð1� �1L1 � �2L2 � � � � � �qLqÞ �
X1
i¼0

ciL
i

¼ 1�
X1
i¼0

ci � �1ci�1 � � � � � �qci�q

� �
Li ¼

X1
i¼1

 iL
i

where

ci ¼
Xi

j¼0

�
i�j
1 gj for i � 0 and ci ¼ 0 for i < 0:

Hence, the sequence f i, i ¼ 1,2, . . .g can be written as

 i ¼ �ci þ
Xmin fi,qg

j¼1

�jci�j for i > 0:

Note that the following recursion applies: ci ¼ �1ci�1 þ gi.

Proof of Theorem 1

Case 1: 0 <�1 < 1

‘‘(’’

1.  1, . . . ,  q�1 � 0 by assumption.

2. (i) If  q � 0 and Fqþ1 � 0, this ensures  i � 0 for all i > q, since Fi is

increasing and
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 i ¼ �ci þ �1ci�1 þ � � � þ �qci�q for i � qþ 1

¼ �ð�1ci�1 þ giÞ þ �1ð�1ci�2 þ gi�1Þ þ � � � þ �qð�1ci�q�1 þ gi�qÞ
¼ �1ð�ci�1 þ �1ci�2 þ � � � þ �qci�q�1Þ
þ ðfi fi�1 . . . fi�qþ1 � �1fi�1 . . . fi�qþ1 � . . .� �qÞð�gi�qÞ
¼ �1 i�1 þ Fið�gi�qÞ � 0: ðA:1Þ

(ii) If Fqþ1 < 0, then for  i with q < i < k it holds that

 i ¼ �1 i�1 þ Fið�gi�qÞ � 0, �1 i�1 � Figi�q > 0)  i�1 � 0:

Thus,  i � 0 implies  i�1 � 0. As  k�1 � 0, it follows recursively that

 i � 0 for all q � i < k. For i � k, we have

 i ¼ �1 i�1 þ Fið�gi�qÞ

and hence, from  k�1 � 0 follows  k � 0 since Fk � 0:)  i � 0 for all
i > k by induction.

‘‘)’’

1. The first condition and  q,  k�1 � 0 are trivially fulfilled.

2. Either Fqþ1 � 0 or Fqþ1 � 0, but since Fi�1 � Fi and

Fi ! 1�
Pq

j¼1 �i > 0, there exists a k s.t. Fi � 0 for all i � k. &

Case 2: �1 < �1 < 0

‘‘(’’

1.  1, . . . ,  q�1 � 0 by assumption.

2. We make use of the following recursion

 i ¼ �2
1 i�2 þ F

ð1Þ
i ð�gi�q�1Þ for i � qþ 2 : ðA:2Þ

3. (i) If F
ð1Þ
qþ2 � 0, then  q � 0 and  qþ1 � 0 ensure that  i � 0 for all

i � qþ 2.

(ii) If F
ð1Þ
qþ2 < 0, then for  i with qþ 2 < i < k it holds that

 i ¼ �2
1 i�2 þ F

ð1Þ
i ð�gi�q�1Þ � 0

, �2
1 i�2 �� F

ð1Þ
i ð�gi�q�1Þ � 0

)  i�2 � 0:

Thus,  i � 0 implies  i�2 � 0. As  k�1 � 0 and  k�2 � 0, it fol-

lows recursively that  i � 0 for all q � i < k. For i � k, we use

Equation (A.2) and hence, from  k�1 � 0 and  k�2 � 0, it follows

that  i � 0 for all i > k by induction.
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‘‘)’’

1. The first condition and  q,  qþ1,  k�2,  k�1 � 0 are trivially fulfilled.

2. Either F
ð1Þ
qþ1 � 0 or F

ð1Þ
qþ1 � 0, but since F

ð1Þ
i�1 � F

ð1Þ
i and F

ð1Þ
i !

�1ð1� �1 � � � � � �qÞ þ ð1� �1 � � � � � �qÞ > 0, there exists a k s.t.

F
ð1Þ
i � 0 for all i � k. &

Proof of Lemma 1

�ðLÞ ¼ 1� �ðLÞð1� LÞd

BðLÞ ¼ 1� �ðLÞð1� LÞdð1� �ð1ÞLÞ�1 � � � � � ð1� �ðpÞLÞ�1

¼ 1þ
X1
i¼0

 
ð1Þ
i Li �

X1
i¼0

�i
ð2ÞL

i � � � � �
X1
i¼0

�i
ðpÞL

i

¼ 1þ
X1
i¼0

 
ð2Þ
i Li �

X1
i¼0

�i
ð3ÞL

i � � � � �
X1
i¼0

�i
ðpÞL

i

..

.

¼ 1þ
X1
i¼0

 
ðpÞ
i Li

¼
X1
i¼1

 
ð pÞ
i Li

since

X1
i¼0

 
ðr�1Þ
i Li �

X1
i¼0

�i
ðrÞL

i ¼
X1
i¼0

 
ðrÞ
i Li

with

 
ðrÞ
i ¼

Xi

j¼0

�
j

ðrÞ 
ðr�1Þ
i�j ¼  

ðr�1Þ
i þ

Xi

j¼1

�
j

ðrÞ 
ðr�1Þ
i�j ¼  

ðr�1Þ
i þ �ðrÞ

Xi�1

j¼0

�
j

ðrÞ 
ðr�1Þ
i�j�1

¼  ðr�1Þ
i þ �ðrÞ ðrÞi�1: &

Using the representation from Lemma 1 and Equation (A.1) for  
ð1Þ
i , we deduce

for i > qþ 1

 
ðrÞ
i ¼

Xr�1

k¼0

 
ðr�kÞ
i�2 �ðr�kÞð�r � �r�k�1Þ þ F

ðrÞ
i ð�gi�q�1Þ: ðA:3Þ

Repeated application of Equation (A.3) leads to
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ðrÞ
iþ2m ¼�

2m
ðrÞ 

ðrÞ
i þ

Xr�1

k¼1

Xm

j¼1

�
2ðm�jÞ
ðrÞ �ðr�kÞð�r � �r�k�1Þ ðr�kÞ

iþ2j�2

þ
Xm

j¼1

�
2ðm�jÞ
ðrÞ F

ðrÞ
iþ2jð�gi�qþ2j�1Þ ðA:4Þ

for m ¼ 1, 2, . . . and i > qþ 1.

We will make use of Equations (A.3) and (A.4) in the subsequent proofs.

Proof of Proposition 1

‘‘(’’

Case 1: 1 > �1 � �2 > 0.

Set �ð1Þ ¼ �1, �ð2Þ ¼ �2 and note that  
ð1Þ
i is identical with  i from the FIG-

ARCH(1, d, 0), Case 1, since �ð1Þ ¼ �1 > 0.

Observe that  1 ¼  ð2Þ1 ¼ d� ð�ð1Þ þ �ð2ÞÞ � 0 implies  
ð1Þ
1 ¼ d� �ð1Þ � 0.

Furthermore, from Proposition 3, Case 1, we know that  
ð1Þ
1 � 0 implies  

ð1Þ
i � 0

for all i. Hence, it follows that  i ¼ �ð2Þ i�1 þ  ð1Þi � 0 for all i � 2.

Case 2: 1 > �1 > 0 > �2 > �1 and �1 � j�2j.

Set �ð1Þ ¼ �1, �ð2Þ ¼ �2. Then for i > 2, we can write

 i ¼ �ð2Þ i�1 þ  ð1Þi

¼ �ð2Þ i�1 þ �ð1Þ ð1Þi�1 � gi

¼ �ð2Þ i�1 þ �ð1Þð i�1 � �ð2Þ i�2Þ � gi

¼ ð�ð1Þ þ �ð2ÞÞ i�1 � �ð1Þ�ð2Þ i�2 � gi:

Since �ð1Þ þ �ð2Þ � 0, �ð1Þ�ð2Þ < 0 and gi < 0, it suffices to assume that  1 � 0

and  2 � 0 to ensure that  i � 0 for all i > 2.

Case 3: 1 > �1 > 0 > �2 > �1 and �1 < j�2j.

Note that  
ð1Þ
i is identical with  i from the FIGARCH(1, d, 0) model, Case 2, since

�ð1Þ ¼ �2 < 0.

1.  
ð1Þ
1 ¼ d� �ð1Þ � 0 is obviously satisfied.

2. (i) If �ð1Þ is such that  
ð1Þ
2 � 0 which implies  

ð1Þ
i � 0 for all i (Proposi-

tion 3, Case 2), we immediately obtain  i � 0 for all i.

(ii) If �ð1Þ is such that  
ð1Þ
2 � 0, we make use of the recursion

 
ð1Þ
i ¼ �

2
ð1Þ 

ð1Þ
i�2 þ ð�ð1Þ þ fiÞð�gi�1Þfor i � 3: ðA:5Þ
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Since we know that there exists a k s.t. �ð1Þ þ fk�1 < 0 � �ð1Þ þ fk, we can

conclude that there exists an even k ¼ kþ 2iþ 1k with

 
ð1Þ
kþ2iþ1k

¼ �2iþ2
ð1Þ  

ð1Þ
k�2þ1k

þ
Xi

j¼0

ð�ð1Þ þ fkþ2jþ1k
Þð�gk�1þ2jþ1k

Þ�2ði�jÞ
ð1Þ � 0

since

0 � ��2
ð1Þ 

ð1Þ
k�2þ1k

<
Xi

j¼0

ð�ð1Þ þ fkþ2jþ1k
Þð�gk�1þ2jþ1k

Þ��2j
ð1Þ

where the RHS is diverging, and 1k is defined as

1k ¼ 1 if k odd,
0 otherwise.

�

By definition  
ð1Þ
4 ,  

ð1Þ
6 , . . . ,  

ð1Þ
k�2
� 0 and from  

ð1Þ
i ¼ �ð1Þ 

ð1Þ
i�1 � gi, it fol-

lows that  
ð1Þ
3 ,  

ð1Þ
5 , . . . ,  

ð1Þ
k�1
� 0.

Again from Equation (A.5), we deduce that  
ð1Þ
i � 0 for all i � kþ 1.

Observe that  1 ¼ d� ð�ð1Þ þ �ð2ÞÞ � 0 without further assumptions. For

i � 3, we can apply the following recursion

 i ¼ �ð2Þ i�1 þ  ð1Þi

¼ �2
ð2Þ i�2 þ �ð2Þ ð1Þi�1 þ  

ð1Þ
i

¼ �2
ð2Þ i�2 þ ð�ð1Þ þ �ð2ÞÞ ð1Þi�1 � gi: ðA:6Þ

Given that  1 � 0 and knowing that all  
ð1Þ
i � 0 with i even, we obtain

 i � 0 for all i < k and i odd. By observing that  
ð1Þ
i � 0 for all i � k, we

conclude from Equation (A.6) that  i � 0 for all i � k. It remains to

assume that  2,  4, . . . ,  
k�2
� 0.

Case 4: 0 > �1 � �2 > �1.

Note that  
ð1Þ
i is identical with  i from the FIGARCH(1, d, 0) model, Case 2

with �ð1Þ ¼ �1. Again, observe that  1 ¼ d� ð�ð1Þ þ �ð2ÞÞ � 0 without further

assumptions. Now consider  2:

 2 ¼ �ð2Þ 1 þ  ð1Þ2

¼ �ð2Þðd� ð�ð1Þ þ �ð2ÞÞÞ þ �ð1Þðd� �ð1ÞÞ þ f2d

¼ ð�ð1Þ þ �ð2Þ þ f2Þd� �2
ð1Þ � �ð2Þð�ð1Þ þ �ð2ÞÞ

 2 � 0

, ð�ð1Þ þ �ð2Þ þ f2Þd � �2
ð1Þ þ �ð2Þð�ð1Þ þ �ð2ÞÞ � 0

) ð�ð1Þ þ �ð2ÞÞ þ f2 � 0:
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Notice that F
ð2Þ
2 ¼ �2 þ f2 � 0 implies F

ð2Þ
i ¼ �2 þ fi � 0 for all i � 0. Finally, for

i � 3, we can apply Equation (A.3)

 i ¼ �2
ð2Þ i�2 þ �ð1Þ�2 

ð1Þ
i�2 þ F

ð2Þ
i ð�gi�1Þ ðA:7Þ

For  i being nonnegative by Equation (A.7), we must require that  
ð1Þ
i � 0 for all i,

which is the case iff  
ð1Þ
2 � 0. Given that  1 � 0 and by assuming that  2 � 0, it

follows from the recursion that  i � 0 for all i.

‘‘)’’

If  i � 0 for all i, then all assumptions are trivially satisfied. &

Before we prove the next theorem, we need to establish the rate of conver-
gence of the gj coefficients. Since for the hypergeometric function it holds that

Hð�d; 1; 1; LÞ ¼
X1
j¼0

�ð j� dÞ
�ð�dÞ�ð1þ jÞ L

j,

where �ð�Þ is the gamma function which is defined by �ðxÞ ¼
R1

0 tx�1e�tdt

for x > 0, �ðxÞ ¼ 1 for x ¼ 0 and �ðxÞ ¼ x�1�ð1þ xÞ for x < 0, we have the

representation

gj ¼
�ð j� dÞ

�ð�dÞ�ð1þ jÞ ¼ Oð j�d�1Þ

by applying Sterling’s formula. Hence,

�gj�
�j
i �!þ1 as j�!1,

which will be made use of in the subsequent proofs.

Proof of Theorem 2

Case 1: 1 > �1 � �2 > 0.

‘‘(’’

Note that  
ð1Þ
i is identical with  i from the FIGARCH(1, d, q) model, Case 1, with

�ð1Þ ¼ �1.

1. We assume  1 � 0,  2, . . . ,  q�1 � 0. Note that  1 � 0 implies  
ð1Þ
1 � 0.

2. (i) If either  
ð1Þ
q � 0 and Fqþ1 � 0 or for k with Fk�1 < 0 � Fk, we have

that  
ð1Þ
k�1 � 0, by the same arguments as in the FIGARCH(1, d, q)

model, Case 1, we can conclude that  
ð1Þ
i � 0 for i ¼ q, . . . and

hence  q�1 � 0 (note, for q ¼ 1 we require  1 � 0 instead) implies

 i � 0 for all i � q.
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(ii) If  
ð1Þ
k�1 � 0, then there exist ðk, kÞ with k ¼ minfj j  ð1Þj � 0, j ¼

q, . . .g, k ¼ minfj j  ð1Þj � 0, j ¼ k, . . .g (only if q ¼ 1 do we have

q < k) s.t.  
ð1Þ
i � 0 8 i 2 fq, . . . , k� 1g [ fk, . . .g and  

ð1Þ
i � 0 8 i 2

fk, . . . , k� 1g. k exists because we can write  
ð1Þ
kþi as

 
ð1Þ
kþi ¼ �

iþ1
ð1Þ  

ð1Þ
k�1 þ

Xi

j¼0

Fkþjð�gk�qþjÞ�i�j
ð1Þ ,

and hence we must have that

0 � ��ð1Þ ð1Þk�1<
Xi

j¼0

Fkþjð�gk�qþjÞ��j

ð1Þ

for some i (the RHS is diverging) which gives k ¼ kþ i. The

existence of k is obvious, since  
ð1Þ
k�1 � 0. This implies  i � 0 for

i ¼ 1, . . . , k� 1. Assuming that  
k�1
� 0 and starting with

i ¼ k� 1, we derive recursively

 i ¼�2 i�1 þ  ð1Þi � 0

, �2 i�1 � � ð1Þi � 0

,  i�1 � 0

which implies that  i � 0 with i 2 fk, . . . , k� 2g. Finally,  i � 0 for

i � k, since  
k�1
� 0 and  

ð1Þ
i � 0 8 i � k.

‘‘)’’

 1 � 0 and  
k�1
� 0 are trivially satisfied. For k with Fk�1 < 0 � Fk, we have that

either  
ð1Þ
k�1 � 0 or  

ð1Þ
k�1 � 0, but in the latter case, there exists a k s.t.  

ð1Þ
k
� 0 as

shown above.

Case 2: 1 > �1 > 0 > �2 > �1 and �1 � j�2j.
‘‘(’’

1. We assume  1 � 0,  2, . . . ,  q�1 � 0.

2. Set �ð2Þ ¼ �2 and �ð1Þ ¼ �1. Similar as in the FIGARCH(2, d, 0) model,

we obtain for i � qþ 1

 i ¼ �ð2Þ i�1 þ  ð1Þi

¼ ð�ð1Þ þ �ð2ÞÞ i�1 � �ð1Þ�ð2Þ i�2 þ Fið�gi�qÞ
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(i) Either  q � 0 and Fqþ1 � 0 which implies  i � 0 for all i � q or

(ii) since �ð1Þ þ �ð2Þ � 0, �ð1Þ � �ð2Þ < 0, gi < 0 and there exists a k �
qþ 2 such that Fk�1 < 0 � Fk, it suffices to assume that

 1, . . . ,  k�1 � 0 to ensure that  i � 0 for all i. ‘‘)’’  1, . . . ,  k�1 �
0 is trivially satisfied, and the existence of k follows from �ð1Þ < 1:

Case 3: 1 > �1 > 0 > �2 > �1 and �1 < j�2j.
‘‘(’’

Note that  
ð1Þ
i is identical with  i from the FIGARCH(1, d, q) model, Case 2,

with �ð1Þ ¼ �2.

1. We assume  1 � 0,  2, . . . ,  q�1 � 0.

2. (i) Ifeither 
ð1Þ
q � 0,  

ð1Þ
qþ1 � 0, and F

ð1Þ
qþ2 � 0 or for k with Fk�1 < 0 � F

ð1Þ
k ,

we have that  
ð1Þ
k�1 � 0 and  

ð1Þ
k�2 � 0, by the same arguments as in the

FIGARCH(1, d, q) model, Case 2, we can conclude that  
ð1Þ
i � 0 for

i ¼ q, . . . and hence  q�1 � 0 (note, for q ¼ 1 we require  1 � 0

instead) implies  i � 0 for all i � q.

(ii) If  
ð1Þ
k�1 � 0 and/or  

ð1Þ
k�2 � 0, then there exists k with q < k < k s.t.

 
ð1Þ
i � 0 8 i � k. k exists because we can write  

ð1Þ
kþ2i and  

ð1Þ
kþ1þ2s as

 
ð1Þ
kþ2i ¼ �

2iþ2
ð1Þ  

ð1Þ
k�2 þ

Xi

j¼0

F
ð1Þ
kþ2jð�gk�qþ2j�1Þ�2ði�jÞ

ð1Þ

 
ð1Þ
kþ1þ2s ¼ �

2sþ2
ð1Þ  

ð1Þ
k�1 þ

Xs

j¼0

F
ð1Þ
kþ1þ2jð�gk�qþ2jÞ�2ðs�jÞ

ð1Þ

and hence we must have that

0 � ��2
ð1Þ 

ð1Þ
k�2<

Xi

j¼0

F
ð1Þ
kþ2jð�gk�qþ2j�1Þ��2j

ð1Þ

0 � ��2
ð1Þ 

ð1Þ
k�1<

Xs

j¼0

F
ð1Þ
kþ1þ2jð�gk�qþ2jÞ��2j

ð1Þ

for some i, s (the RHS is diverging) which gives

k ¼ kþ 2 �maxfi,sg. By assuming that  qþ1, . . . ,  
k�1
� 0, the non-

negativity of  i for all i follows directly.

‘‘)’’

 1 � 0 and  
k�1
� 0 are trivially satisfied. For k with F

ð1Þ
k�1 < 0 � F

ð1Þ
k , we either

have that  
ð1Þ
k�1 � 0 and  

ð1Þ
k�2 � 0 or  

ð1Þ
k�1 � 0 and/or  

ð1Þ
k�2 � 0, but in the latter

case, there exists a �k s.t.  
ð1Þ
�k
� 0 as shown above.
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Case 4: 0 > �1 � �2 > �1, �1 þ �2 > �1

‘‘(’’

Set �ð1Þ ¼ �1 and �ð2Þ ¼ �2. As in Case 2, we can write  i as

 i ¼ �ð2Þ i�1 þ  ð1Þi

with  
ð1Þ
i coming from the FIGARCH(1, d, q) model. But now, obviously we need

to require  
ð1Þ
i � 0 for all i. Using Equation (A.3), we obtain for i � qþ 2

 i ¼ �2
ð2Þ i�2 þ �ð1Þ�2 

ð1Þ
i�2 þ F

ð2Þ
i ð�gi�q�1Þ:

We know that there exists a k with F
ð2Þ
k�1 < 0 � F

ð2Þ
k . Hence, assuming that

 1, . . . ,  k�1 � 0 implies  i � 0 for all i � k.

‘‘)’’
 1, . . . ,  k�1 � 0 and the existence of k are trivially satisfied. Moreover,

 
ð2Þ
i > 0 implies  

ð1Þ
i > 0 for all i.

Case 5: 0 > �1 � �2 > �1, �1 þ �2 <� 1

‘‘(’’

Choose �ð1Þ and �ð2Þ such that
�ð1Þ
�ð2Þ

< 1. Then by Equation (A.4)

 
ð2Þ
iþ2m ¼ �

2m
ð2Þ 

ð2Þ
i þ

Xm

j¼1

�
2ðm�jÞ
ð2Þ �ð1Þ�2 

ð1Þ
iþ2j�2 þ

Xm

j¼1

�
2ðm�jÞ
ð2Þ F

ð2Þ
iþ2jð�gi�qþ2j�1Þ

¼ �2m
ð2Þ 

ð2Þ
i þ

Xm

j¼1

�
2ðm�jÞ
ð2Þ �ð1Þ�2 �

2j�2
ð1Þ  

ð1Þ
i þ

Xj

l¼1

�
2ði�lÞ
ð1Þ F

ð1Þ
iþ2lð�gi�qþ2l�1Þ

" #

þ
Xm

j¼1

�
2ðm�jÞ
ð2Þ F

ð2Þ
iþ2jð�gi�qþ2j�1Þ

¼ �2m
ð2Þ 

ð2Þ
i þ �

2m
ð2Þ�

�1
ð1Þ�2 

ð1Þ
i

Xm

j¼1

�ð1Þ
�ð2Þ

� 	2j

þ
Xm

j¼1

�
2ðm�jÞ
ð2Þ Sj,i: ðA:8Þ

Now, choose k such that F
ð1Þ
k�1 < 0 � F

ð1Þ
k and observe that

0 �
X1
l¼1

�
2ðk�lÞ
ð1Þ F

ð1Þ
kþ2lð�gk�qþ2l�1Þ<1:

Hence, if there exists �k with S�k,k > 0, then Sj,k > 0 for all j > �k by monotonicity.

Therefore, if  1, . . . , �k � 0, it follows from Equation (A.8) that  i � 0 for all i.

‘‘)’’

 1, . . . , �k � 0 is trivially satisfied. If �k does not exist, it follows from Equation

(A.8) that  iþ2m will become negative for some m. As in Case 4,  
ð2Þ
i > 0 implies

 
ð1Þ
i > 0 for all i.
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Proof of Theorem 3

1. If p ¼ s and there is a �i s.t. ð�i, d, �1, . . . , �qÞ satisfy the conditions for

the FIGARCH(1, d, q) model, it is immediately clear from the recursion

derived in Lemma 1 that  1 � 0 is sufficient for  i � 0 for all i. &

2. Let p > s. First, observe that  1 � 0 implies  
ð1Þ
1 , . . . ,  

ðp�1Þ
1 � 0.

If ð�ð1Þ, d, �1, . . . , �qÞ satisfy the conditions for the FIGARCH(1, d, q)

model, we can conclude that  
ð1Þ
i � 0 for all i.

Since  
ð1Þ
i � 0 for all i and �ð2Þ > 0, we immediately obtain  

ð2Þ
i � 0 for

all i.  
ð3Þ
i can be written as

 
ð3Þ
i ¼ �

2
ð3Þ 

ð3Þ
i�2 þ ð�ð2Þ þ �ð3ÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�0

 
ð2Þ
i�1 þ  

ð1Þ
i for i � 3:

Since  
ð3Þ
1 ¼ dþ �1 � ð�ð1Þ þ �ð2Þ þ �ð3ÞÞ � 0, assuming  

ð3Þ
2 � 0 en-

sures that  
ð3Þ
i � 0 for all i.

By the same arguments, we can show that  
ðrÞ
i � 0 for all i follows

from  
ðrÞ
i ¼ �ðrÞ 

ðrÞ
i�1 þ  

ðr�1Þ
i if  

ðr�1Þ
i � 0 for all i and r � 2ðp� sÞ even

and from  
ðrÞ
i ¼ �2

ðrÞ 
ðrÞ
i�2 þ ð�ðr�1Þ þ �ðrÞÞ ðr�1Þ

i�1 þ  
ðr�2Þ
i by assuming

 
ðrÞ
2 � 0 if r � 1þ 2ðp� sÞ odd.

For r > 1þ 2ðp� sÞ, the recursion  
ðrÞ
i ¼ �ðrÞ 

ðrÞ
i�1 þ  

ðr�1Þ
i applies again. &

Proof of Theorem 4

Assume there exists an ordering with �p1
> �1. Recall from Equation (6) that

F
ðrÞ
i ! c > 0 for all r ¼ 1, . . . , p1.

We use the recursions (see Lemma 1)

 
ð1Þ
i ¼ �ð1Þ 

ð1Þ
i�1 þ Fið�gi�qÞ i > q

 
ðrÞ
i ¼ �ðrÞ 

ðrÞ
i�1 þ  

ðr�1Þ
i 1 < r � p, i � 1, with  

ðrÞ
0 ¼ �1

to deduce for i > qþ 1

 
ðrÞ
i ¼

Xr�1

k¼0

 
ðr�kÞ
i�2 �ðr�kÞð�r � �r�k�1Þ þ F

ðrÞ
i ð�gi�q�1Þ ðA:9Þ

where �r � �r�k�1 < 0 for all k as long as r ¼ 2, . . . , p1. Repeated application of
Equation (A.9) leads to
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ðrÞ
iþ2m ¼ �

2m
ðrÞ 

ðrÞ
i þ

Xr�1

k¼1

Xm

j¼1

�
2ðm�jÞ
ðrÞ �ðr�kÞð�r � �r�k�1Þ ðr�kÞ

iþ2j�2

þ
Xm

j¼1

�
2ðm�jÞ
ðrÞ F

ðrÞ
iþ2jð�gi�qþ2j�1Þ ðA:10Þ

for m ¼ 1, 2, . . . and i > qþ 1.
In what follows we show that for each r, there exists a kr such that  

ðrÞ
j > 0 for

all j � kr.

From the FIGARCH (1, d, q) model, we know that there exists a k1 > q such

that  
ð1Þ
j > 0 for all j > k1.

This holds also in the case where �1 > 0, that is, p1 ¼ 0.

(i) 1 < r � p1

Assume that we have shown the existence of kr�1. We know that

F
ðrÞ
i ¼ �rFi�1 þ Fifi�q � ~c > 0 for all i > ~k. Then, for i ¼ maxfkr�1, ~kg

or i ¼ maxfkr�1, ~kg þ 1, it is clear that every term on the right side of

Equation (A.10) is positive except for  
ðrÞ
i . If  

ðrÞ
i > 0, it follows

directly that  
ðrÞ
iþ2m � 0 for all m, and so we set kr ¼ i.

If  
ðrÞ
i < 0, we see that  

ðrÞ
iþ2m > 0 is equivalent to

�  ðrÞi <
Xr�1

k¼1

Xm

j¼1

�
�2j

ðrÞ �ðr�kÞð�r � �r�k�1Þ ðr�kÞ
iþ2j�2

þ
Xm

j¼1

�
�2j

ðrÞ F
ðrÞ
iþ2jð�giþ2j�q�1Þ

:

ðA:11Þ

Now the first sum on the right side is positive for all j, and the

second sum tends to infinity as Fiþ2j ! c > 0. Then it is obvious

that there exists a �m from which on this inequality is fulfilled.

Then we set kr ¼ �m.

(ii) p1 < r � p2

Consider first the cases where �ðrÞ > 0, that is, where r� p1 is odd.

Here we have that

 
ðrÞ
i ¼ �ðrÞ 

ðrÞ
i�1þ

Xðr�p1�1Þ=2

k¼1

�
�2
ðr�2kþ1Þ 

ðr�2kþ1Þ
i�2 þ ð�ðr�2kþ1Þ

þ �ðr�2kÞÞ ðr�2kÞ
i�1

�
þ  ðp1Þ

i

and the iterated version
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ðrÞ
iþm ¼ �

m
ðrÞ 

ðrÞ
i þ

Xm

j¼1

�
m�j

ðrÞ

Xðr�p1�1Þ=2

k¼1

�
�2
ðr�2kþ1Þ 

ðr�2kþ1Þ
iþj�2

þ ð�ðr�2kþ1Þ þ �ðr�2kÞÞ ðr�2kÞ
iþj�1

�
þ
Xm

j¼1

�
m�j
ðrÞ  

ðp1Þ
iþj

For i ¼ kr�1, every term on the RHS is positive except for  
ðrÞ
i which might be

negative. If it is positive, we set kr ¼ kr�1, if it is negative, we plug in Equation

(A.10) for  
ðp1Þ
iþj and obtain

 
ðrÞ
iþm ¼ �

m
ðrÞ 

ðrÞ
i þ

Xm

j¼1

�
m�j
ðrÞ

Xðr�p1�1Þ=2

k¼1

�
�2
ðr�2kþ1Þ 

ðr�2kþ1Þ
iþj�2 þ ð�ðr�2kþ1Þ

þ �ðr�2kÞÞ ðr�2kÞ
iþj�1

�
þ
Xm

j¼1

j odd

�
m�j
ðrÞ  

ðp1Þ
iþj þ

Xm

j¼1

j even

�
m�j
ðrÞ �

j
ðp1Þ 

ðp1Þ
i

þ
Xm

j¼1

j even

�
m�j
ðrÞ

Xp1�1

k¼1

Xj=2

l¼1

�
j�2l
ðp1Þ�ðp1�kÞð�p1 � �p1�k�1Þ ðp1�kÞ

iþ2l�2

þ
Xm

j¼1

j even

�
m�j
ðrÞ

Xj=2

l¼1

�
j�2l
ðp1ÞF

ðp1Þ
iþ2lð�gi�qþ2l�1Þ:

Next we use the same argument as in Equation (A.11): dividing the whole

equation by �m
ðrÞ, we argue that the last sum on the right side diverges, as

Xm

j¼1

j even

�
�j

ðrÞ

Xj=2

l¼1

�
j�2l

ðp1ÞF
ðp1Þ
iþ2lð�gi�qþ2l�1Þ �

Xm

j¼1

j even

�
�j

ðrÞF
ðp1Þ
iþj ð�gi�qþj�1Þ

and the right sum tends to infinity by the usual argument. From this the existence

of kr follows.

Next consider �ðrÞ < 0, that is, r� p1 is even. We then have for i� 2 > kr�1 that

 
ðrÞ
i ¼ �

2
ðrÞ 

ðrÞ
i�2 þ ð�ðrÞ þ �ðr�1ÞÞ ðr�1Þ

i�1 þ
Xðr�p1Þ=2þ1

k¼1

�
�2
ðr�2kÞ 

ðr�2kÞ
i�2 þ ð�ðr�2kÞ

þ �ðr�2k�1ÞÞ ðr�2k�1Þ
i�1

�
þ  ðp1Þ

i : ðA:12Þ
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Every term on the RHS is positive except for  
ðrÞ
i�2 which is possibly negative. If it

is negative, iterating and inserting Equation (A.10) show the existence of kr by the
same arguments as in the case where r� p1 is odd.

(iii) p2 < r � p

Here we use the representation

 
ðrÞ
i ¼ �ðrÞ 

ðrÞ
i�1 þ

Xr�p2þ1

k¼1

�ðr�kÞ 
ðr�kÞ
i�1 þ  

ðp2Þ
i

for i > kr�1. If  
ðrÞ
i�1 is positive, then every term on the right side is positive and we

set kr ¼ kr�1. If  
ðrÞ
i�1 is negative, then we plug in Equation (A.12) for  

ðp2Þ
i and then

Equation (A.9) for  
ðp1Þ
i . Iteration and the same argument as in Equation (A.10)

shows the existence of kr.

Finally, set k ¼ kp þ 1.
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