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1. Introduction

The purpose of this paper is to introduce a new long memory volatility process, denoted by Adaptive FIGARCH, or A-
FIGARCH, which is designed to account for both long memory and structural change in the volatility processes of economic
and financial time series. It is well known that most daily and high frequency financial time series exhibit quite persistent
autocorrelation in their squared returns, power transformations of absolute returns, conditional variances and other
measures of volatility. The seminal papers by Ding et al. (1993) and Dacorogna et al. (1993) led to the development of the
long memory stochastic volatility models of Breidt et al. (1998) and Harvey (1998), and the long memory ARCH models of
Baillie et al. (1996a), Bollerslev and Mikkelsen (1996) and Davidson (2004 ). While these models appear useful in describing
many empirical volatility processes, there is understandably great interest in discerning the reasons and underlying causes
for the widespread empirical finding of long memory in volatility. In particular, Granger and Ding (1996) have shown that
contemporaneous aggregation of stable GARCH(1,1) processes can result in an aggregate process that exhibits
hyperbolically decaying autocorrelations. While this property appears to be consistent with long memory, Zaffaroni
(2007) has shown that the autocorrelation function is summable, which is inconsistent with it being classified as a long

* Corresponding author at: Dipartimento di Scienze Economiche e Metodi Quantitativi (SEMeQ), Universita del Piemonte Orientale, Novara, Italy.
E-mail address: claudio.morana@eco.unipmn.it (C. Morana).

0165-1889/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jedc.2009.02.009


www.sciencedirect.com/science/journal/dyncon
www.elsevier.com/locate/jedc
dx.doi.org/10.1016/j.jedc.2009.02.009
mailto:claudio.morana@eco.unipmn.it

1578 R.T. Baillie, C. Morana / Journal of Economic Dynamics & Control 33 (2009) 1577-1592

memory process. A related argument of Andersen and Bollerslev (1997) shows how the contemporaneous aggregation of
weakly dependent information flow processes can produce the property of long memory in volatility. A further justification
is provided by Muller et al. (1997), who suggest that long memory in volatility can arise from the reaction of short-term
dealers to the dynamics of a proxy for the expected volatility trend (coarse volatility), which causes persistence in the
higher frequency volatility or (fine volatility) process.

While the above papers were concerned with the underlying causes of long memory volatility, other studies have
essentially been more skeptical about the validity of the finding of the long memory property in volatility. In particular, it
has been suggested that various types of structural change can explain extreme persistence of volatility, and can also
generate a series that appears to have long memory. In particular, Mikosch and Starica (1998) and Granger and Hyung
(2004) have presented theoretical and simulation evidence that spurious long memory can be detected from a time series
with breaks. Moreover, while Granger and Hyung (2004) have found that an occasional breaks model provides an inferior
forecasting performance than a long memory model for S&P500 absolute returns, for the same series Starica and Granger
(2005) have found that a non-stationary model, allowing for breaks in the unconditional variance, can outperform a long
memory model in forecasting, but not at short horizons.! Furthermore, Diebold and Inoue (2001) have shown how Markov
switching processes could generate long memory in the conditional mean, while Granger and Terasvirta (1999) have shown
that a process that switches in sign has the characteristics of long memory.

The possible occurrence of structural breaks in conditional variance processes, generating extreme persistence of the
IGARCH form, appears to have been originally suggested by Lamoreaux and Lastrapes (1990) and Diebold (1986).
Theoretical explanations for the above findings have been provided in Morana (2002) and Hillebrand (2005), and studies by
Lobato and Savin (1998), Beran and Ocker (1999), Beine and Laurent (2000), Morana and Beltratti (2004) and Martens et al.
(2004) have suggested that an appropriate model for the volatility of financial returns should include the joint occurrence
of long memory and structural change. These studies are generally consistent with the previous literature such as Hamilton
and Susmel (1994),> which considered alternating regimes of high and low volatilities, each one being characterized by
strong persistence in their fluctuations. Economic explanations of the phenomenon have been suggested by Schwert
(1989), who relates alternating volatility regimes to fluctuations in fundamental uncertainty and leverage effects over the
business cycle. Also, Beltratti and Morana (2006) relate breaks in stock market volatility to macroeconomic volatility,
possibly determined by monetary policy reactions in response to business cycle conditions; while Engle and Rangel (2008)
emphasize the role of market size in addition to macroeconomic uncertainty.

Given the above summary of the previous research, this present paper starts from the proposition that both long
memory and structural breaks are likely to be present in the volatility processes of many economic and financial time
series. Its main contribution is then to present a model which allows for both long memory and structural change in a
volatility process. The proposed model is named Adaptive FIGARCH, or A-FIGARCH, and augments the standard FIGARCH
model of Baillie et al. (1996a) with a deterministic component, following Gallant (1984)’s flexible functional form. Hence,
the A-FIGARCH model allows for a stochastic long memory component and a deterministic break process component. The
approach does not require pre-testing for the number of break points; nor does it require any smooth transition between
volatility regimes; and has the advantage of being computationally straightforward.?

The rest of this paper is organized as follows. Section 2 introduces the A-FIGARCH model and its theoretical properties.
Section 3 presents some Monte Carlo evidence for inference in the model and Section 4 presents an empirical application
based on equity market returns. The paper ends with a short concluding section.

2. The Adaptive FIGARCH process

The Adaptive FIGARCH, or A-FIGARCH process is formed from two basic components of a long memory volatility process
and a deterministic time-varying intercept which allows for breaks, cycles and changes in drift. By definition {y,} is a
discrete time, real-valued stochastic process that is serially uncorrelated in its conditional mean, and has long memory type
in its conditional variance process. Hence,

Vi = 0ty (1)

where E;_4[z]] = 0 and Var,_1[z{] = 1; ¢ is a positive, time-varying measurable function with respect to the information set
available at time t — 1, which is denoted as Q; ;. Hence, ¢? is the time dependent conditional variance defined as 67 =
Var,_1(y?) = Var(y?|2;_1) and, following Baillie et al. (1996a), is expressed as the long memory FIGARCH(p, d, q) process

[1 - B))o; =w+[1— L) — pL)(1 - L)y7. (2)
The process can be most easily motivated from representing {y?} as the ARFIMA(m, d, q) model
¢ =Ly =w+ (1 - flyve, (3)

! The finding that accounting for structural change may not be relevant for short-term forecasting is a robust finding in the literature. See for instance
the discussion in Diebold and Inoue (2001) and the empirical results in Morana and Beltratti (2004).

2 See also Haas et al. (2004) for a recent contribution in the GARCH framework.

3 Indeed the proposed model is easily estimable with available menu-driven packages as for instance the G@RCH Ox interface.
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where v¢ = y? — ¢? is the innovation in the conditional variance. The fractional differencing parameter is denoted as d, and
is constrained to lie in the interval O<d<1. The lag polynomials are defined as a(l) = oL +---+ogl? and (L) =
BiL+ - + BpLP, with ¢(L) = (1 — a(L) — B(L)). The polynomials ¢(L) and (1 — (L)) are assumed to have all their roots lying
outside the unit circle, and m = max(p, q). After rearrangement, an alternative representation for the FIGARCH(p, d, q) model
is

o7 = w1 — B +[1 - p)(1 — L[1 — B2 (4)

or

ot =wll = B + ALYz, .

where A(L) = 1L + /5L% + --- and A(1) = 1 for every d, with /;>0, fori = 1,2, ... and w> 0, for the conditional variance to be
well defined, so that it is positive almost surely for all t. A key feature of the FIGARCH model is that for high lags, k, the
distributed lag coefficients are A; ~ ck~4", where cis a positive constant. Hence, the conditional variance can be expressed
as a distributed lag of past squared returns with coefficients that decay at a slow, hyperbolic rate, which is consistent with
the long memory property. Davidson (2004) has proposed an alternative definition for the persistence properties of the
FIGARCH process in terms of hyperbolic memory, which makes more precise the distinction of the FIGARCH model from the
shorter (geometric) memory cases represented by the GARCH and IGARCH processes.

Recently, Conrad and Haag (2006) have provided two sets of sufficient conditions for the conditional variance of the
FIGARCH process to be non-negative almost surely. While the first set immediately implies the above condition, the second
set is less restrictive, and in practice requires checking the non-negativity of only a finite number of the impulse response
weights 1;s.

It is well known that for 0<d<1 the FIGARCH(p, d, q) process has an undefined unconditional variance. However, the
process does possess cumulative impulse response weights with a finite sum. This property makes the FIGARCH model
different from other possible forms of long memory ARCH models, such as the class suggested by Karanasos et al. (2004).

As argued in the introduction, there is abundant justification from the literature on financial markets to suspect possible
structural instability in the volatility process. A straightforward, but quite powerful approach is to allow the intercept to be
time dependent. Hence, the A — FIGARCH(p, d, q, k) process can be derived from the FIGARCH(p, d, q) process by allowing the
intercept w in the conditional variance equation to be time-varying according to Andersen and Bollerslev’s (1997) flexible
functional form. Hence, the model becomes

[1 - BDNo? —wp) =[1 — L) — $D)(A — L'y?, (6)

where

We =wo + > _[y;sinmjt/T) + J; cos(2mjt/T)]. (7)

k
=1

The above model reduces to the FIGARCH model by setting w, = w[1 — (1)]!. Although the deterministic process
modelled by the flexible functional form is smooth, it has been shown to be able to accurately approximate quite abrupt
regime changes, such as discontinuous shifts. Adequate approximations can be achieved with very parsimonious
specifications of only k = 1 or 2; see Enders and Lee (2004) and the simulation results later in this paper. Hence, the flexible
functional form approach allows for a very efficient modelling of structural change, without requiring pretesting to
determine the actual location of break points. Furthermore, estimation is relatively straightforward, and the joint presence
of long memory and structural change can be assessed by standard hypothesis testing of the fractional differencing
parameter and the deterministic trigonometric components.

Analogous to the standard FIGARCH model, rearrangement of Eq. (6) produces the alternative representation of the
A — FIGARCH(p, d, q, k) model as

02 = we +[1 - p)(1 — L1 — BT y? (8)

or
0% = wy + AL)y?. 9)

In order for the conditional variance to be positive almost surely at each point in time, restrictions similar to those
holding for the FIGARCH(p, d, q) process have to be imposed. In particular, w; >0, for all t, and /; >0, for all j. The inclusion of
the time-varying intercept component implies that the A-FIGARCH process is neither ergodic nor strictly stationary.

One of the great advantages of the above proposed A-FIGARCH method concerns the relative simplicity of computation.
In fact, the computational burden is only marginally greater than estimating the standard FIGARCH model. This is in distinct
contrast to the flexible coefficient GARCH model of Medeiros and Veiga (2004), or the spline-GARCH of Engle and Rangel
(2008), or the smooth transition model of Terasvirta and Gonzalez (2006).
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2.1. The A — FIGARCH(1,d, 1, k) process

A simple version of the model, which appears to be particularly useful in practice, is the A — FIGARCH(1,d, 1, k) process

[1 — BLI(6? —wy) = [1 — BL — pL(1 — L)]y? (10)
with w; as defined in (7). On rearranging, an alternative representation for the A — FIGARCH(1,d, 1, k) model is then

o2 =we +[1—(1 - BL~'(1 - 11 — pL)y?
= wr + AL)y? an

with 1p=0, 41 =d+¢—p, and following Conrad and Haag (2006), 4; = pfAi_1+(fi—P)—gi_1) i>1, where
fi=G-1-dy/j,forj=1,2,... and g; = f; - g;_, with g, = 1. As noted by Baillie et al. (1996a), a sufficient condition for
the non-negativity of the conditional variance for the FIGARCH(1,d, 1) model requires w>0,0<f<¢ +dand 0<d<1 — 2¢.
Less restrictive sufficient conditions have been provided by Bollerslev and Mikkelsen (1996), i.e. f —d<¢<(2 —d)/3 and
di¢ — (1 —ad)/2]<p(¢p — p+d), and Chung (1999), i.e. 0<¢p<pf<d<]1. Finally, Conrad and Haag (2006) have recently
proposed alternative and even less restrictive necessary and sufficient conditions, and they show for the case of 0<f<1,
either 4, >0 and ¢<f, or 4;_1>0 and f; ; <¢<f; with j>2; while for the case of —1<f<0, eitherd; >0, 1,>0 and
O<fo(B+f3)/(B+fz) or 4120, 4220 and f;>(B+fi_)/(B+fi_)<d<fi1(B+f)/(B+fj_1) with j>3. Similar
restrictions hold for the A-FIGARCH model.

2.2. Estimation

Estimation and inference for the parameters of the A-FIGARCH process can be facilitated by the familiar method of quasi
maximum likelihood estimation (QMLE), where the Gaussian log likelihood

T
In{L(0,y1,...,yp)} = —0.5TInn) — 0.5 Y {In(a7) + y7o*}
=1
is numerically maximized with respect to the vector of the parameters 0 = (d, §’,¢',w’,y’,8'Y. Hence, the procedure
simultaneously estimates all the parameters in the model, including those in the flexible functional form of the intercept in
the conditional variance process. Under fairly general conditions, the asymptotic distribution of the QMLE is

T'2(0 — 09) — N{0,A(0) 'B(05)A(0p) '},

where 6y denotes the true value of the vector of parameters, and where A(fy) is the Hessian and B(6y) is the outer product
gradient, both of which are evaluated at the true parameter values. Some results for the asymptotic properties of QMLE can
be established on the basis of available results from the estimation of GARCH processes. Jensen and Rahbek (2004) have
recently demonstrated that QMLE has the properties of consistency and asymptotic normality when applied to the
GARCH(1,1) process also when the properties of strict stationarity and ergodicity do not hold. It is worth noting that the
conditions required by Jensen and Rahbek (2004) are less stringent than those imposed by Lee and Hansen (1994) and
Lumsdaine (1996), where the consistency and asymptotic normality of the QMLE was initially shown for the strictly
stationary and ergodic case. In particular, Jensen and Rahbek (2004) assume that z.~i.i.d.(0, 1), with Var(z?) = k<oo, and
that the true parameters satisfy the condition E In(xgz? + f3,) =0, where o and f3, denote the true values of the parameters
o and p, i.e. the squared innovation and lagged conditional variance parameters, respectively, in the GARCH(1, 1) model.
Hence, the requirements do not depend on further higher moment conditions and cover the integrated and explosive
cases.* Moreover, Jensen and Rahbek (2004) have shown that the asymptotic properties of the estimator still hold for any
initial values ¢3 and y3, and any value of w. This allows conditioning on the sample mean value of y?, which is (1 /T)ZtT:1 y2,
for 64 and y3, as is usually implemented in the estimation of GARCH models.

It is important to note that the GARCH, IGARCH and FIGARCH models belong to the same family of ARCH(c0) models. The
FIGARCH model is essentially a generalization of the IGARCH model, since the differencing parameter is allowed to be
fractional rather than unity. Albeit the FIGARCH model shows relatively more memory than the IGARCH model, i.e.
hyperbolic memory rather than geometric memory, both models are characterized by summable sequences of lag
coefficients for the squared process, converging to unity, independently of the value of the fractional differencing
parameter; see Davidson (2004). Recent results of Robinson and Zaffaroni (2006) have established (strong) consistency and
asymptotic normality for the QMLE estimator of the parameters of the ARCH(c0) class of models under some general
conditions, which also covers the FIGARCH model,®> for which strict stationarity and ergodicity are not established
properties.® Furthermore, Dahlhaus and Rao (2006) have recently generalized the class of ARCH(co) processes to the non-
stationary class of ARCH(co) processes with time-varying coefficients, establishing consistency and asymptotic normality

4 Lee and Hansen (1994) assume that Eln(coz? + By) <0, which is a necessary and sufficient condition for the stationarity of the GARCH(1, 1) process.
This latter condition is in fact implied by the condition that o + o <1.

5 Note that while strong consistency requires 0<d< 1, asymptotic normality requires d>0.5.

6 See for instance Kazakevicius and Leipus (2002).
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for the segmented QMLE estimator. While these latter results do not directly apply to the FIGARCH model, since the
existence of the unconditional variance is required in the Dahlhaus and Rao (2006) proof, they do add supporting evidence
for the validity of the QMLE estimator in non-standard frameworks.” Although a formal proof is beyond the scope of this
paper, it is therefore conjectured that the optimal asymptotic properties of the QMLE estimator hold for the non-strictly
stationary and non-ergodic case, and extend to the A — FIGARCH(1,d, 1) model.

The numerical maximization of the log likelihood function is implemented by using the asymptotically equivalent
method of minimizing the conditional sum of squares function, which neglects starting values. Many previous studies have
presented simulation evidence which shows that neglecting initial conditions has minimal effects on parameter estimation
of long memory models in either of the first two conditional moments, given a sample size of at least 100 observations. For
example, see the results in Baillie et al. (1996b) for the ARFIMA model with stable GARCH(1, 1) innovations.

3. Simulation results

This section reports some detailed Monte Carlo evidence on the estimation of A-FIGARCH models for different data
generating process, and comparisons are made with the estimation of corresponding FIGARCH models. All of the
experiments specify an uncorrelated process y, for the mean, with various forms of long memory with and without
structural breaks, for the conditional variance process. In particular, the data generating process is a martingale difference
sequence with A — FIGARCH(p, d,q) model, and p,q = (0, 1). Hence,

Vi = Otéy,
&~NID(0, 1)

and
o =w;+(1-0)%;? whenp,q=0
or
[1 - BLI@? —w) =[1—(1 - BO)~'(1 -~ 1?1 — ¢pL)ly? when p,q=1.

Three different designs were examined:

Design 1 has a constant intercept of w, = w = 0.5, and corresponds to the standard case without structural breaks in the
conditional variance.

Design 2 has a step change in the intercept at the midpoint of the sample, where the intercept is doubled at this point.
Hence,

05, t=1,...T/2.
We=91, t=T/2+1,...,T.

Design 3 has two step changes equally spaced throughout the sample where the intercept increases eight fold, one-third
of the way through the sample and then decreases four fold at a point two-thirds of the length of the sample. Hence,

05, t=1,....T/3.
wi=4,  t=T/3+1,...2T/3.
1, t=2T/3+1,....T.

These three designs were each simulated for three different values of the long memory parameter, given by
d = (0.15,0.30,0.45), and for three values for the short memory parameters /3, ¢ = (0,0.15, 0.30). Clearly, the estimation of
the A-FIGARCH model should prove superfluous in design 1, while the interest in designs 2 and 3 centers on the
performance of QMLE when the pure martingale-FIGARCH process and the new martingale-A-FIGARCH models are estimated
in the presence of structural breaks in the intercept of the conditional variance. Hence, for designs 1-3 the estimated
models were FIGARCH(p, d, q) model with p,q = (0,1); so that

Yt = 0tz
z:~NID(0, 1),
(@2 -w)=[1-(1-pL"'A - D1 - pL)ly? (12)

7 Note that results concerning consistency and asymptotic normality of the QVILE have been obtained for the general strictly stationary and ergodic
GARCH(p, q) process; see Berkes et al. (2003). However, results for the non-stationary and non-ergodic case currently only exist for the GARCH(1,1)
process, which is fortunately the most widely used model in applied econometric work.
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and the A — FIGARCH(p, d, 0, k) model, with p,q = (0, 1),

y = 01z,
z¢~NID(0, 1),

(07 —wp) =[1—-(1 - L' - L1 - ¢pLy?,

k
we =W+ Y _[); sin@mnjt/T) + &; cosrjt/T)]. (13)
=

The A-FIGARCH models were estimated for each design with one to four pairs of trigonometric terms included, i.e.
k = (1,2,3,4). The simulated processes have sample size equal to 3000 observations. Following Baillie et al. (1996a), the
order of the truncation in estimation has been set to 1000 observations. Finally, 500 Monte Carlo replications were
employed in all of the designs. In Tables 1-3 the Monte Carlo bias (bias), root mean square error (rmse) and the standard
error (se) of the estimator, are reported for the various cases.

The simulation experiments reveal several general points concerning the performance of the different estimators of the
long memory parameter d. For case 1, where there is no structural change, the application of the A-FIGARCH model should
clearly be unnecessary since the intercept is a constant. First, the estimate of the long memory parameter obtained from
the A-FIGARCH estimation has approximately the same degree of small sample bias as the corresponding estimate resulting
from the estimation of the FIGARCH model. This result appears consistent across all the designs. However, the most
interesting result is the reduction in rmse of the estimate of the d parameter from using the A-FIGARCH model, compared
with estimation of the regular FIGARCH model. The reduction in rmse appears to noticeably increase as the level of
persistence (value of d) increases. These results suggest that there is no additional cost from using the A-FIGARCH model as
opposed to the FIGARCH model, even when there is no structural break in the conditional variance. The interpretation of
this is intriguing and suggests that the time dependent intercept is also somehow adjusting for parameter uncertainty in
the estimation of d.

For cases 2 and 3, where the intercept is subject to structural breaks, apart from the low persistence case (d = 0.15), the
degree of bias in the estimates of d is very small for both estimators. However, the bias is again always smaller for the A-
FIGARCH model compared to the pure FIGARCH model. Moreover, the rmse of the estimate of d is generally lower from the A-
FIGARCH estimation compared to the corresponding FIGARCH estimation. Finally, the generally superior performance of the
estimate of d from the estimation of the A-FIGARCH model, relative to the standard FIGARCH model, is robust across the
three different values of d used in the designs, with the improvement increasing as the degree of persistence increases.
Hence, the Gallant flexible functional form seems to work quite well in the A-FIGARCH model estimation framework, and
does a good job in terms of modelling the structural change in the intercept.

Table 1
Simulation results for estimation of A — FIGARCH(0,d, 0, k) and FIGARCH(0,d, 0) models.

A-F(0,0.15, 0, k) A-F(0,0.30,0, k) A-F(0,0.45,0, k)
biasy rmsey seq biasy rmsey seq biasy rmsey seq
k=0 my 0.001 0.021 0.021 0.005 0.035 0.035 0.013 0.035 0.035
my 0.102 0.020 0.010 0.025 0.022 0.021 —0.012 0.049 0.049
ms 0.107 0.023 0.012 0.044 0.030 0.028 0.036 0.040 0.037
k=1 my 0.036 0.029 0.028 —0.004 0.024 0.024 —0.017 0.024 0.024
my 0.081 0.017 0.010 0.017 0.022 0.021 —0.012 0.034 0.034
ms 0.089 0.020 0.012 0.036 0.026 0.025 0.005 0.035 0.035
k=2 my —0.004 0.020 0.020 0.002 0.023 0.023 —0.007 0.056 0.042
my 0.075 0.016 0.010 0.003 0.021 0.021 0.003 0.021 0.021
ms 0.091 0.020 0.012 0.034 0.027 0.026 0.001 0.027 0.025
k=3 my —0.010 0.022 0.022 —0.010 0.023 0.023 —0.020 0.028 0.028
my 0.081 0.016 0.010 0.005 0.021 0.021 —0.030 0.036 0.036
ms 0.090 0.020 0.012 0.027 0.028 0.027 —0.003 0.040 0.040
k=4 my —0.012 0.021 0.021 —0.011 0.023 0.023 —0.018 0.029 0.029
my 0.081 0.017 0.010 0.004 0.020 0.020 —0.027 0.039 0.038
ms 0.090 0.019 0.011 —0.028 0.029 0.028 —0.004 0.037 0.037

Key: The table reports simulation results for the bias, root mean square error (rmse) and standard error (se) for estimation of the fractional differencing
parameter d from a sample size of T = 3000 observations. All the results are based on 500 replications. The simulations are for three different experiments
of: no break (my), a single break point (m,) and two break points (ms). The estimated models use kth order flexible Fourier forms, with k = 0,1, 2, 3,4 for
the adaptive component. The k = 0 case corresponds to standard FIGARCH estimation.
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Table 2
Simulation results for estimation of A — FIGARCH(1,d, 0, k) and FIGARCH(1,d, 0) models.
biasy rmsegy sey biasy rmseg seg
A-F(0.30,0.45, 0, k)
k=0 m 0.032 0.079 0.078 0.029 0.079 0.078
my 0.073 0.071 0.066 0.078 0.077 0.071
ms 0.108 0.085 0.073 0.112 0.093 0.080
k=1 my —0.006 0.042 0.042 —0.008 0.050 0.050
my 0.044 0.051 0.049 0.049 0.060 0.058
ms 0.085 0.061 0.053 0.087 0.070 0.063
k=2 my —0.005 0.044 0.044 —0.007 0.051 0.051
my 0.022 0.046 0.049 0.031 0.050 0.045
ms 0.066 0.060 0.055 0.071 0.067 0.062
k=3 my —-0.021 0.051 0.050 -0.019 0.056 0.056
my 0.023 0.055 0.055 0.033 0.060 0.059
ms 0.055 0.061 0.058 0.064 0.070 0.066
k=4 my —-0.027 0.050 0.049 —0.023 0.054 0.053
my 0.021 0.056 0.055 0.030 0.060 0.059
ms 0.062 0.061 0.058 0.072 0.069 0.064
A-F(0.30,0.30, 0, k)
k=0 my —0.002 0.047 0.047 —-0.010 0.049 0.049
my 0.149 0.070 0.048 0.138 0.071 0.052
ms 0.178 0.106 0.078 0.190 0.106 0.082
k=1 my 0.002 0.042 0.042 —0.008 0.044 0.044
my 0.130 0.055 0.038 0.118 0.057 0.043
ms 0.168 0.070 0.041 0.155 0.071 0.047
k=2 my —-0.007 0.039 0.039 —0.015 0.041 0.041
my 0.087 0.037 0.027 0.076 0.034 0.031
ms 0.137 0.067 0.048 0.123 0.068 0.053
k=3 my —0.021 0.039 0.038 —0.028 0.040 0.039
my 0.083 0.031 0.024 0.069 0.033 0.028
ms 0.126 0.056 0.040 0.111 0.057 0.045
k=4 my -0.027 0.038 0.038 —0.034 0.039 0.038
my 0.095 0.040 0.030 0.085 0.042 0.035
ms 0.147 0.067 0.046 0.134 0.068 0.050
A-F(0.15,0.15,0, k)
k=0 my —0.004 0.030 0.030 —0.011 0.032 0.032
my 0.220 0.071 0.022 0.205 0.074 0.032
ms 0.244 0.098 0.047 0.225 0.097 0.038
k=1 m —0.008 0.028 0.028 —-0.016 0.029 0.029
my 0.202 0.062 0.022 0.186 0.065 0.030
ms 0.216 0.082 0.035 0.191 0.085 0.048
k=2 my —0.009 0.032 0.032 —0.016 0.033 0.033
my 0.152 0.039 0.016 0.120 0.042 0.025
ms 0.158 0.054 0.029 0.124 0.056 0.040
k=3 my —-0.020 0.029 0.029 —0.014 0.030 0.030
my 0.151 0.037 0.015 0.126 0.041 0.025
ms 0.154 0.041 0.018 0.112 0.040 0.026
k=4 my -0.027 0.031 0.030 —0.033 0.033 0.032
my 0.167 0.044 0.016 0.147 0.047 0.026
ms 0.196 0.072 0.034 0.174 0.075 0.045

Key: As for Table 1; but corresponding results also included for the estimation of the § parameter.
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Table 3
Simulation results for estimation of A — FIGARCH(1,d, 1, k) and FIGARCH(1,d, 1) models.

biasy rmsey seq biasy rmseg seg bias,, rmseg sey
A-F(0.30,0.45,0.15, k)
k=0 my -0.196 0.107 0.069 0.059 0.141 0.138 -0.012 0.128 0.128
my 0.012 0.074 0.073 0.242 0.169 0.110 0.104 0.103 0.092
ms 0.045 0.090 0.090 0.261 0.189 0.121 0.085 0.096 0.088
k=1 my -0.123 0.117 0.101 —0.010 0.104 0.104 —0.023 0.074 0.074
my —0.006 0.035 0.035 0.151 0.107 0.084 0.016 0.065 0.064
ms 0.047 0.054 0.052 0.230 0.167 0.114 0.056 0.084 0.081
k=2 m -0.138 0.103 0.084 0.039 0.121 0.120 0.033 0.091 0.090
my —0.056 0.041 0.038 0.123 0.090 0.075 0.028 0.056 0.055
ms —0.006 0.068 0.068 0.161 0.148 0.122 0.031 0.083 0.082
k=3 my —0.102 0.071 0.060 0.045 0.071 0.060 0.010 0.096 0.094
my —0.041 0.034 0.032 0.135 0.084 0.066 0.028 0.050 0.049
ms 0.016 0.044 0.043 0.210 0.144 0.100 0.056 0.074 0.071
k=4 my —0.086 0.049 0.041 0.049 0.025 0.023 -0.012 0.028 0.027
my —0.054 0.022 0.019 0.059 0.026 0.022 —-0.028 0.020 0.019
ms —0.040 0.019 0.017 0.049 0.025 0.023 —0.028 0.018 0.017
A-F(0.15,0.45,0.30, k)
k=0 my -0.313 0.134 0.036 —-0.097 0.112 0.103 —0.085 0.110 0.102
my 0.053 0.159 0.154 0.494 0.472 0214 0.114 0.147 0.130
ms 0.122 0.191 0.173 0.533 0.505 0.21 0.108 0.130 0.116
k=1 my -0.276 0.191 0.115 —0.063 0.090 0.086 —0.074 0.070 0.065
my —0.049 0.037 0.034 0.134 0.090 0.072 -0.078 0.045 0.039
ms —0.040 0.037 0.035 0.156 0.137 0.112 —0.047 0.062 0.060
k=2 m -0.079 0.098 0.092 0.036 0.063 0.061 —0.055 0.040 0.037
my —0.061 0.032 0.028 0.086 0.038 0.030 —0.084 0.025 0.018
ms —0.060 0.050 0.047 0.086 0.077 0.070 —0.080 0.047 0.041
k=3 my -0.178 0.141 0.109 —0.008 0.086 0.086 —0.053 0.067 0.065
my -0.112 0.040 0.027 0.090 0.060 0.052 -0.073 0.023 0.017
ms —0.067 0.033 0.029 0.108 0.099 0.087 0.072 0.049 0.043
k=4 my —0.168 0.117 0.089 0.021 0.050 0.050 —0.042 0.035 0.034
my —-0.080 0.018 0.014 0.049 0.016 0.014 —0.052 0.015 0.012
ms -0.072 0.018 0.013 0.067 0.022 0.017 —0.069 0.018 0.014

Key: As for Table 2; but corresponding results also included for the estimation of the ¢ parameter.

Interestingly, from Tables 1-3, it can also be noted that neglecting structural breaks does not only lead to an upward
biased estimate of the fractional differencing parameter, as already found for the p = 0 case, but also in the estimates of the
f and ¢ parameters in the conditional variance equation. This latter finding is particularly evident when the degree of
persistence is low, as in the d = 0.15 case, or when /3 is low (f = 0.15). The upward bias in the estimate of d from the regular
FIGARCH estimation appears to be mitigated by the inclusion of the trigonometric components in the A-FIGARCH
estimation. The improved performance of the estimation of d tends to increase with the degree of persistence of the series.
Hence, estimation of the A-FIGARCH shows a superior performance relatively to the FIGARCH model in terms of bias and
rmse in all the designs. Interestingly, the greatest improvement is in the d = 0.45 case, which is the one mostly relevant for
financial applications. In this case there is a 145% reduction in bias and a 60% reduction in rmse obtained from using the A-
FIGARCH model, relatively to the FIGARCH model.

Overall, the above results indicate potentially significant gains from using the A-FIGARCH specification, and certainly no
perceptible losses, even in the absence of structural breaks. The possible loss of efficiency in using an unnecessary, over-
parameterized A-FIGARCH model specification does not appear to be an issue. It may be that the estimation from smaller
sample sizes would find losses in efficiency of the estimation of d. Since a sample size of T = 3000 is quite common for
finance applications, the situation from smaller sample sizes has not been investigated in this study.
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Therefore, in the light of the Monte Carlo evidence, it seems preferable to include the adaptive non-linear trend
component in the specification for the conditional variance equation at the out set, since no negative consequences for
estimation may be expected, apart from the case of weak long memory, which however does not seem to be relevant for
financial returns. Then, following a general to specific methodology, the best fitting parsimonious model may be obtained.
Moreover, for the cases investigated in the Monte Carlo exercise, there is no evidence of an improvement in the
performance of the model by the inclusion of polynomial terms beyond the second or third order. Yet, for actual data more
profligate parameterizations may be needed.

4. Applications to stock market volatility

This section of the paper reports estimation of A — FIGARCH(1,d,1,k) and FIGARCH(1,d,1) models for the S&P500
returns, as well as comparison with competing models such as the standard GARCH(1, 1) model, the Engle and Rangel
Spline-GARCH (S — GARCH(1, 1, p)) model, an adaptive version of the GARCH model, i.e. the A — GARCH(1, 1) model,? and a
spline version of the FIGARCH model, i.e. the S-FIGARCH(1,d, 1, p) model.

The time span is from January 3, 1928 to February 15, 2007, which realizes a total of T = 20, 863 daily observations, or
4172 weekly observations,® and is a long enough period for the likely occurrence of multiple structural breaks in volatility.
For the practical implementation of the A-FIGARCH and A-GARCH methods, an important consideration is the
determination of the order of the trigonometric terms in the Gallant flexible functional form, in addition to the order of
the specification of the stationary components in the conditional mean and conditional variance equations. Similarly, for
the implementation of the spline models, in addition to the specification of the conditional mean and variance equations, a
smoothing parameter, controlling the trade off between minimizing the residual error and minimizing local variation,
needs to be selected for the estimation of the long-term volatility component. In the reported results the Schwartz BIC
information criterion is used for model selection in all cases. For computational convenience, estimation has been carried
out using weekly observations.

Since the conditional mean did not exhibit any significant autocorrelation, only an intercept was included in the mean
equation. Hence, the following long memory models of the FIGARCH(1,d, 1) family

Ve=H+&
&t = OtZt
z:~NID(0, 1)
[1—BLl6? = w; +[1 — L — $L(1 — L)"e?
w FIGARCH(1,d, 1),

k
we={ Wo +1§[Vj sin27jt/T) + J; cos(2mjt/T)] A — FIGARCH(1,d,1,k)

fp(® S — FIGARCH(1,d, 1, p)

and short memory models of the GARCH(1, 1) family

Ye=HU+é&
& = 0tZ;
z:~NID(0, 1)
[1 - BLio? = w; + Le?
w GARCH(1,d, 1),

k
we={ Wo +j;[yj sin2mjt/T) + d; cos(2mjt/T)] A — GARCH(1,d,1,k),

Fp® S — GARCH(1,d,1,p),

where f,(t) is the spline volatility component, were estimated for the S&P500 returns series. All the above models have
been estimated by imposing non-negativity constraints, using, as in Engle and Rangel (2008), an exponential specification
at the log-likelihood function maximization steps.!®

8 Related and independent work by Pascalau (2007) has also dealt with the short memory, exponentially decaying, version of the proposed adaptive
model.

9 Neglecting the first three daily observations of the sample.

10 The estimated w, y; and ¢; parameters reported in Table 4 actually refer to the exponential specification. See Engle and Rangel (2008) for details.
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A cubic spline smoother was used to model the long-term volatility component. The objective function for the
determination of the smoothing parameter p can then be written as

S@)=p Y~ fix)* + (1= p) [ 02,
t

where t = 1,...,T, I; is the generic process to be smoothed, x; defines the position of knots, [f”(t) is the integrated squared
second derivative of the cubic spline function f(x) = a; + bix + ¢;x? + d;x3. See Silverman (1985) for details.

Estimation results are reported in Table 4. First, the Nyblom (1989) test indicates clear rejection at the 0.05 level of the
null hypothesis of no breaks in variance for the estimates of the standard GARCH(1, 1) model. A consequence of neglecting
structural breaks is that the estimation of the GARCH(1, 1) model tends to produce results consistent with the data being
generated by an IGARCH process. The tests for serial correlation in the mean of the residuals do not suggest any further
evidence of mis-specification. Accounting for structural breaks in the spline or adaptive framework leads to non-significant
Nyblom (1989) stability statistics. The estimation of the A-FIGARCH model also corrects for the upward bias in the
persistence parameters that is a feature of the basic GARCH model. The above findings are fully consistent with evidence on
the presence of structural breaks previously detected for S&P500 returns, as reported by Lobato and Savin (1998), Granger
and Hyung (2004), Starica and Granger (2005) and Beltratti and Morana (2006).

Table 4
Estimation of GARCH and FIGARCH models for S&P500 returns.

GARCH S-GARCH A-GARCH FIGARCH S-FIGARCH A-FIGARCH
u 0.201 (0.029) 0.210(0.029) 0.118 (0.006) 0.209 (0.029) 0.211 (0.029) 0.252 (0.000)
w 0.102 (0.037) - 0.112 (0.036) 0.101 (0.037) - 0.101 (0.036)
B 0.879 (0.015) 0.789 (0.028) 0.795 (0.027) 0.593 (0.060) 0.401 (0.212) 0.487 (0.180)
¢ 0.106 (0.012) 0.120 (0.014) 0.120 (0.013) 0.322 (0.057) 0.331 (0.208) 0.307 (0.134)
d - - - 0.446 (0.032) 0.242 (0.033) 0.340 (0.063)
p = 1e-008 = = 1e-008 =

71 = = = = =

5 = = 0.405 (0.050) = = 0.443 (0.050)
7, = = 0.477 (0.050) = = 0.476 (0.050)
5, = = 0.145 (0.050) = = 0.119 (0.050)
73 = = 0.183 (0.050) = = 0.188 (0.050)
53 = = 0.185 (0.050) = = 0.215 (0.050)
Va = = = = = =

S - - —0.181 (0.050) - - ~0.202 (0.050)
Vs = = = = = =

35 = = —0.154 (0.050) = = —0.147 (0.050)
Ve = = = = = =

36 = = —0.403 (0.050) = = —0.384 (0.050)
7 = = 0.158 (0.050) = = 0.137 (0.050)
87 - - ~0.196 (0.050) - - ~0.177(0.050)
Vg = = 0.249 (0.050) = = 0.227 (0.050)
Js = = —0.219 (0.050) = = —0.226 (0.050)
LBgs 0.170 0278 0.044 0171 0.227 0.029

LB, 0.958 0.870 0.792 0.988 0.978 0.933

Sk ~0.583 ~0.504 ~0.495 ~0.478 ~0.452 ~0.492

Ku 2.635 2.018 1.81 1.592 1.441 1.638

S-b 0.670 0.633 0.540 0.431 0.462 0.534

NS-b 0.000 0.005 0.002 0.168 0.181 0.154

PS-b 0.055 0.019 0.024 0.002 0.001 0.002

Nyb 0.547* 0.297 0.417 0.098 0.036 0.083

SBC —0.0045 0.0004 0.0093 0.0053 0.0170 —0.0050

AIC ~0.0039 0.0008 0.0064 0.0058 0.0173 ~0.0084

L —2.1798 —2.1689 ~2.1702 —2.1746 —2.1676 —2.1690

The sample is from January 3, 1928 to February 15, 2007, for a total of T = 4172 weekly observations. The asymptotic standard errors are reported in
parenthesis beside corresponding parameter estimates. The diagnostic statistics are LB which denotes the Ljung-Box test for serial correlation in the
standardized residuals, LB? is the Ljung-Box test for serial correlation in the squared standardized residuals, Sk is the index of skewness and Ku is the
index of excess kurtosis. The Ljung-Box statistics are computed from the first T/ sample autocorrelations. In addition, S-b denotes the p-value of the
sign bias t-test, NS-b the p-value of the negative size bias t-test, PS-b the p-value of the positive size bias t-test, while SBC is the Schwarz-Bayes
information criterion and AIC is the Akaike information criterion. Finally, L is the value of the average log-likelihood function and Nyb is the Nyblom
stability test for the unconditional variance carried out on the standardized residuals (* denotes rejection of the null of stability at the 5% significance
level). The estimated models are the GARCH(1,1) model (GARCH), the Spline-GARCH(1,1) model (S-GARCH), the Adaptive-GARCH(1,1) model (A-GARCH), the
FIGARCH(1,d, 1) model (FIGARCH), the Spline-FIGARCH(1,d, 1) model (S-FIGARCH) and the Adaptive-FIGARCH(1,d, 1,8) model (A-FIGARCH).
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Accounting for long memory yields an additional improvement in specification in all the cases considered for the GARCH
family of models. Firstly, stronger evidence of stability in variance can be detected in all the cases. Interestingly, as found
for the FIGARCH model, no evidence of instability in variance can be detected once long memory is allowed for. This finding
is consistent with the view that long memory and structural breaks are features which can be easily confounded. Yet, once
structural breaks and long memory are jointly modelled, in the spline or in the adaptive framework, an improvement in fit
can be noted, as well as a reduction in the persistence parameter. As already found for the GARCH model, by comparing the
estimated fractional differencing and autoregressive parameters, it can be noted that an upward bias in persistence is
imparted by neglecting structural breaks in both cases. Differently, the moving average parameter does not seem to be
sizably affected. Overall, the evidence is consistent with the Monte Carlo evidence provided in this study. Finally, by
comparing the spline and adaptive long memory specifications it can be concluded that both strategies lead to very
satisfactory results, albeit the adaptive specification possibly shows some computational advantages over the spline model.

In Table 5 some descriptive statistics for the estimated conditional variance processes from the estimated models are
reported for comparison. As is presented in the table, the estimated conditional variance processes are very similar in terms
of overall mean variance level (in the range 6.38-6.69) and standard deviations (8.04-9.15). More noticeable differences

Table 5
Descriptive statistics for the conditional variance processes for S&P500 returns.

GARCH S-GARCH A-GARCH FIGARCH S-FIGARCH A-FIGARCH
Mean 6.670 6.382 6.543 6.690 6.548 6.658
Std. dev. 9.012 8.041 8.446 9.071 8.455 9.145
Min 1.511 0.886 0.698 1.037 0.850 0.736
Max 100.48 97.651 100.40 129.68 123.19 123.51
Correlations
GARCH 1.000
S-GARCH 0.978 1.000
A-GARCH 0.978 0.997 1.000
FIGARCH 0.981 0.985 0.983 1.000
S-FIGARCH 0.959 0.986 0.983 0.990 1.000
A-FIGARCH 0.977 0.992 0.993 0.993 0.996 1.000

The sample is from January 3, 1928 to February 15, 2007, for a total of T = 4172 weekly observations. In the table descriptive statistics for the estimated
conditional variance processes are reported. The estimated models are the GARCH(1,1) model (GARCH), the Spline-GARCH(1,1) model (S-GARCH), the
Adaptive-GARCH(1,1) model (A-GARCH), the FIGARCH(1,d,1) model (FIGARCH), the Spline-FIGARCH(1,d,1) model (S-FIGARCH) and the
Adaptive-FIGARCH(1,d, 1,8) model (A-FIGARCH).
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Fig. 1. S&P 500 conditional standard deviation and long-term volatility processes, A~-FIGARCH and S-FIGARCH models.
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Fig. 2. Estimated conditional standard deviations from the FIGARCH, A-FIGARCH, GARCH and S-GARCH models.

concern the minimum (0.70-1.51) to maximum (97.65-129.68) value range. The processes are also strongly correlated (in
the range 0.985-0.997), with the GARCH model showing in general the lowest correlations with all the other models.

In Fig. 1 the estimated conditional standard deviation by the preferred A-FIGARCH and S-FIGARCH models are plotted,
and the corresponding long-term volatility components are contrasted with the constant long-term level estimated by the
standard FIGARCH model as well. As is shown in the plot, the long-term variance components estimated by means of the
adaptive and spline specifications are very close, taking values in general different from the estimated long-term value from
the standard FIGARCH specification. The latter would largely underestimate the long-term variance value in the 1930s and
the 1940s, and the overestimate it up to the end of the 1970s. Underestimation can then be observed again over the 1990s,
while both overestimation and underestimation over the 2000s.

Finally, the consequences of neglecting structural change can be clearly noted in Fig. 2, where the conditional standard
deviations from the FIGARCH, the A-FIGARCH, the GARCH and the S-GARCH models have been plotted for four years in the
sample. As shown in the plots, modelling structural change in conditional variance can make the difference, particularly in
terms of overall volatility level, as volatility fluctuations always look strictly synchronized across models. Hence, sizable
bias, both upward or downward can be imparted by neglecting structural change. Yet, as shown in the first sub-plot in Fig.
2, results can also be sensitive to the way the time-varying long-term volatility is modelled.

4.1. Out of sample forecasting analysis

In order to further assess the consequences of the specification and also mis-specification of the conditional variance
equation, out of sample forecasting experiments were conducted. All the models were estimated recursively, with ex ante
out of sample forecasts generated for 1-12-week horizons. When generating predictions for the A-FIGARCH and A-GARCH
models, forecasts of the deterministic component were obtained by extrapolating the flexible functional form specification.
Given the specification of the latter, it then follows:

EWepsel =we, s=1,...,12.

A naive forecast of the intercept has then also been employed for the non-adaptive models, including the spline models.
A total of 940 point forecasts, for each forecasting horizon, were computed from the last 20 years of data in the sample. The
benchmark volatility process for assessing forecast accuracy was computed from the realized variance estimator of
Andersen et al. (2001), using daily data. Forecasts were assessed on the basis of the root mean square forecast error
criterion (RMSFE), and also with the West and Cho (1995) test to determine the statistical significance of the MSFE based
model ranking.

Since 12 different forecasting horizons were considered, it is worth using a criteria that assesses the overall MSFE based
forecasts. Clements and Hendry (1993) have suggested a generalized forecast error second moment (GFESM) statistic, given
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Table 6
Out of sample forecasting analysis for the GARCH and FIGARCH models.

GARCH S-GARCH A-GARCH FIGARCH S-FIGARCH A-FIGARCH
RMSFE

1 6.851 6.838 6.703 6.441 6.513 6.388

2 11.395 11.377 11.007 10.713 10.903 10.551

3 15.553 15.539 14.865 14.731 15.074 14.443

4 19.548 19.543 18.505 18.374 18.908 17.944

8 34344 34.669 31.522 32307 34.003 31.258

12 48.854 49.807 43.783 45238 48.588 43.491
L-GFESM

1 3.849 3.845 3.805 3.726 3.748 3.709

2 5175 5172 5113 5.052 5.083 5.025

3 6.037 6.035 5.959 5.922 5.962 5.888

4 6.686 6.684 6.592 6.567 6.615 6.526

8 8.349 8.359 8.207 8.228 8.308 8.171

12 9.373 9.398 9.191 9.238 9.351 9.169

RZ

1 0.142 0.163 0.155 0.212 0.221 0.224

2 0.187 0.216 0.205 0.242 0.259 0.261

3 0.216 0.251 0.240 0.254 0278 0.279

4 0.231 0.271 0.259 0.271 0.298 0.300

8 0.267 0.322 0.313 0.288 0.328 0.329

12 0.267 0.337 0.329 0.293 0.344 0.344

0

1 1.688 (0.399) 1.510 (0.355) 1.214 (0.424) 0.968 (0.448) 1.079 (0.399) 0.884 (0.430)
2 3.541 (0.801) 3.152 (0.701) 2.515 (0.849) 2.368 (0.795) 2.571 (0.709) 2.168 (0.750)
3 5.322 (1.176) 4712 (1.038) 3.627 (1.230) 3.949 (1.115) 4219 (1.034) 3.601 (1.044)
4 7.270 (1.563) 6.406 (0.593) 4.846 (1.547) 5.347 (1.469) 5.763 (1.414) 4.859 (1.360)
8 14.68 (3.660) 13.03 (3.610) 8.518 (3.608) 11.27 (3.614) 12.77 (3.605) 10.31 (3.325)
12 22.80 (6.369) 20.45 (6.230) 12.06 (6.201) 16.81 (6.362) 20.17 (6.238) 15.59 (5.822)
B

1 0.633 (0.087) 0.623 (0.076) 0.728 (0.095) 0.800 (0.103) 0.713 (0.086) 0.817 (0.100)
2 0.614 (0.083) 0.606 (0.073) 0.716 (0.093) 0.752 (0.090) 0.667 (0.078) 0.773 (0.088)
3 0.611 (0.076) 0.602 (0.071) 0.722 (0.086) 0.723 (0.077) 0.640 (0.074) 0.748(0.078)
4 0.600 (0.068) 0.593 (0.068) 0.718 (0.075) 0.716 (0.069) 0.630 (0.075) 0.743 (0.072)
8 0.588 (0.069) 0.574 (0.090) 0.737 (0.085) 0.694 (0.072) 0.591 (0.094) 0.724 (0.083)
12 0.568 (0.067) 0.551 (0.103) 0.740 (0.095) 0.690 (0.082) 0.568 (0.108) 0.719 (0.098)

The table reports forecast evaluation statistics for various out of sample horizons, i.e. 1-week up to 12-weeks. The statistics are as follows: root mean
square forecast error (RMSFE), log generalized forecast error second moment (L-GFESM) and the coefficient of determination (R?), the intercept (0) and
slope (9) parameters for the Mincer-Zarnowitz regression of realized variance on conditional variance forecasted by various models. The sample cover a
total of 940 forecasts for each of the horizons considered. The forecasting models are the GARCH(1,1) model (GARCH), the Spline-GARCH(1,1) model (S-
GARCH), the Adaptive-GARCH(1,1) model (A-GARCH), the FIGARCH(1,d,1) model (FIGARCH), the Spline-FIGARCH(1,d,1) model (S-FIGARCH) and the
Adaptive-FIGARCH(1,d, 1,8) model (A-FIGARCH).

by the determinant of the complete (stacked) forecast error second moment matrix, which is
GFESM = |E[uu’]],

where u is the vector of forecasts errors, i.e. the vector constructed by stacking the forecast errors for each of the 12
horizons. In the current framework the GFESM statistic can then be simply computed by summing the MSFE statistics over
the different forecasting horizons considered.!

Mincer and Zarnowitz (1969) regressions have also been employed, i.e. by regressing realized variance (¢7), at a give
horizon k, on the conditional (to time t — 1 information) forecast of model i, f,;, at the same horizon

O-?,k =04 fix + €ig-

An accurate forecasting model would then show 6 = 0 and J = 1. Moreover, the R? of the regression may be used to
assess the ability of the model to track the variability of the forecasting target over time. Newey-West standard errors have
been computed to account for the MA(k — 1) error process, due to the use of overlapping intervals.

' To avoid very large numbers in Table 6 the log transformation of the GFESM statistic (L-GFESM) has been reported.
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Fig. 3. Forecasting comparison: GARCH(1,1) (G), Spline — GARCH(1,1) (S-G), Adaptive — GARCH(1,1,k) (A-G), FIGARCH(1,d,1) (F) and Spline —
FIGARCH(1,d, 1) (S-F).

Table 6 presents statistics for the various models for selected horizons, while in Fig. 3 the same information is displayed
in relative terms (to the A-FIGARCH model) for the whole period. Values larger than unity for the relative RMSFE, GFESM, 6
and |1 — J| statistics for a given competitor model then denote that the A-FIGARCH model yields a superior forecasting
performance than the competitor model at the selected horizon. On the other hand, a relative R? statistic smaller than unity
denotes that the A-FIGARCH model is performing better than the competing model.

As presented in Table 6, the results of the forecasting analysis are clear-cut, pointing to the A-FIGARCH model as the best
forecasting model across different horizons and criteria. As is shown in Fig. 3, the A-FIGARCH model yields the lowest RMSFE
across all the horizons, as well as the lowest GFESM statistic.'> According to the West and Cho (1995) test, albeit very small
in some cases, the difference in the RMSFE statistics is always statistically significant. Moreover, the A-FIGARCH model also
performs best in terms of Mincer-Zarnowitz regression, particularly at short forecasting horizons. For instance, at the 1-
step horizon, only the FIGARCH and A-FIGARCH models satisfy all the requirements for unbiased forecasting, with the A-
FIGARCH model always showing superior forecasts in relative terms.

Some interesting conclusions can then be drawn from the forecasting experiments. Firstly, jointly accounting for long
memory and structural breaks is important for stock market volatility forecasting, particularly at horizons usually of
interest, i.e. the one-week and two-week horizons. In the case just one of the features had to be modelled, then, according
to the results, at short-term horizons a pure long memory model, i.e. the FIGARCH model, should be preferred to any of the
short memory models. Hence, the findings are consistent with the literature, i.e. modelling structural breaks may not be
fundamental for short-term forecasting, as a pure long memory model can provide a good approximation to a long memory
process subject to breaks in the short-term.

However, as the forecasting horizon increases, modelling structural change can make important differences, since the
stationary long memory part of the process reverts towards the long-term level modelled by the break component. Hence,
the latter component is important in determining the forecasting ability of the model. The noteworthy performance of the
A-GARCH model at long-term forecasting horizons can then be understood on the basis of the above considerations: for a
long memory process subject to structural change the modelling of the break component is of fundamental importance for
accurate long-term forecasting, while the modelling of the long memory part is much less important, and could actually be
neglected according to the results of the Mincer-Zarnowitz regression, pointing to non-statistically different results for the
two models. Yet, according to the MSFE based criteria, the modelling of both features yields to statistically different results,
favoring the A-FIGARCH model over all the other models, including the A-GARCH model. How the break process is modelled
can however make the difference, as the trigonometric approach leads to superior results to the spline based approach.

The above evidence refers to the case in which the realized variance is used as a benchmark for forecasting evaluation.
However, qualitatively similar conclusions can be reached when the squared range estimator of Alizadeh et al. (2002) is
employed for the estimation of the benchmark.!?

12 The latter has been computed in a cumulative way. Hence, it is the final value reported in the plot, i.e. the one for k = 12, which corresponds to the
GFESM statistic formula reported.
13 The results are available upon request from the authors.



R.T. Baillie, C. Morana / Journal of Economic Dynamics & Control 33 (2009) 1577-1592 1591
5. Conclusions

This paper has introduced the new Adaptive FIGARCH or A-FIGARCH process to model volatility, which is designed to
account for both long memory and structural change in the conditional variance process. Structural change is modeled by
allowing the intercept to follow a slowly varying function, specified by Gallant (1984)’s flexible functional form. A detailed
simulation experiment finds that the A-FIGARCH model outperforms the standard FIGARCH model when structural change
is present, and performs at least as well in the absence of structural instability. Overall, there appear to be significant gains
in terms of bias and efficiency from using the A-FIGARCH specification. An empirical application to stock market volatility is
also included to illustrate the usefulness of the technique, as well as the superiority relatively to available alternative
modelling strategies.
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